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Abstract— Simultaneous advances in processor and network
technotogies have made clusters of werkstations attractive ve-
hicles for high-performance computing. Emerging applications
targeted for clusters are inherently interactive and collaborative
in nature. These applications demand end-to-end Quality of
Service (QoS) in addition te performance. Achieving predictable
performance and ability to exploit resource adaptivity are also
common requirements of these next generation applications.
Providing QoS mechanisms for clusters to satisfy the demands
of next generation applications is a challenging task. In this
paper, we propose a QoS framework that provides bandwidth
guarantees for communication within a cluster. The framework
consists of a novel Network Interface Card (NIC)-based rate con-
trol mechanism and a coordinated admission control/scheduling
mechanism. An interface is developed so that applications using
the common Message Passing Interface (MPI) standard can
specify bandwidth requirements of their flows te the underlying
network. The framework is developed and evaluated on a
Mpyrinet cluster testbed for a range of scientific and visualization
applications. The experimental evaluations demonstrate the var-
ious advantages such as predictability and resource adaptability
associated with the framework. The proposed framework is guite
unique and is the first of its kind in the literature to support next
generation interactive and collaborative applications on clusters.

I. INTRODUCTION

Clusters of workstations have emerged as powerful com-
puting vehicles as a result of recent advances in high-speed
networking technology and increasing processor speeds [1].
Such clusters are becoming increasingly popular for providing
cost-effective and affordable computing environments for day-
to-day computational needs of a wide-range of applications
[2]. Traditionally, applications targeted for clusters have pri-
marily included compute-intensive jobs such as scientific and
engineering simulations, However, with the growth of modern
networking and the Web technologies, a new generation of
applications is being targeted for clusters. These applications
include large databases, data mining, imaging, collaborative
interactions, virtual reality, multimedia server, web server,
distributed visualization, collaborative computing, and tele-
medicine [3].

The above applications are primarily irteractive and col-
laborative in nature. Thus, in addition to demanding high
performance , many of these applications demand end-to-end
(oS from the underlying system. For example, a visualization
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application integrated with volume rendering on each node
of a cluster might need to have some dedicated bandwidth
from each node to a front-end node in the cluster so that the
rendered data can be composed at the front-end node with a
desired frames/sec and sent 1o the client over the LAN/WAN
network. Similarly, for a cluster-based file server, a tele-
medicine application involving medical video transmission
might require guarantee on bandwidth allocation from a back-
end node (containing the disk with the file) to the front-end
node so that it can be sent to the client over LAN/WAN at
a certain rate. To provide such end-to-end QoS. one needs
to have QoS associated with both computation and commu-
nication inside the cluster and support predictable execution
time for the appiication. Many of these applications also
demonstrate resource adaptive property so that they can adapt
depending on the available resources (such as CPU cycles and
network speed) and desired QoS level for the applications [4].

Current generation clusters using the popular interconnects
like Myrinet [5], Fast Ethernet/Gigabit Ethernet [6], and
GigaNet [7] do not provide any QoS support at switches
or at NICs. Clusters typically use irregular topologies and
associated deadlock-free routing schemes {8]. Thus, disjoint
partitioning of computing nodes in a cluster for different jobs
does not necessarily lead to disjoint paths for inter-processor
cominunication and I/O for these jobs. Even though a space-
partitioned node aliocation scheme is used for mapping dif-
ferent jobs to the nodes of a cluster, some communication
links may still be used in a time-shared manner. This is a
serions impediment for harnessing the computational power of
clusters for next generation applications. In this paper, we take
on this challenge and present a QoS framework that provides
bandwidth guarantees for communication within a cluster. The
framework consists of a novel Network Interface Card (NIC)-
based rate control mechanism and a coordinated admission
control/scheduling mechanism. The rate control mechanism
works by controlling the rate at which packets are injected at
the source NIC into the network. This NIC-based scheduling
scheme provides advantages of finer granularity, and lessens
the processing load on the host CPU. This scheme is used
in conjunction with the call admission control/scheduling unit
which maintains global knowledge of cluster traffic patterns
to provide bandwidth allocation to competing flows and that



monitors incoming requests for allocation and deallocation.
An interface is developed so that applications using the com-
mon Message Passing Interface (MPI) standard [9], [10] can
specify bandwidth requirements of their fows to the underly-
ing system. The framework is developed and evaluvated on a
Myrinet cluster testbed for a range of scientific and visualiza-
tion applications. The experimental evaluations demonstrate
the following advantages associated with the proposed QoS
framework:

1) Resource requirements of applications can be studied
by performing experimental evaluations with a range
of bandwidth allocations. These evaluations show the
minimum and maximum network bandwidth required by
the application as well as its resource adaptive property.

2} An application can be executed in a cluster in a pre-
dictive manner (with respect to overall execution time)
with no network interference from competing flows of
other applications or best-effort traffic.

3) Multiple applications can execute in a cluster transpar-
ently from each other leading to the concept of network
partitioning whereby every application has the illusion
of having an exclusive virtual network that has no
interference from flows from other jobs also running on
the same cluster.

The proposed framework is quite unique and is the first
one to be proposed in the literature to support next generation
applications with predictability, resource adaptability, and end-
to-end QoS. This framework has been developed and evaluated
on Myrinet clusters. However, it is very general and can be im-
plemented on clusters with programmable network interfaces
such as Gigabit Ethernet [6] and InfiniBand [11].

The rest of this paper is organized in the following manner.
Section IT explains in detail the problems faced by current
applications and the need for a QoS framework in clusters,
Section III introduces the basic concepts behind the QoS
mechanism. Section IV explains in detail the basic rate-control
algorithm and also gives some details of the implementation.
Section V moves one layer higher to the interface developed
for Message-Passing applications and also explains in detail
the working of the bandwidth policing manager. Section VI
provides information about experiments performed and results
obtained. Section VII looks at related work on QoS. Section
VIII gives some insight into ongoing and future work from our
research group in the same area and gives a brief conclusion
summarizing the paper.

II. THE PROBLEM

As indicated in the previous section, clusters of workstations
are increasingly being used by a range of applications. How-
evet, clusters are not being operated in the traditional single
application mode but are used by multiple applications simul-
taneously for more efficient resource utilization. Running any
such application on a cluster guarantees that each application
will get its own disjoint set of processors. However no such
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guarantee can be made for the underlying network, As shown
in Figures 1 and 2, applications running on clusters of uni-
processor or SMP workstations may affect each other due to
contention in the network. This contention is dependent on the
underlying topology and routing scheme [8] and is unavoidable
for large clusters.

Uni-precessor node

@-- Application 1
®+ Application 2

Fig. 1. Applications running on a cluster of uni-processor machines

Such contention may adversely affect the performance of the
applications, even though the network capacity may be very
high. Although each application will run on an exclusive set
of processors there might be interference in the network from
other applications that are also using the cluster. The behavior
of the application is thus no longer predictive. Therefore,
a guaraniee on network resources to a given application is
needed. A resource adaptive application can execute with any
fraction of the underlying network resources. Such applica-
tions can therefore reserve any available network bandwidth
and can be considered to have an exclusive partition of the
network. The overall view of the system would be a set
of resource adaptive applications each running on its own
exclusive virtual network.

SMP Node

& = Application |
@ =~ Application 2
. * Application 3

Fig. 2. Applications running on a cluster of shared memory multi-
processor(SMP) machines

Bandwidth guarantees are also required for client-server
applications. Consider a scenario shown in Figure 3.

Client Server Model

Fig. 3. Client applications accessing a cluster-based server

A client situated on a remote node over a wide-area network
(WAN) requires to transfer a large amount of data from a



group of server-workstations on a cluster, for example in a
file server. The client would require some kind of guarantee
on network resources not only in the WAN context but also to
eliminate contention from other clients accessing the cluster.
QoS reservations within the cluster can help provide a deter-
ministic behavior of the response time and the data transfer
time between the client and the server. Such a cluster-level
QoS support together with WAN-level QoS support can lead to
an end-to-end QoS mechanism which can provide bandwidth
guarantees on all components of the path between a client and
the server.

III. Basic IDEA BEHIND THE PROPOSED QOS FRAMEWORK

The proposed QoS framework is implemented with a rate-
control mechanism at the NIC level together with a Call
Admission Control (CAC) manager. Communication flows are
regulated by controiling the rate at which data is transferred
into the network interface and sent into the network.

Such a rate-control scheme can be implemented at the host,
but a NIC-based scheme is preferred since it allows a finer
granularity of control, because the NIC deals with frames
whereas the host will deal with messages. Since the QoS
mechanism is implemented by the firmware on the NIC, which
is loaded by the operating system, it can be trusted, and no
other policing mechanism is required. Thus, this solution is
particularly attractive in that it requires no additional hardware
components, or changes in commodity components. An exam-
ple of the rate-control mechanism is shown in Figure 4. Every
NIC connecting to the network has the QoS features uploaded
on it. Applications that are executing at the hosts can reserve
certain amounts of network resources in terms of network
bandwidth, and be guaranteed ihat the reserved bandwidth is
available only to them. This scenario is similar to the case
in which every executing application has its own independent
virtual network that is unaffected by interference due to the
communication flows of other processes on the cluster. As
shown in Figure 4, though the flows of application 1 running
on Hosts A and B, and application 2 running on Hosts C and
D share links between the switches, there will not be any
interference between them if a certain amount of bandwidth
is reserved by each communication flow (not exceeding the
total capacity of the link), and the rate of injection of each
flow into the network is controlled.

The proposed rate control mechanism is only a local scheme
and every NIC can be expected to know only information
about flows coming out of/going into that host node. However,
reservation of network links requires a more global knowledge
of the traffic patterns in the cluster. A trusted manager called
the Call Admission Control (CAC) manager maintains such
information,

Figure 5 shows the steps taken when a new reservation or
a change of reservation has to be made. A CAC manager
approves reservation requests of every application before they
can be granted. The CAC keeps information about the
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% "~ Rate—control agent

Fig. 4. Applications sharing the network are guaranteed a certain pre-
specified share of the network resources

.——- Application

s~ CAC

Fig. 5. The Call Admission Control (CAC) Manager and it's interaction
with an application

bandwidth available on every link in the network. When a
request comes in, either for a new bandwidth allocation or
for a change of reservation, the CAC uses the stored data to
verify that granting the request will not over-allocate the links
1o be traversed by the flow in the network. If this is the case,
it grants the request, and wpdates the information maintained
in its data structures. The responsibility of the CAC manager
is therefore to make sure that no link in the cluster is being
over-allocated and te inform the rate control agent in the NIC
of changes in bandwidth reservations arising from allocations
and deallocations, Section V-B gives a detailed description
of the working of the CAC manager. For advanced cluster
interconnects such as Myrinet, source-based routing is used
{8]. Thus, the entire path (in terms of links in the network) is
known. In Section IV we will take a closer look at the actual
mechanism at the NIC that performs rate-control on packet
injection into the network.

IV. OVERVIEW OF NIC-BASED RATE CONTROL

A message stream between applications is denoted by the
term communication flow. Every communication flow has a
well-defined source and a well-defined sink. The end-points of
the flow are logical and there may be several communication
endpoints on the same physical network node. The flows
are then multiplexed over the physical link. When requesting
bandwidth guarantees, an application is required to make QoS
reservations for each of the communication flow originating
from it. Under the rate-control algorithm, the assumption
is that the bandwidth requested by the application is the



TABLE I
‘WORKING EXAMPLE OF THE RATE-CONTROL ALGORITHM

t 0 1 2 3 4[5
NDT(A) [1] 2 2 4 46
NDT(B) 010|313 ]|6|6

Flowserviced | A| B |A|B|A ] -

maximum amount that it can obtain. The CAC agent running
on that node, after checking to make sure that the request
can be satisfied, maps the bandwidth value to a parameter
known as the Inter-Dispatch Time (IDT) and passes this value
to the rate-control agent at the NIC, Therefore the IDT value
associated with every flow can be defined as the minimum
interval that can elapse between the consecutive injections of
the packets from that fiow into the network interface. At any
given time, let f, to f,, be n communication flows sourced at a
particular node. Let their corresponding IDT values be JDT)
to I.DT,. The actual rate control algorithm uses another set of
parameters catled Next Dispatch Time (NDT) NDT: 1o NDT,
which specifies the absolute time before which a packet from
a given flow should not be dispatched. The NDT value of a
flow is initialized to the current time when a message send is
posted for that flow.

Let t be the time and j be the communication flow.
The rate control algorithm works like this:

NDT; = min (NDT} to NDT}))

If NDT; <=1t

Dispatch packet from flow j

Update NDT} to NDT; + I1DT;

Thus for every flow we have to maintain IDT and NDT
information at the NIC and these wvalues will be used in
deciding the next packet to be transferred into the network.
Assume that we can send out packets at most once every T
time units. This T then corresponds to the peak achievable
bandwidth B,,,,. Table 1 shows a working example of the
rate control algorithm in the presence of two flows from
sources A and B, each requesting IDT values of 2 and 3
respectively. At time t = 0, the NDT values of both A and B
are equal to the current time and both can be sent. We assume,
without loss of generality that A is setected as the next flow
to be serviced. Once a packet from flow, is dispatched, its
NDT value is incremented by IDT' 4 =2. Attime t= 1, flowg
has the smallest NDT value, and the value of ¥ DTg is also
less than the current value of t. Thus at time t = 1, flowg is
serviced and NDTg is updated to NDTg + IDTg. Again
at time t = 2, A is ready to be serviced again. The algorithm
proceeds in similar steps. It should be noted that at time t = 5,
the NDT values of both A and B are greater than the current
time, and no packet is dispatched.

The rate control mechanism was implemented in the GM
messaging layer over Myrinet networks [12], [13].The Myrinet
NIC is controlled by firmware called the Myrinet Control Pro-
gram (MCP) [14]. The MCP consists of four state machines:
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SDMA, SEND, RDMA and RECYV, that take care of message
sends and receives. Message sends and receives therefore do
not involve the operating system, but take place by direct
interaction between the client and the MCP through DMA
of data, Additional QoS information for a flow was added to
the MCP so that the NIC maintains the IDT values for various
flows. IDTs are specified in terms of clock ticks of the Real
Time Clock (RTC) available on the LANai processor on the
Myrinet NIC. The modified SDMA state machine maintains
information about the validity of the flow and its NDT and IDT
values. If a send has been posted for a flow, then the flow is
declared to be valid. Whenever a send token is inserted as the
first sendable token for a flow, the flow is validated and its
NDT value is updated to the larger of RTC and the existing
NDT value. Packet scheduling in the NIC is now based on
NDT values. To search for the next packet to be sent, the
SDMA state machine finds the flow with the minimum NDT
among all valid flows. If the RTC is larger than the NDT value
for this flow then the flow is serviced using its first sendable
token and its NDT is incremented by its IDT value. This
procedure is followed every time a packet has to be sent. To
reduce the overhead of the QoS mechanism, the next smallest
NDT value is searched in parallel with the DMA of the current
packet being sent. This ensures that the search for the smallest
NDT value among all the flows that have requested QoS does
not fall in the critical path of sends. If no flow is ready to be
sent at a given time step, then data from non-premium or best
effort flows is transmitted.

V. Q0S8 FRAMEWORK FOR SUPPORTING MPI-LEVEL
APPLICATIONS ON CLUSTERS

So far we have described the incorporation of the QoS
framework at the GM level for providing rate control. But
GM is only a low-level communication layer for the network.
This scheme requires a user-level interface and some kind
of policing so that applications cannot arbitrarily request and
obtain any bandwidth value. In this section we will first look
at the changes needed at the Message Passing Interface (MPI)
layer [9] for providing an interface for resource reservations
and deallocations. Then we will have a detailed look at the
structure of the Call Admission Control (CAC) manager, a user
level program that monitors incoming requests for bandwidth
and makes the decision as to whether the request can be
allowed or rejected based on the information maintained about
existing reservations in all the links of the cluster.

A. Support for MPI applications

The basic QoS feature at the GM level is sufficient for guar-
anteeing network resources and for actually administering QoS
policy. However, for ease of programming and portability,
support has to be added at the application level. We have
modified a familiar programming model, the Message Passing
Interface (MPI) [9], since it is in widespread use and freely
available. MPI is a message-passing library that offers a range



of point-to-point and collective interprocess communication
functions to a set of single threaded processors executing in
parallel. All communication is performed within the definition
of a communicator. A communicator is a group of processes
that are communicating with each other, in which each process
has a unique id between O and N-1, N being the number
of processes in the communicator. MPICH [15] is a freely
available, portable implementation of MPL. The mechanism
for achieving portability is a specification called the Abstract
Device Interface (ADI). All MPI functions are defined in terms
of a set of basic MPI communication primitives, which are
implemented in the ADI layer. This layer uses message-
passing functions native to the underlying system. MPICH-
GM is therefore an implementation for Myrinet clusters that
uses GM as the underlying message-passing system. As Figure
6 shows, the ADI layer in MPICH-GM uses GM primitives
to implement MPI primitive functions in terms of which more
complex MPI operations are defined.

Fig. 6. The Message Passing Interface

To use the QoS features that GM provides in a standard-
compliant fashion, we used the Attribute mechanism provided
by the MPI layer {10}. MPI provides functions to set and get
the values of attributes for a communicater. An attribute is
identified by an integer, a keyval, and its value may be of any
arbitrary type (void * in C). When used with special keyval
values that signify that the value is related to QoS parameters,
the set attribute function call in MPI is mapped to the GM
function for requesting bandwidth allocation or deallocation.
Process ids are converted into appropriaie GM node and
port identifiers. Also, since the MPI layer incurs additional
overhead, bandwidths achieved at the MPI level are lower than
raw GM bandwidths. The get antribute call can be used to
determine if a request made using the set attribute function
call is accepted or denied. The bandwidth value requested
can also be changed dynamically during the execution of the
application by using the same attribute function calls.

B. Implementation of Call Admission Control (CAC)

The CAC is the reservation entity at the cluster-level that
handles requests for bandwidth allocation and deallocation on
network links. The criteria for admitting a new communication
flow with a given bandwidth requirement is as follows:

1) If the flow is admitted, then the cumulative bandwidth

requirement for all flows at the source network node of
the new flow should not exceed its peak capacity.
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2) If the flow is admitted, then the cumulative bandwidth
requirement for all flows using the switch output ports
traversed by the new flow should not exceed the corre-
sponding outgoing link capacity.

3) If the flow is admitted, then the cumulative bandwidth
requirement for all flows at the destination network node
of the new flow should not exceed its peak capacity.

If the addition of a reservation request satisfies all of the
above conditions then the request is permitted. Now, it is
the duty of the CAC to convert this reservation into an IDT
value and inform the rate-control agent at the NIC level of
the new premium reservation. The IDT value is defined
as follows: IDT =T * (Bpao/Breq) where DBrgy is the
bandwidth requirement of the new flow.

The implementation of the CAC is designed in such a way
that a copy of the CAC should run on every node in the cluster.
The local copies of the CACs are called slave CACs . The
following scenario is illustrated in Figure 7. An application on
a node will send its reservation request to the local slave CAC
running on that node. One of these CACs is also designated
as the master CAC, which maintains information about all
live requests currently operating on all the links in the cluster.
To reserve a request, each slave CAC sends it to the master
CAC, which then uses the information it maintains to study
if the three conditions specified above are satisfied if the new
request is to be allowed. Once a decision is taken, the master
informs the slave, which then either makes the reservation if
allowed, or informs the requester that the reservation cannot
be satisfied if disallowed. The actions taken when an MPI
application makes a QoS request are as follows:

1) The ’set attribute’ implementation studies the value of
the given keyval and since it is a request for QoS, sends
the request to the locally running slave CAC.

2) The slave CAC passes the request to the master CAC,
which then decides whether the request can be allowed
based on the maintained information. The master CAC
then informs the slave of its decision. If the local CAC
is the master CAC, then it makes the decision itself.

3) In either case, if the reservation has been accepted,
the slave CAC calculates the corresponding IDT value,
passes the request to the rate-control manager at the NIC,
and informs the client application that its request has

Application

eg}—‘ Stave CAC
.—-—- Master CAC

Interaction between the master and the slave CACs

Fig. 7.



been accepted. At the NIC, flow information for the
new flow is set up and values are initialized.

4) If the reservation is rejected, the slave CAC informs the
client application that its request has been rejected.

Since the slave CAC makes the reservation on behalf of the
user, a rogue application cannot misuse the bandwidth feature
by assigning any desired bandwidth value to itself. The CAC
also maintains information about ail best-effort flows in the
system, those that have not requested any specific bandwidth
value but are willing to use whatever bandwidth is remaining
after allocations have been done. As premium requests are
allocated and deallocated as requested by the applications,
the CAC also calculates the amount of bandwidth remaining
for best-effort traffic and updates the applications about the
changed values.

VI, PERFORMANCE EvaLUATION

In this section, we present detailed, application-level eval-
vation to validate our framework as well as demonstrate
its benefits. We carried out the following three kinds of
experiments.

1) Applications were run with varying bandwidth reser-
vations to show the impact of rate control on their
execution time. This test also serves to highlight the
resource adaptive nature of the application by which the
application can be executed with any available network
bandwidth allocation.

2) Applications were run in the presence of background
bandwidth-hungry flows to show the effectiveness of
the QoS framework in reserving network resources and
delivering predicted execution time.

3) Multiple applications were executed simultaneously on
the same set of nodes, on different sets of processors,
but sharing the same underlying network. Since each
application reserves a certain percentage of network
bandwidth, the network gets essentially partitioned into
disjoint virtual networks, where each virtual network is
available for the exclusive use of the application that
has reserved it. This test also highlights the predictable
execution time for an application in the presence of
background applications.

A. Experimental testbed

The implementation was evaluated on a cluster of work-
stations with eight 700 Mhz Quad Pentium III processors,
running Red Hat Linux kemnel version 2.4.7-10 smp. These
machines were connected by an 8-port Myrinet switch and
LANai 7.2 NICs with 66 MHz processors. The communi-
cation layer running on the Myrinet cards was GM 1.5.1,
and the MPI version was MPICH 1.2.1.7. To determine the
maximum bandwidth that can be supported by the network,
MPI bandwidth and latency tests were performed on the
testbed. It was determined that the maximum bi-directional

0-7803-7426-6/02/517.00 (c) 2002 IEEE.

185

bandwidth that can be supported per link is 210 MBps (Mega
Bytes per second).

B. Overview of Applications

The tests were performed using the NAS Benchmark Suite
[16], and two visualization applications. The NAS Bench-
marks used were Integer Sort (IS), Block tridiagonal solver
(BT), LU solver (LU), Conjugate Gradient (CG), Multigrid
(MG), and Pentadiagonal solver (SP). All the NAS benchmarks
with the exception of MG were executed with size class A
and some of the benchmarks were executed with number of
iterations and size differing from the class A default, The
visualization applications tested were an iso-surface extraction
application and a ray-tracing application that can be executed
with different sizes of input data.

C. Impact of rate control on application execution time

The applications were run with different bandwidth reserva-
tions. Uniform allocations were made to every communication
flows in the application. The tests were performed for four
and eight nodes. The results are shown in Figure 8 for the
NAS benchmarks and the visualization applications for four
nodes, and in Figure 9 for eight nodes. Since reservations were
made for all possible communication links, each application
on N nodes will have N-1 outgoing flows, and N-1 incoming
flows, making the total number of flows on the link from
a node to the switch as 2N-2. By this calculation, on four
nodes, the maximum reservation that can be made per flow
is 210/6 = 35 MBps, and for eight nodes, it is 210/14 = 15
MBps. The results show that as the allocated bandwidth for
each flow is increased, the execution time decreases. Since
these are not simple bandwidth or latency tests, but complex
applications with various computation to communication ratios
and different communication patterns, the rate at which the
execution time decreases varies according to the application.
These tests also show the resource-adaptive nature of the ap-
plication, in that the application can be run with any assigned
QoS value. It also shows the predictive property that the QoS
mechanism provides ie., a reservation of a certain amount
of network resources for an application provides a guarantee
that the application will complete within a certain amount of
time. By detailed study of the graph curves, one can also
determine the exact minimum bandwidth required for each
application for a certain data size. For example, 15 MBps is
sufficient for the iso-surface extraction application on 4 nodes.
This indicates that an application need not reserve all available
network bandwidth and the remaining available bandwidth can
be shared with other applications.

D. Guaranteeing QoS in the presence of background flows

The same applications were tested on four nodes again,
but now in the presence of 2 and 3 background flows that
consists of a sender running continuously and pumping out
data to a receiver. The experimental setup is shown in Figure
10. The first test consists of 2 background flows, whereas
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the second test consists of 3 background flows. Since these
are parallel applications that interact frequently, it is sufficient
that we run the background flows on one of the nodes on
which the application is executing so as to put the maximum
load on the NIC at that node. In the communication system
without QoS features, these flows are treated equal to the
communication flows of the application and will therefore
cause more interference. Whereas in the network layer with
QoS features, these background flows, not having made any
reservations will be treated as best-effort traffic, and will take
second priority to the premium traffic. The results are shown
in Figure 12 for four nodes. Figure 12a shows the results
obtained for the NAS benchmarks in the presence of three
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Ray tracing (8 processors)
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Impact of rate-control on execution time of applications on 8 nodes

background flows. Figure 12b shows the results obtained
for the ray-tracing application in the presence of 2 and 3
background flows. From the graphs, it is clear that the QoS
framework guarantees a predictable response time for the
application even in the presence of heavy-duty flows running
on the same nodes. Since the nodes in the testbed are quad
SMPs, we can reasonably suppose that the flows are assigned
to different processors from those on which theapplication is
running, and the interference due to the flows is solely at the
network level.
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E. Executing multiple jobs simultaneously with individual QoS
requirements

In this final evaluation, we ran 2 applications simulta-
neously with different QoS values. Since each application
has ailocated bandwidth, it has exciusive use of the portion
of network resources assigned to it, and behaves as if it
is running on an exclusive virtual network with resources
equal to the value of bandwidth allocated to that application.
This mechanism thus paves the way for efficient and reliable
use of clusters wherein network resources can be partitioned
for client applications with no interference between users.
The performance evaluation framework for this experiment is
shown in Figure 11. The results of these tests are shown in
Figurel3 for four and eight nodes.

%—o Application [
.—fAmlicnlion 2

N/W

Fig. 11, Performance evaluation framework for executing multiple applica-
tions simultaneously with individual QoS requirements

The x-axis plots the value of assigned bandwidth to the
application pairs and triples in MBps. The y-axis plots the
total execution time of the applications in seconds. It can be
seen that even in the presence of a background application,
the execution times of the application do not change, and are
the same as in the experiment where only a single application
is run. For example, from Figure 13a, the execution times
for the bandwidih pair (5,8) is (0.1404, 0.09175). From the
graph for Integer Sort (IS) in Figure 8, we can see that the
execution time is 0.1404 when the bandwidth reserved is 5
MBps, and it is 0.0925 when the bandwidth reserved is 8
MBps. Thus the presence of another application does not
affect the performance of an application as long as it has
reserved a fraction of the network bandwidth.

VII. RELATED WORK

In recent years, a few other studies have examined service
differentiation and the related issue of QoS in clusters. Low-
cost packet scheduling and queuing algorithms for high per-
formance networks are described in [17]. In [18], Gerla et al
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describe three schemes for providing QoS in wormhole-routed
networks. However, these require modifications to switches
or extra NICs on hosts. FM-QoS [19] provides predictable
performance by devising conflict-free communication sched-
ules. In [20] and [21], the authors propose new hardware or
hardware/software infrastructures to support QoS. The Globus
project’s GARA framework [22], [23]} provides end-to-end
QoS for different types of resources. The framework presented
in this paper is quite different. It uses a NIC-based approach
to provide QoS in current and next generation clusters with
programmable NICs,

VIII. ConcLusiONS AND FUTURE WORK

We have presented a QoS framework for supporting ap-
plications in clusters with resource adaptivity and predictable
execution performance. The framework uses a NIC-based
rate control mechanism. Experimental results have shown
that the framework can be used to execute apptications in
a resource-adaptive manner. It can alsc handle interference
between applications and provide a scheme for partitioning
clusters without any significant overhead or hardware modifi-
cations. Applications running on clusters can therefore execute
independently, without interference from other applications
using the cluster, at the same time providing good resource
utilization. We are currently exploring the addition of a
monitoring mechanism to the QoS framework at the NIC level
that menitors the behavior of packets belonging to individual
flows, to study if the bandwidth allocated to an application
is suitable for the data it is actually semding, whether the
flow has been over-allocated or whether it is being choked.
This feature, combined with a dynamic re-allocation scheme
will allow us to determine the exact bandwidth resource
requirements of applications and re-assign the bandwidth value
on the fty. Another extension to the mechanism is support end-
to-end QoS reservations, so that a client application accessing
a service on a cluster-based server over a WAN can be assured
of bandwidth guarantees over both network components of
the total path, over the WAN and the LAN/SAN in the
cluster. This work will entail merging the existing cluster-
level QoS mechanism with a wide-area QoS mechanism. We
plan to integrate our work with Globus® GARA and MPICH-
GQ frameworks to achieve this.
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