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Abstract

Advances in commodity processor and network tech-
nologies have made cluster-based servers very attrac-
tive for supporting a large number of interactive ap-
plications (such as visualization and data mining) in
the domains of Grid Computing and Distributed Com-
puting. These applications involve accesses to huge
amounts of data within the servers and heavy com-
putations on the accessed data before sending out the
results to the clients. The interactive nature of these
applications requires some kind of QoS support (such
as guarantees on response time) from the underlying
server. Unfortunately, the current generation cluster-
based servers with the popular interconnects (Gigabit
Ethernet, Myrinet, or Quadrics) do not provide any
kinds of QoS support. Fortunately, many of these ap-
plications are resource-adaptive, i.e., application pa-
rameters can be changed to suit user demands and
available system resources. To solve these problems,
a new QoS-aware middleware layer is proposed in this
paper for cluster-based servers with Myrinet intercon-
nect. The middleware is built on top of a simple NIC-
based rate control scheme that provides proportional
bandwidth allocation. Three major components of the
middleware (profiler, QoS translator, and resource al-
locator), their functionalities, designs, and the associ-
ated algorithms are presented. These components work
together to execute a requested job in a predictable
manner with an efficient allocation of system resources
while exploiting the resource-adaptive property of the
application. The complete middleware is designed, de-
veloped, and implemented on a Myrinet cluster. It is
evaluated for two wisualization applications: polygon
rendering and ray-tracing. FExperimental evaluations
demonstrate that the proposed QoS framework enables
multiple interactive and resource-adaptive applications
to be executed in a predictable manner while keeping
the allocation of system resources efficient. It is shown
that the QoS-aware middleware helps applications to
obtain response times within 7% of the expected times,
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compared to increases of up to 117% in the absence of
any QoS support.

1 Introduction

Rapid advances in modern networking and commod-
ity high performance systems are leading the field of
computing towards the domain of Grid and Distributed
Computing. This paradigm allows a large number of
computers to be connected together through a high-
speed network such as Myrinet[2], Gigabit Ethernet[3],
or InfiniBand([4] to work like a single supercomputer.
Such clusters are becoming increasingly popular for
providing cost-effective and affordable computing en-
vironments for day-to-day computational needs of a
wide-range of applications.

Traditionally, applications targeted for clusters have
primarily included compute-intensive jobs. A new gen-
eration of applications is now being targeted for clus-
ters such as data mining, imaging, collaborative inter-
actions, virtual reality, multimedia server, web server,
distributed visualization, collaborative computing, and
tele-medicine [1]. Such applications possess two im-
portant properties of interactivity and resource adap-
tivity. Being interactive, these applications require a
time limit on their execution times, which consequently
poses a need for QoS guarantees that cannot be satis-
fied on current generation clusters. Due to this prop-
erty of interactivity, such applications also require pre-
dictable execution time, where the client should be
given a guarantee that the execution will terminate
within a certain time-limit. These applications are also
resource-adaptive and have parameters that can be as-
signed to a range of values based on the resource avail-
ability in the system.

Consider the example of an interactive remote visu-
alization application shown in Figure 1. For such an
application, a client typically needs to access data from
a local file system associated with the cluster (or from
a remote large scale data repository), perform compu-
tation on this data on the cluster so that the data can
be rendered, and finally transmit the data from all the
compute nodes to a front-end node, where the image
can be viewed by the client.
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Figure 1: Client applications accessing a cluster-based
server

Currently clusters that are used in a shared manner
by such interactive applications have no means of guar-
anteeing performance demands in the face of network
contention from other applications. Though CPU re-
sources can be shared between contending applications
using various schedulers available on the market, there
is no similar scheme for sharing network resources. The
challenge therefore, is to design a suitable QoS-aware
middleware layer for clusters that can support the si-
multaneous execution of next-generation applications
on shared clusters while providing the predictable exe-
cution time of each application. The requirements for
such a middleware layer are enumerated as follows.

1. The framework must be able to make a transla-
tion from given application parameters to system
resources.

2. The resource-adaptive property of applications
can be used to determine the set of application
parameters most suited to the available system re-
sources, when conditions for parameters are not

stated by the application.

3. Once a translation has been made, there must
be a system-level mechanism that can provide co-
ordinated access to system resources such as pro-
cessing power and network bandwidth.

4. The framework must be able to admit as many
client requests to a shared cluster as possible while
taking into account their QoS constraints, and be
able to execute the jobs while delivering the QoS
requests of the admitted applications.

In this paper, we take on such a challenge. We
present the design and implementation details of a
QoS-aware middleware layer that satisfies the require-
ments given above. Implementation of the framework
on Myrinet-based clusters, and the associated chal-
lenges are described. We also introduce new metrics
to evaluate the performance of our framework. Exper-
imental results on a 16 node cluster indicate that the
framework is capable of providing application execu-
tion times that are not more that 7% higher than the
expected execution times. It is also observed that in
the absence of the middleware layer, execution times
can go as much as 117% higher than the expected ex-
ecution times.

The rest of this paper is organized in the following
manner. Section 2 gives a high-level overview of the

proposed middleware layer and its components. Sec-
tion 3 explains the profiler module and its character-
istics. Sections 4 and 5 describe the QoS translator
and resource allocator modules. Section 6 further il-
lustrates the working of the middleware layer through
an example. Sections 7 and 8 present a definition of
the metrics and a detailed performance analysis of the
middleware layer based on these metrics. Section 9
outlines the related work in the field. Conclusions and
future work are presented in Section 10.

2 Overall Structure of the Proposed
Middleware Layer
Figure 2 shows the main components of the middle-

ware: request handler, QoS translator, resource alloca-
tor, and profiler.

QOS-AWARE
MIDDLEWARE

CLIENT APPLICATION
RESOURCE ADAPTIV]

COMMUNICATION SUBSYSTEM

H/AW INTERCONNECT (MYRINET)

Figure 2: High-level overview of the proposed middleware
layer

The profiler maintains profiled data of an appli-
cation which characterizes application execution time
with respect to different application parameters and

system parameters. The QoS translator makes use
of the profiled data to make the best possible match
between application-given parameters and system re-
sources and translates the given application parameters
into system resource requirements. The decisions re-
garding actual allocation and de-allocation of the trans-
lated resource requircments arc made by the resource
allocator, based on the amount of resources available in
the system. The request handler interacts with client
applications and reads incoming application requests
and extracts application parameter values from them.

The basic QoS mechanism is provided by a NIC-
based rate control mechanism [5, 6] that controls the
rate at which packets belonging to different flows are
injected into the network based on the bandwidth as-
signed to those flows. Such a rate-control scheme can
be implemented at the host, but a NIC-based scheme is
preferred since it allows a finer granularity of control,
because the NIC deals with frames whereas the host
will deal with messages. The rate control mechanism
was implemented in the GM messaging layer [9] over
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Myrinet networks [2]. Application-level support was
also added at the Message Passing level [10]. The next
three sections explain the components of the proposed
framework in detail.

Formal Definition: The formal definition of the
input and output values of the middleware layer is as
follows:

Input to the QoS-aware middleware: X ¢ Power Set{¢,,
t2, 1, Tz ... T,} where {z1, 2 ... z,} refers to the
application parameters (such as image size, image res-
olution, etc.) and {t1, t2} refers to the lower and upper
time bound given by the application, respectively.

Output from the middleware: SUCCESS or FAILURE
depending on whether the request can be satisfied.

Table 1 describes the working of the middleware
layer. Here Y = {BW, N, t}, BW = bandwidth, N
= number of nodes, and t = execution time.

Schedule (X)

. Y = QoS_Translate (X)

if Not_equal (Y.BW, -1)
Resource_Allocate (Y)
Return SUCCESS

end if

Return FAILURE

Sk

Table 1: Formal Algorithm for the Middleware Layer

3 Profiler

The QoS translator needs profiled data on an appli-
cation to determine the set of system resources required
to satisfy user-given application parameters. The pro-
filed data is obtained by executing the application on
the cluster for different user parameters and system
parameters (such as number of nodes and reserved
bandwidth). The bandwidth allocation is achieved by
the NIC-based rate control mechanism. By providing
bandwidth allocation, the application seems to execute
in a wvirtual network which is reserved exclusively for
that application. Hence the application’s communica-
tion can progress with no interference from other appli-
cations contending for the network. Here we are assum-
ing that the CPU is allocated exclusively to that appli-
cation throughout its execution (for both computation
and communication). Since our system uses a User-
level communication protocol, it puts very little load on
the CPU for communication. Explicit CPU scheduling
schemes can also be incorporated in our framework.

Currently the profiled data is static i.e., no learn-
ing mechanism has been incorporated. However this
profiling mechanism can be made dynamic so as to re-
flect the changes in the cluster with little impact on
performance.

Let us illustrate the functionality of the module us-
ing working examples of two visualization applications
(as shown in Figure 3): Ray-tracing[8] and Polygon
Rendering. The quality metrics for the two applica-
tions that are taken into consideration are image sizes
and interleaving factor (IF). The profiling information

for the polygon rendering application maintains the ex-
ecution pattern of the application for given two image
sizes of 512 and 1024, and a range of bandwidth assign-
ments taken on 4, 8 and 16-node clusters. The profiled
information for the ray-tracing application (Figure 3A)
is similar but for an added parameter of the interleav-
ing factor, which determines the quality of the final
image. The x-axis measures the bandwidth assigned
per flow, and the y-axis measures the time taken for
execution, for a set of parameter values. When an ap-
plication is executed on 4 nodes, and each of the nodes
has communication flows to all the other nodes, on the
single link from a node, there will be 3 outgoing and
3 incoming flows, making 6 flows in all. The band-
width measured on a link is given by the total amount
of bandwidth taken by all the communication flows on
that link.

Resource Adaptivity: These graphs clearly show
the resource-adaptive property of such applications,
by which the application can execute with different
user parameters based on the availability of system re-
sources to achieve a certain response time. For exam-
ple, for the ray-tracing applications, to achieve a re-
sponse time of atmost 2 seconds for an image size of
512x512 with an interleaving factor of 0 requires atleast
2 MegaBytes per second (MBps) per flow on 4 nodes,
and 1 MBps on 8 and 16 nodes. If the application gives
hard conditions for the response time as 2 seconds or
less, and for the interleaving factor as 0, and there is
less than 15 MBps available on some of the 16 nodes
of the cluster, using the above information, the frame-
work can deduce that the only option is to execute the
application with an image size of 512x512 on 4, 8 or 16
nodes. Without the use of this middleware layer, an
application in the above conditions might execute with
the larger image sizes, and suffer as a consequence, even
though image size is apparently not a hard condition
for the application.

Determination of knee point: Another point
that can be noted from the graphs is that an applica-
tion always does not require the maximum bandwidth
available on a link. For all the curves shown, it can
be seen that as the bandwidth assigned increases, the
execution time drops drastically at first, but the curve
flattens out as more bandwidth is given. For every
graph, we define a knee-point value as the bandwidth
value for which the overall execution time is greater
than the minimum execution time by a small percent-
age value say, under 5 percent!. The profiler stores
this knee-point value for all the graphs and the frame-
work can allocate this value instead of the maximum
bandwidth to achieve very close to peak performance.

Formal Definition: The structure of the profiled
data can be defined formally as follows. The profiled
data consists of a set of points, arranged into graph-
curves for clarity. Let the graph-curves be denoted by
G1, G2 ... Gj. Each graph-curve contains a set of

!Without loss of generality a 5% difference is used in this
paper. It can be set to any other smaller value.
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Figure 3: Profiling information maintained for the
denoted as reserved per flow

attribute values unique to that graph-curve, which can
be used to identify it. These attributes are as follows:
Gj.attr = {z1, 22 ... zn, N, K} where {z1, 75 ... z,} are
the application parameters described, N = number of
nodes, and K = Knee-point bandwidth of this graph-
curve. Each graph-curve consists of a set of points:
Gi.points = {Py, P, ... P} where P, = {BW, t}, BW
= Bandwidth, and t = execution time.

4 The Quality of Service Translator

The QoS Translator performs a search and optimiza-
tion operation to obtain the set of system resources
that most closely match the specified application pa-
rameters. The working of the QoS Translator is illus-
trated in the following section by iterating through the
steps taken for a sample client request.

Specified Time Bounds: Consider the following
example of a user request for the ray-tracing applica-
tion. Let us assume that a client request requires the
time to render a frame has to be less than 1 second.
Figure 4a has the same data as the profiled data for
application as shown Figure 3a, but shows only the
pertinent graph curves, namely the lines that lie below
the application given limit of one second. The shaded
area shows the range specified by the application.

Specified Quality Metrics: Since the time con-
straint specified by the application is less than 1 second,
and all graphs with points below 1 second have image
size of 512x512, the image size that can be allocated
to the application has to be 512. If the application has
not specified the image size, or if the image size that
it has given is equal to 512, then the translator goes
ahead with trying to narrow down the set of points
from which possible system allocations can be done.
If the application has specified an image size and it
is bigger than 512, then the translator deduces that
this request cannot be satisfied, and returns the result
to the request handler. For the current example, let
us assume that the application desires an interleaving
factor of 0 and has not specified any particular image

Times in seconds

B. Polygon rendering application
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ray-tracing and polygon rendering applications with bandwidths

size. Figure 4b shows the new set of points that satisfy
the given criteria so far.

Knee Point Optimization: The knee-point value
that was defined in the previous section can be incorpo-
rated into the equation. For the above example, Figure
4b shows the two graphs with the knee-point of each
graph marked.

Once the translator has obtained the smallest set
of points that can be used to satisfy the application
request, it tries to find out if the corresponding sys-
tem resources can be allocated by conferring with the
resource allocator. The translator sends bandwidth re-
quests to the allocator in increasing order, that is, the
bandwidth corresponding to the least time value is sent
first, and then for the next higher time value and so on.
If the allocator finds an alternative that can be satis-
fied, it sends the result back to the request handler.

The translation works similarly for the polygon ren-
dering applications, the only difference being the na-
ture of the profiled data. For the polygon rendering
applications, the only application parameter is the im-
age size. Therefore the QoS translator narrows down
the set of graphs to be considered using the time limit
and image size, if given by the application.

Formal Algorithm: We now formalize the working
of the QoS translator using the following algorithm:
Input to the QOS translator: X € Power Set{t1, t2, z1,
T2 ... IL‘n}.

Output from the QoS translator: ¥; = {BW, N, t}, BW
= bandwidth, N = number of nodes, and t = execution
time.

The point Y; has final system resource allocation infor-
mation to be sent to the resource allocator.

Table 2 shows the formal algorithm that describes
the translation mechanism and the working of parallel
search threads responsible for finding the set of valid
points for each graph?.

2The parallel search threads were implemented using the
pthread mechanism on a single node.
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Figure 4: These graphs show the steps in the selection of points that satisfy given conditions for the chosen example

5 Resource Allocator

The selection of resources to be allocated depends
on the number of processors available and the net-
work resources available on the links of the cluster.
The resource allocator has to use both the application-
given criteria and the table of available resources to se-
lect the minimum set of resources that can satisfy the
application’s demands. The resource allocator main-
tains information about current reservations in the sys-
tem such as CPU and network reservations. It also
maintains a list of indices that denote the links with
the highest available bandwidth so that allocations are
spread evenly across all nodes in the system. As alloca-
tions and deallocations are made, this list is updated.
The process of finding a suitable allocation is itera-
tive in nature. The translator sends the alternatives
to the resource allocator in order of best case to worst.
The framework always tries to allocate resources for
a user request so that its performance is maximized.
The framework incorporates a greedy mechanism3of al-
locating resources which is augmented by careful use of
the knee-point value. Instead of allocating all the band-
width on a link to a requesting application, the resource
allocator only needs to allocate the bandwidth corre-

3For simplicity, we use a greedy algorithm in this paper. Any
other algorithm with different cost complexity can also be used.

sponding to the knee-point, so that resources are being
utilized cfficiently. Figurc 4c shows the incorporation
of the knee-point values into the equation. For both
the graph lines shown, the knee-point is at 40 MBps.

When the resource allocator is processing this re-
quest there can be three scenarios:

1. Even the smallest bandwidth of the shaded region
cannot be satisfied. The resource allocator notifies
the request handler about its decision, and the re-
quest handler in turn conveys the result to the
application that it cannot be admitted.

2. For the selected set of curves atleast one of the
knee points can be allocated. In order to maxi-
mize the performance of the application, the re-
source allocator tries to allocate the bandwidth
that would give the highest time first, then the
next highest time and so on. The search mecha-
nism is done in parallel by a set of search threads
described in Section 4. Once all the threads
have completed their searching, the master thread
compares the alternatives selected by each of the
thread, and selects the best alternative that would
provide the application with the least response
time. In the above example, there will be two
searching threads and the allocation of 40 MBps
on 16 nodes which would give the best possible
time for an image size of 512x512 and an interleav-
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A. QoS_Translate(X)
1 fori=1tok
2. if match (G;.attr, X)
. Start_Thread (Search_Thread, X, G;, i)
else
5 Y, BW = -1
end if
7. end for
Thread_Wait ()
.y = Get_Smallest_Y ()
10. Returny
B. Search_Thread(X, G;, index_of_thread)
1. forj=1tol
2 if match_time (G;.P;.t, X.t1, X.t2)
3 if allocate_possible (G;.P;.BW, G;.N)
4 Y—indez._of_thread-BW = GI'P]BW
5. Yindez_of_thread-N = GzN
g- Y;ndez_of_thread-t = Gi'Pj-t
8
9
1
1

3
4
6.
8
9

exit
end if
end if
0. end for
1. Yindez_of_thread‘BW =-1

Table 2: Formal Algorithm for QoS Translation

ing factor of 0 is found by one thread. Therefore
the resource allocator chooses to allocate 40 MBps
per flow on 16 nodes for the requesting application.
3. Due to existing reservations, it may not be possi-
ble to allocate the knee-point value of any of the
graph lines. If this is the case, each search thread
returns the largest bandwidth value which can be
allocated taking into account existing allocations
and resources available. Figure 4d shows the sce-
nario for the example that we had considered. The
maximum bandwidth available is only 30 MBps
per flow for 8 nodes, and 20 MBps per flow for 16
nodes. The resource allocator selects and allocates
20 MBps per flow, on 16 nodes, as shown in Figure

If a reservation can be made, the smallest Y value
returned by QoS_Translateis sent to the resource al-
locator so that the information pertaining to the new
allocation can be entered into the system. The resource
allocator then makes the reservation call to the rate-
control agents at the NICs of the nodes on which the
reservation is made.

It is to be noted that the current framework assumes
a perfect match between the profiled information and
job requirements. However, the application input data
and other parameters might vary. Our framework has
potential to work with a reasonable variations of in-
put parameters. We are exploring ways by which our
scheme can be enhanced to handle wide variations. The
current framework does not guarantee fairness. It can
also be added to the scheduling scheme by taking into
consideration an age metric for the tasks.

6 A Working Example of the QoS-
aware Middleware Layer

Figure 5 shows the working of the middleware with
a set of applications requests, allocations and de-
allocations. The figure shows the progress of time on
the x-axis in seconds. The upward arrows indicate the
arrival of applications with reservation requests and
their resource allocations, and the downward arrows
indicate the termination of the executed applications,
and the return of resources to the system pool of re-
sources. In the figure IS and IF refer to the values for
the image size and interleaving factor requested by the
application, respectively.
Req: 1<=T<=2 Req: T<=1  Req: T<=1
Req: IF=0 Req: IS = 1024 Req: IS = 512
Alloc: 4 nodes/120 MBPS Alloc: denied  Alloc: lGﬁodelelO MBps

1 1 2 2 12

EA nodes E 16 nodes

Req: 9<=T<=12

Req: IF=0

Alloc: 4 nodes/6 MBps
3

1120 MBps f 210 MBps
A 1
I I T I I T I I I
0 1 2 3 4 5 6 7 8
Req: 1<=T<=2 Req: 4<=T<=8 Req: 0<=T<=1
Req: IS = 1024 Alloc: 4 nodes/24 MBps  Req: 1S=512,IF=0
Alloc: 16 nodes/180 MBps Alloc: 8 nodes/210 MBps
4 4 H 6 '6 's 3!
' ' ' 4 nodes!
116 nodes 1 8 nodes } 4 nodes pfvnd
H H ' ps
180 MBp: E210 MBps 524 MBps :
Y Y Y Y

I T | T | T | T I
9 10 1 12 13 14 15 16 17

Figure 5: Working of the middleware layer with a set of
resource allocations and de-allocations

1. Request 1 arrives at time t=0. It specifies that
the execution time (T) be between 1 and 2 sec-
onds, and interleaving factor of the image should
be 0. The application does not pose any constraint
on the image size. Since the graph with param-
eters of image size = 512/number of nodes = 4
nodes/interleaving factor = 0 has the lowest time,
the translator picks that curve with knee point
value 120 MBps. Thus, for Request 1, the middle-
ware layer assigns 4 nodes with a bandwidth of 120
MBps reserved per bi-directional link. The execu-
tion terminates before any other requests arrive in
the system.

2. Request 2 arrives at time t=3. It specifies that the
execution time of the application must be below 1
seconds, and requires an image size of 1024. From
the graph, it is clear that the system is incapable of
delivering such a performance for the application.

The framework therefore rejects this request.
3. Request 2 is re-submitted at time t=4 with the

same time constraint, but with the image size de-
creased to 512. This request can be satisfied and
from the profiled data the framework allocates
7MBps on 16 nodes.

The rest of the requests are satisfied in a similar way
by the QoS framework. Thus, by the use of the pro-
filing information stored about applications, and the
resource-allocation matrix that stores system informa-
tion, the middleware is able to allocate resources in
such a way that application performance and resource
utilization are both maximized.
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7 Performance Metrics

To compare performance of applications when us-
ing the QoS-aware middleware layer with their perfor-
mance when there is no such layer present, we define
and use the following metrics:

1. We compare the execution times of applications

obtained in the presence of the middleware layer
with the execution times obtained when there is
no such layer present. The comparison is done
only for those jobs that have been admitted by the
middleware layer.
Percentage difference = (Thogos Tqos)/Tqos,
where Ty,s = Execution time in the presence of the
middleware layer, and T},,40s = Execution time in
the absence of the middleware layer.

2. We also compare the execution times obtained
with and without the middleware layer with
the expected execution times of the application.
Again, the comparison is done only for the

admitted jobs.
Percentage difference = (Tactuar -
Trequested)/Trequested ) where Tactual = Ac

tual Execution time, and Trequestea = Requested
response time of the application.

3. Finally we also show the admission rates for

the middleware layer, that is, the percentage of
incoming requests that are admitted.
Admission rate = Nyamitted/Ntotar, Where
Nadmittea is the number of jobs admitted by the
middleware layer, and Niee is the total number
of requests submitted to the framework.

8 Performance Evaluation

In this section, we present detailed, application-level
evaluation to validate our framework as well as demon-
strate its benefits.

Experimental Setup: In order to provide user re-
quests that would be most similar to a real-world ex-
ample, requests corresponding to visualization appli-
cations were submitted to the cluster-based server at
random intervals. Also, when a user is rendering an
image, he would try to look at the image from different
directions, magnify a part of the image, or rotate the
image, each of which will results in a further render-
ing action. To simulate this real-world scenario, the
experimental setup consisted of a set of task requests
arriving at random intervals, where each task is actu-
ally a further collection of subtask requests with differ-
ent application level parameters and different random
time intervals between them as shown in Figure 6. A
subtask is a request for a single rendering application
with specific application parameters. It must be noted
that the CPU and network resources are allocated to
a client for the full duration of a task request. This
ensures that all the subtask requests that form part
of a task can be completed once the task request is
admitted into the system.

For such an experimental setup, we used the follow-
ing parameters:

le
e |

1

—_— -—
Random interval Random interval SUBTASK REQUEST
between subtask requests between task requests
Maximum value setto  Maximum value set to

10 seconds 10, 20, and 50 seconds

TASK REQUEST

TIME AXIS

Figure 6: Experimental format showing the definition of
task and subtask requests

1. The maximum time interval between successive
high-level requests: This time interval was as-
signed values of 10, 20 and 50 seconds. The actual
time interval between task requests was varied ran-
domly between 0 and this maximum value.

2. The ratio of arrival image sizes: For the ray-
tracing application, the image sizes of 512 and
1024 were varied in ratios of 50:50 and 30:70. The
interleaving factors 0 and 2 were evenly distributed
across the requests.

3. For the polygon rendering application, only the
maximum interval time was varied.

TestBeds: The experimental testbed consisted of
a cluster of workstations with sixteen 1GHz Dual Pen-
tium III processors, running Red Hat Linux kernel ver-
sion 2.4.7-10 smp. These machines were connected by
one 16-port Myrinet switches and LANai 7.2 NICs with
66 MHz processors. The communication layer running
on the Myrinet cards was GM 1.5.1, and the MPI ver-
sion was MPICH 1.2.1.7.

Application Results: We first evaluate the pa-
rameters Thoq0s and Ty, described in Section 7 for the
two applications presented. Figures 7 and 8 show the
experimental results obtained for ray-tracing and poly-
gon rendering applications. The x-axis shows the se-
quence of incoming requests. The y-axis shows the exe-
cution time for the application in seconds. The graphs
are obtained by varying the maximum arrival interval
time, and changing the ratio of user requests for im-
age sizes of 512 and 1024. The light-colored bars on
the graph show the execution times with the QoS mid-
dleware running on the system, and the shaded bars
show the execution times when no such middleware is
present.

Figure 7 shows the results obtained for the polygon
rendering applications when the maximum inter-arrival
time between requests is 10 and 20 seconds. The dis-
tribution of image sizes was random across requests,
with the number of requests for each image size being
approximately equal. Figure 8a shows the experimen-
tal results for ray-tracing applications when the ratio
of image sizes of 512 to 1024 is 50:50 and the maximum
inter-arrival time is 10 seconds as shown in the graph.
Similarly the rest of figure 8 shows the results for the
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ray-tracing applications for the specified parameters.
It can be seen that there are requests which execute
when there is no middleware, but are not allowed to
execute in the presence of the QoS framework. These
requests cannot be satisfied due to low availability of
system resources, and correspondingly, it can be seen
that if these requests are allowed to execute, the exe-
cution times obtained are much higher than expected,
and the user requirements are not satisfied. More re-
sults and analysis are available in [7].

Percentage improvement by the QoS middle-
ware: This is the first metric discussed in Section 7
where we consider the performance improvement ob-
tained by using the middleware layer. Up to 80% im-
provement can be obtained for the polygon rendering
applications and up to 64% improvement can be ob-
tained for the ray-tracing applications. The perfor-
mance benefits gained are more for rendering applica-
tions because the communication to computation ratio
is higher for these applications.

Percentage difference with the expected exe-
cution time: Here we try to compare the execution
times obtained with and without the middleware layer
with the expected execution times of the application.
This is the second metric described in Section 7. Fig-
ure 9a shows the percentage difference between the ex-
pected time of execution given by a user request, and
the actual execution time attained by the application.
It can be seen that the difference in the percentage
increase is most marked for the polygon rendering ap-
plications, again due to the fact that there is a high
communication to computation ratio in these applica-
tions. This is as high as 117% for a maximum inter-
arrival time of 10 seconds in the absence of our frame-
work. As the inter-arrival times get larger, the con-
tention and load in the system decreases, and so does
the differences between the expected and actual times.
It should also be noted that for the ray-tracing appli-
cations, though the communication contributes a very
small percentage of the total execution time, there is
a marked advantage in using the middleware layer due
to the contention from other clients.

Admission Ratio of the Middleware Layer:
Here we evaluate the third metric discussed in Section
7. Figure 9b shows the admission ratios of our frame-
work under different load conditions for both the test
applications. At heavy loads, the admission rate falls
below 40% for the ray-tracing application, and below
60% for the polygon rendering applications. This low-
ered admission rate is validated by the lesser percent-
age increase observed in the previous graphs, showing
that, by keeping the admission rate small, the system
is able to guarantee the applications execution time
that is close to the requested response time. As dis-
cussed in Section 5, a greedy allocation scheme is cur-
rently used in the resource allocator. The admission
ratio can further be improved by implementing a dif-
ferent allocation scheme for the resource allocator. As
the load on the system becomes lighter, the system

is able to guarantee the applications the requested re-
sponse time, while admitting more jobs, due to less
contention in the system. At light loads, the admission
rate reaches almost 100% for the polygon rendering ap-
plications. It should be noted that under light loads,
using the QoS layer will add a slight overhead. These
results are available in [7].

The results shown here demonstrate that the use
of our proposed QoS-aware middleware layer guaran-
tees to deliver close to the requested response time of
client applications even in the presence of network con-
tention from other applications. In the absence of such
a framework, it can be seen that the resulting high load
and contention in the system can lead to very high dif-
ferences between the applications’ requested execution
time and the actual time the applications complete ex-
ecution. This increase in response time at high loads
is very undesirable for interactive applications. Since
these are interactive applications, admitting a selected
number of tasks for which response time is guaran-
teed is definitely better than admitting all tasks, which
would result in undesirably high response time.

9 Related Work

The use of applications’ resource adaptive nature to
improve performance based on available resources has
been studied extensively by a few other research groups
in recent years. Darwin project [15] outlines a set of
resource management mechanisms of application-aware
networks to support QoS for applications. Chang et
al [16] study the use of an application’s tunability
for efficient and predictable management of system re-
sources. Using a tunability interface and virtual ezecu-
tion environment distributed applications can dynami-
cally adapt to the network conditions. Zhang et al [11]
explore the effect of using various scheduling mecha-
nisms on the responsiveness and performance of appli-
cations. Chatterjee et al [12] describe models which fa-
cilitate adaptive QoS-driven resource management in
distributed systems with heterogeneous components.
The Globus project’s GARA framework [13, 14] pro-
vides end-to-end QoS for different types of resources.
Our approach is different from these approaches in the
sense that our proposed framework uses application
profiled data to match application parameters to re-
quired system resources. By this approach, the frame-
work can determine the exact amount of system re-
sources that can satisfy given application demands,
therefore providing efficient utilization of cluster re-
sources. Another point which makes our approach
unique is the support provided at system level by a
NIC-based rate control mechanism to control alloca-
tion of intra-cluster network bandwidths for applica-
tion flows in a shared cluster.

10 Conclusions and Future Work

In this paper, we presented a QoS framework for
supporting applications with resource adaptivity and
predictable execution performance. The QoS-aware
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middleware layer exploits the resource-adaptive prop-
erty of applications to determine the exact resource re-
quirements needed to satisfy application demands. In
order to provide the best match between application
parameters and system resources, we realized that the
use of profiled data taken apriori about the application
was the best option. The developed middleware layer
uses the profiled data of applications to choose the best
set of resources to satisfy an application’s demands.
Resource allocation is done in an efficient manner such
that only the minimum set of system resources needed
for the application to achieve its proposed performance
goals are allocated. The framework is supported at the
network level by a NIC-based rate control scheme that
provides proportional bandwidth allocation to commu-
nication flows. The combined use of this rate control
scheme and the middleware guarantees to first deter-
mine the exact resource requirements of applications
and then to satisfy these QoS reservations for network
and CPU resources. Therefore, the proposed frame-
work promises to support next generation interactive
applications (visualization, data mining, virtual reality,
etc.) on a shared cluster. By using the proposed mid-
dleware, we were able to demonstrate that applications
can obtain execution times within 7% of expected re-
sponse times while in the absence of such a framework,
they may encounter an increase of 117% over the ex-
pected response times.

Currently the framework only uses a proportional
bandwidth allocation mechanism for reservation of net-
work resources. We are exploring the integration of
CPU and disk scheduling mechanisms with the mid-
dleware layer. The scheduling algorithm used by the
resource allocator component of the middleware cur-
rently uses a greedy scheme in that it allocates a max-
imum set of resources to satisfy the needs of the appli-
cations. The effect of using different types of schedul-
ing algorithms can be explored. It will be interesting
to consider application classes with different priorities
and re-evaluate the scheduling algorithms in this con-
text. Currently the framework is implemented by a
centralized scheme, where all requests are sent to a sin-
gle central manager which then handles the requests
and sends the replies back. Another possible future
research direction can be the design of a distributed
framework and the advantages and disadvantages of
such a scheme can be compared versus the centralized
scheme currently in practice. Currently the scheme is
implemented and tested on Myrinet networks. Another
direction of future research can be the implementa-
tion of the scheme on other high-performance networks,
such as Gigabit Ethernet, and InfiniBand.
Acknowledgment: The authors would like to express
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