
Space EfFicient Fast lsosurface Extraction for Large Datasets

Udeepta D. Bordoloi, Han-Wei Shen
Department of Computer and Information Science

The Ohio State University
{bordoloi,hwshen} @cis.ohio-state.edu

Abstract

In this paper, we present a space efficient algorithm for speeding
up isosurface extraction. Even though there exist algorithms that
can achieve optimal search performance to identify isosurface cells,
they prove impractical for large datasets due to a high storage over-
head. With the dual goals of achieving fast isosurface extraction
and simultaneously reducing the space requirement, we introduce
an algorithm based on transform coding to compress the interval
information of the cells in a dataset. Compression is achieved by
first transforming the cell intervals (minima, maxima) into a form
which allows more efficient compaction. It is followed by adataset
optimized non-uniform quantization stage. The compressed data is
stored in a data structure that allows fast searches in the compres-
sion domain, thus eliminating the need to retrieve the original rep-
resentation oi intervals at run-time. The space requirement of our
search data structure is the mandatory cost of storing every cell id
once, plus an overhead for quantization information. The overhead
is typically in the order of a few hundredths of the dataset size.

CR Categories: 1.3.6 [Computer GraphicsJ: Methodology and
Techniques.

Keywords: Isosurface, Compression, Transform Coding, Quanti-
zation

1 Introduction

lsosurfacing is one of the most popular methods for visually rep-
resenting volumetric scalar fields. The effectiveness of isosurface
visualization is, however, limited to a large extent by the interac-
tivity of the visualization environment. The scope for interaction
lies in two orthogonal components: isovalue (isosurtace extraction
phase) and view parameters (rendering phase). The usefulness of
the visualization system is severely restricted if either the extrac-
tion or the rendering cannot be performed at interactive speeds.

Over the past few years, the sizes of the datasets being visu-
alized using isosurfaces (among others techniques) have grown at
an extraordinary ratc. Consequently, achieving interactive speeds
for the isosurface extraction phase has become progressively more
and more challenging. Researchers have proposed a variety of
isosurface-containing-cell' search techniques to expedite the pro-
cess of isosurface extraction. These algorithms are motivated by
the fact that given an isovalue, the volume needs to be searched

IEEE Visualization 2003,
October 19-24, 2003, Seattle, Washington, USA
0-7803-8 120-3/03/$I7.00 02003 IEEE

for the cells that contain the isosurface. By pre-computing search-
friendly data structures, these techniques reduce the time needed to
search for those cells at run-time. Some techniques approach the
problem as a search in geometric-space. Others, commonly known
as value-space methods, search the space of intervals'. In this pa-
per, we present a value-space algorithm.

A number of algorithms have been designed based on the con-
cept of value-space. These algorithms achieve nearly optimal [Liv-
nat et al. 19961 or optimal [Cignoni et al. 1997) speeds for the
cell search phase. However, they suffer from one significant dis-
advantage: the storage requirement for the pre-computed search
data structures. With very large datasets (such as the visible hu-
man dataset) becoming commonplace, the high storage overhead
associated with these search structures is a serious deterrent to their
use. For example, [Cignoni et al. 19971 states that the space re-
quirement of Interval trees is four times the number of cells in
the dataset. The Interval tree data structure for a SlZ3 floating
point dataset (512MB) will need more than 20i6MB for storage.
The large space complexity renders these techniques ([Giles and
Haimes I99OI[Shen and Johnson 19951[Livnat et al. 1996][Shen
et al. 19961[Cignoni et al. 19971) practically unusable without out-
of-core modifications. Moreover, the algorithms are slowed down
considerably because a large amount of time is spent on file I/O.

With the primary objective of fast isosurface extraction, we pro-
pose a compression-based solution intended to alleviate the prob-
lem of bloated search data structures. The extrema1 informa-
tion (minimum and maximum) of the cells is compacted using a
form of compression referred to as transform coding. We pro-
pose a computationally inexpensive transfonn of the conventional
[minimre,t,mmimrim] representation of intervals? to a more com-
pression friendly format. A traditional non-uniform quantizer is
used to quantize the transformed data. We introduce a search algo-
rithm to perform the isosurface search directly on the transfurmed
representation. This eliminates the need for a decoding step to re-
vert the data back to their original values. The search algorithm
can be easily modified to do an incremental search, or to run out-
of-care. We are able to reduce the size of the search data struc-
tures almost three-fold compared to those used by ISSUE and In-
terval trees. The compression technique presented provides a stor-
age friendly yet efficient solution for large dataset isosurface ex-
traction. The trade-off between storage requirements and the speed
of the search process can be exploited to suit the available storage
resources and the performance demands of the visualization envi-
ronment.

'We use the lerm cell while referring to the smallest volumetric elemen1
in a three-dimensional grid. For regular gfids. a cell represents the same
entity as a V O X ~ For unstructured grids, a cell may be a atrahedrun, prism,
or any other polyhedron. Our method can be used for datasets on either
structured or unstructured grids.

Zhren,nl here refers to the [minimum,nra*imum] interval of a cell.

20 1

mailto:cis.ohio-state.edu

2 Related Work

Since [Lorensen and Cline 19871 proposed the Marching Cubes
algorithm for constructing isosurfaces in 1987, a number of tech-
niques have been proposed to speed up the search for isosurface
containing cells. Active list [Giles and Haimes 19901. Span Filter
[Gallagher 19911, Sweeping Simplices [Shen and Johnson 19951,
and Octrees [Wilhelm and Van Gelder 19921 are a few of the early
methods. The first three are value-space based methods, while the
ever popular octree is a geometric-space technique utilizing hier-
archical spatial subdivision. [Itoh and Koyamada 19951 (extrema
graphs) and [Bajaj et al. 19961 (seed cell set) use isosurface propa-
gation techniques to avoid the need to search all the cells intersected
by the isosurface. Propagation in unstructured grids needs adja-
cency information to be stored, which increases the storage. Below,
we mention three value-space algorithms which are most related to
our technique.

In 1996, [Livnat et al. 19961 introduced the span space repre-
sentation for intervals in a near optimal algorithm (NOISE). The
span space is a two-dimensional space of intervals with the x-axis
and y-axis representing minima and maxima respectively. Each cell
can be depicted as a point in the span space with the coordinates
(minimum,maximum). The span space is subdivided using a kd-
tree, where each node divides the space into two partitions. The
subdivision is alternated between a partitioning of the minima-axis
and the maxima-axis at even and odd levels. The ISSUE algorithm
by [Shen et al. 19961 employs a lattice-based subdivision of the
span-space. Sequential and parallel algorithms are presented for
performing a search over the lattice elements. [Cignoni et al. 19971
proposed an optimal search algorithm using Interval trees. Each
node of the tree divides the intervals into three groups: the intervals
whose maxima are less than the value of the node, those whose min-
ima are greater than the node value, and the third set which contain
the node value in between their extrema. The first group of inter-
vals are passed onto the left child, the second to the right child, and
the third group is put into two sorted lists associated with the node.
Next. we discuss the storage requirements of NOISE, ISSUE and
Interval trees.

Let us assume that there are N cells in the dataset, and the iden-
tity of each cell (cell id) is stored as a number that requires c bytes.
Also, suppose that e x h data value requires d bytes. A pointer-
less kd-tree, as used in NOISE, stores the information {cell id,
minimum, maximum} once for each cell. The space requirement
is thus (c + 2d)N. In ISSUE, all the lattice elements (except those
intersected by the minimum =maximum line) store two data stiuc-
tures. Row is a list of {cell id, maximum} pairs sorted by the cell
maxima. The Column list comprises of {cell id, minimum} sorted
by cell minima. Each cell in a lattice element contributes once to
both Row and Column structures. So, the space needed is (c+d)ZN,
plus overhead. Each node of Interval trees stores two sorted lists:
dY and 9% a'Y is an ascending list of left extremes, i.e., of
{cell id, minimum} pairs, and OW is a descending list of right ex-
tremes, i.e., of {cell id, maximum} pairs. Ignoring the tree over-
head, the space needed is (c +d)2N. If cell ids are stored as 4-byte
(one word) integers and data values as 4-byte floats, then the space
requirement of NOISE, ISSUE, and Interval trees is respectively
3N, 4N and 4N words. For a S n 3 floating point dataset (512MB),
for instance, N = 5 I l 3 and 4N words occupy 2036MB.

In the case of large datasets, which are common nowadays, the
high storage requirement severely restricts the usability of these al-
gorithms. This has prompted researchers to propose modifications
so that large datasets can be used with these algorithms. [Cignoni
et al. 19971 presents a 3D chess-board arrangement for regular grids
to reduce the number of cells the interval tree stores. Cells are col-
ored using a chess-board pattern, and only cells having black color
are used to construct the interval tree. [Chiang and Silva 19971

proposed the first oul-of core isosurfacing technique in the form of
an U 0 optimal implementation of the interval tree. Later, [Chiang
et al. 19981 introduced a method to efficiently group individual cells
into meta-cells. They COnStNCL an interval tree using the meta-cells
instead of individual cells. Both the chess-board and the meta-cell
techniques lower the space requirement by reducing the number of
cells stared in the search data structures. Our algorithm achieves the
same goal through efficient space utilization combined with com-
pression of cell [moximumlminimum] information. The compres-
sion method used is based on transform coding. If desired, the cell
reduction techniques mentioned above (chess-hoard andor meta-
cell) can be incorporated into our algorithm to further decrease the
search structure size. Let the effective number of cells (individual
cells, or black cells in the chess-board pattern, or meta-cells) be N.
In an uncompressed form, the {cell id, minimum, maximum} infor-
mation requires 3N words. Using transform coding, we compress
the {minimum, maximum} information to a few hundredths of N
words. The lo?dl space requirement of our method is thus one and a
few hundredths of N words, as opposed to 4N words in [Giles and
Haimes 1990lIShen and Johnson 19951IShen et al. 19961[Cignoni
et al. 19971.

Transform coding is a well known data compression approach.
and has an extensive body of literature. The basic principle uti-
lized by transform coding is that multiple dimensions of vector
data are often correlated to a lesser or higher degree. (If the in-
put data is scalar, multiple samples are collected to form a vector.)
The redundancy of data values (due to correlation) is exploited for
compression by transforming the vector data and then quantizing
each scalar dimension. The transformation allows a better com-
paction of the data compared to the untransformed values. The best
compression ratios are achieved if the transformed ddla dimensions
are not statistically correlated. [Hotelling 19331 presented the first
transform to de-correlate discrete data in the method of principal
components. Karhunen and Loeve derived the analogous transform
for continuous functions, which is now popularly known as the K-
L transform [Sayood 2000l[Gray and Neuhoff 19981. One of the
most widely used transform coding applications today is the dis-
crete cosine transform (DCT), which is a pan of many image and
video coding standards, e.g., JPEG, MPEG etc. For a more detailed
review of transform coding and quantization, the reader is referred
to [Sayood 2000l and [Gray and Neuhoff 19981.

In the ensuing sections, we present our compression based algo-
rithm for fast isosurface extraction.

3 Transform coding for intervals

A number of isosurface extraction algorithms have been developed
to perform the search for cells in the value space, i.e., the space of
[minimum, maximum] intervals of cells. The minima-maxima space,
however, is not suitable for compression due to the high statisti-
cal dependence between the minimum and maximum values of cells
(see figure I) . To reduce this dependence, we use a linear trans-
form to transform this space into a new space (which we will refer
to as the UV-space). This transformation is the first stage of our
compression algorithm. Sections 3.1 and 3.2 discuss this step in
greater detail. In the UV-space, each cell (or equivalently, each in-
terval) is represented by its U- and v-coordinates. These coordinates
are quantized using a dataset distribution optimized non-uniform
quantizer. We use a companded quantizer, which simulates the
non-uniform quantization process using a uniform quantizer. While
choosing the output values of the quantizer, quantization errors are
taken into account. This ensures that the isosurface search does not
miss any cell that contains the isosurface. The quantization pro-
cess is described in section 3.3. The compressed information (in
the form of uv-coordinates) is then stored in a search friendly data
stmcture, which is presented in section 4.1. At run-time, the search

202

algorithm finds the cells for isosurface extraction based on the sup-
plied isovalue. The search process is explained in section 4.2.

In the following sectivns, we give some background on trans-
form coding, followed by details of the transform and quantization
phases of our algorithm.

3.1 Background

The central theme of transform coding is that the input data is mod-
ified, using a reversible transform, to another form which can he
better quantized. The quantized data can then be converted back
to the original form using the reverse I rdns fO~ . For the following
discussion, we represent a multi-dimensional input data sample as
the vcctor x. There are three stages in transform coding:

1. Transform: The input data x is transformed into y using a
reversible transform A, where y = Ax. The transformation A
is selected such that y has better compression characteristics
than x, i.e., given a fixed distortion, compressing y yields a
smaller output than that of x. Or,.given a fixed compression
rate, y has lower distortion compared to x. The hest com-
pression results are achieved when the data dimensions are
uncorrelated. This suggests that the ideal transform for com-
paction is the method ofprincipal components. This step by
itself does not result in any compaction of the data, which is
achieved by the next two steps.

2. Quantization: The transformed data y is then quantized to a
finite number of levels. Each dimension of the data can be
quantized independently using different quantization strate-
gies. The number of quantization levels depends on the de-
sired amount of compaction. The statistics of the data y in-
fluence the design of the quantizer. For example, appropriate
uniform or non-uniform quantizers can be chosen depending
on input data properties and desired output statistics.

3. Encoding: The quantized data is then passed throuzh a binary
encoding stage (e.g., Huffman or arithmetic coding). This re-
sults is the final compressed form of the data.

Constructing a compression scheme thus boils down to three tasks:
finding an appropriate transform, designing quantizers based on the
desired compression ratio and error limit constraints, and select-
ing a proper binary encoder. The data decoding process consists
of inverting the effects of the first and third stages above. The sec-
ond stage is lossy, and that information cannot be recovered. The
compressed data is passed throumh a matching binary decoder, and
then an inverse transform A-l?s applied to recover the data in the
original form.

For the problem we are concerned with, the input data is a set of
two-dimensional points which represent the [minimum;mo.zimum]
intervals of cells. In the rest of section 3, we propose a suitable
transformation for the intervals. and then design a quantization
scheme for the two transformed axes. Since our primary goal is
fast isosurface extraction, we do not use any binary encoding stage.
Such a stage would necessitate a decoder during the cell search
phase, which would slow it down and defeat the primary purpose of
this paper. However, if the situation so demands, a binary encoder
can be easily applied as the third stage of encoding.

3.2 Transform

The best compression rates can be attained if we use a transfotmd-
tion which statistically de-correlates the minima and the maxima
[Sayood 20001. Hence, the ideal choice for a transformation is the
method of principal components. However, i t is very expensive to
compute, specially for large datasets, which makes it a very im-
practical choice. Instead, we use a simpler transformation based on

0 500 1000 ,5011 *ma 2100
o**r~"c.=Ms.,m"m -Uinim"m

Figure I: A histogram plot of the difference between maximum and
minimum values in the visible woman dataset. Thex-axis represents
the difference, and the y-axis shows the number of cells which have
that difference. The y-axis is shown in a log,, scale. In this dataset,
the largest difference is 2978, but 90% of cells have a difference
less than 163.

the following observation: i f is usual fur the minima and murimu
of the cellr ro be highly correlared. That is, cells with higher max-
ima tend to have higher minima and vice versa. Figure 1 shows a
histogram plot of the difference between maximum and minimum
values in the visible woman dataset. As can be expected, the vast
majority of cells have a very small difference between their maxima
and minima.

Consider a two-dimensional space in which the x-axis represents
the cell minima and the y-axis represents the maxima (span space
in [Livnat et al. 19961). Since the cells tend to distribute them-
selves along the minimum = maximum line, the principal compo-
nent of any dataset will have an orientation close to the mininium =
marimum line. So. instead of the exact principal component trans-
formation, we use a transformation to the 45' line. (Note that
the transformation can be interpreted as rotation of the coordinate
frame). Each interval is represented as a vector

minimum
X = [maximum I

The transformation is given by

where 6 = 45". After the transformation, each interval is reprc-
sented by the vector

We reduce the computational expense of the transform by removing
the multiplication present in equation (4). This can be viewed as a
scaling of both components af y, or equivalently as the use of a dif-
ferent system of units. Hence, this does not affect the compression
results. Defining

(5) y = Bx = (&A)x

we get

U = maimum+minimum (6)
1' = maximum -minimum (7)

Each cel l is represented as a point with coordinates (I I : V) in the u-
v frame, which is obtained by a counter-clockwise rotation of the

203

t-""

Figure 2: UV-Space. The UV-space is a two-dimensional space of
intervals. Each cell is represented as a point with coordinates (U; v)
defined by the equalions (6) and (7). The U-" frame is obtained by
a counter-clockwise rotation of the original m i n - m u frame by 45O,
followed by a scaling by a. The isosurface passes through the
cells in the shaded region.

original min-mu frame by 45". followed by a scaling with 4 (fig-
ure 2). We will refer to the two-dimensional space represented by
the U-" frame as the UV-Space. Note that, U can be thought of as
twice the mid-point of the interval, and I' is the range of the interval.

Using the equations (6) and (7). the interval minimum and
me\in!unl Can he expressed as

minimum = (i i - v) / 2 (8)
marimum = (u + Y) / ~ (9)

The cells which contain the isosurface satisfy the following condi-
tion:

minimum < isvvalue < maximum (10)

For simplicity, we have assumed minimum # isovulue # maximum.
From equations (X), (9) and (IO) , we can derive the following con-
dition for a cell which intersects the isosurface

v > I U-isowlue x 2 1 (1 1)

In figure 2, any cell lying inside the shaded region (defined by equa-
tion (1 l)) will be intersected by the isosurface.

In addition to permitting better compression rates, the transfor-
mation given by equations (6) and (7) also has other advantages.
First, it requires very little computation in the form of a couple of
additive operations. An inverse transformation is not needed: the
isosurface test can be done in the transform domain using equation
(11). Moreover, the transformed space lends itself to a simple and
efficient search data structure, which we will present in section 4.
As will be evident, we will need to store only one sorted list of
cells, as opposed to two sorted lists in most algorithms ([Ciles and
Haimes 199OllShen and Johnson 19951rShen et al. 19961[Cignoni
et al. 19971).

3.3 Quan t i za t ion

Quantization of the UV-space is performed in two phases: first, the
u-axis is quantized, followed by a quantization of the y-axis. For
both axes, we use data distribution optimized non-uniform quanti-
zation.

3.3.1 Companded Quantization

After the transformations given by equations (6) and (7) let the
minimum u value for the dataset be uL3 and the maximum U value

he uR. We want to quantize the range [uL,uR] into M intervals,
where M is input by the user. The design of the quantizer involves
deciding the following two sets of values:

Decision Boundaries: The M+ 1 endpoints {hi}Eo of the M
intervals. We already have bo = uL, and h, = uR.

0 Reconstrucrion Lewls: The M representative values (r i } E ,
for each interval.

The quantizer function, e (.) , is given by

Q(u) = ri iff < U 5 bi (12)

Since the distribution of cells in along the u-axis can be (and usually
is) non-uniform, we will use a non-uniform quantization strategy.
Specifically, we will use an approach called Companded Quanti-
zation [Gray and Neuhoff 1998][Sayood 20001, which simulates
a distribution optimized non-uniform quantizer. A compander has
three stages:

1. Compressor: The input values (U coordinates of cells) are
mapped into another value (say, U') such that the output (U ')

is uniformly distributed. The regions of the input which have
high density are stretched, while regions with low density are
compressed. The mapping conserves the ordering of the input
values, i.e., if ui < u j . then U:. < U>. The concept is the same
as that used in image equalization.

2. Uniform Quantizer: The output of the compressor stage (U')
is quantized into M levels using a uniform uantizer. The de-

struction values are {r j}El .

cision boundaries of this quantizer are {hj}i=o, 3 and the recon-

3. Expander: The quantized U' values are mapped hack to the
u-axis using an expander function, which inverts the warp-
ing introduced by the compressor function. The compander
decision bounds { b ; } L are derived from {hj}EO. and the re-
construction levels { r i } E , are obtained from { ~ } E ,

3.3.2 Quantization of U-axis

For the first phase, the user specifies the number of quantization
intervals, M, of the u-coordinates. We implement the compressor
stage by sorting the cells by their u-coordinates. If the u-values of
two cells are equal, we break the tie using cell ids. The position
of a cell in the sorted sequence is used as its U' value for the uni-
form quantizer. The first n, = N / M cells are quantized into the
first interval, the next n cells in the second interval and so on. The

quence positions of the extreme (the first, and the last) cells of the
intervals. The expander stage involves mapping the {b:}E, values
to the u-axis using an inverse of the compressor stage. Let the u-
value of the jth cell (in the sorted sequence) be u j . and let q = nM.
Then the compander decision boundaries, (bi}&. are defined as

decision boundaries, {bi}+,, I j Y of the uniform quantizer are the se-

h, = U L
bl = (U 0 + u s + J / 2

(U*, fU2?+1)/2 (13) h2 =
. . . .

b, = U R

We have assumed that { u ~ . ~ # U , , , , + ~ } E " , ~ . If that does not hold,
we take bi as the average of the u-values of the next two satisfying
cells. Figure 3 shows the quantization of u-coordinates with M =
11. The vertical lines at the decision boundaries divide the

204

Figure 3: Quantization of u-axis. The u-axis is divided into M =
1 I levels. The decision boundaries {bi}:& are given by equation
(13). For the given isovalue, the reconsfrirction levels are given by
equation (14): rI = b, ,..., r, = b,, r8 = b7, rt! ,= bto. r7 is not
used by the search algorithm. The A4 = I I panltlons of the UV-
space will be referred to as U-partitions.

UV-space into M = 1 1 partitions {e}::, , which we will refer to as
the U-partitions.

Unlike usual quantization procedures, the definition of the re-
construction values {rijMI is deferred till run-time. To avoid holes
in the isosurface due to quantization errors, we need to incorpo-
rate the isovalue into the assignment of {r i}Ml . Consider the
cells A and B in the U-partition f4 in figure 3, where the value
uiio = 2 x isovulue lies in U-partition P7. Both will have the same
quantized u-coordinate r,, which will he used at run-time for the
isosurface test in equation (1 I). If cell B fails the test, the resulting
isosurface will have a hole in it. To prevent any potential isosurface
cell from failing the test, we have to ensure that the right-hand side
of the inequality (v >I U - isovalue x 2 1) does not increase as a re-
sult of quantization. Hence, we choose the reconstruction level to
be the greatest rr-coordinate any cell in partition P4 can take. This
happens lo he the right decision boundiuy of P4. and so we take r4
to be equal to b,. For the same reasons, cells C and D in panition
f l l are assigned the reconstruction value r l I = b to . Note that cells
A and D will satisfy equation (1 I) and will be sent to the geometry
extraction phase, which will simply ignore them. For the partition
P,. which contains the value u ; , ~ ~ . all the cells are presumed to have
passed the test. We define the reconstruction levels in terms of the
stored decision boundaries and the given ivovalue using the follow-
ing formula: assuming birn-l < isovalue x 2 < bi,yo

(14)

3.3.3 Quantization of v-axis

After the quantization of the u-axis, we proceed to the second phase
of our algotithm. We quantize the v-axis in each partition {<}Et
of the UV-space separately. The quantization strategy is similar to
that used for the u-coordinates. The user specifies the number of
quantization levels, L, for each U-partition. The following actions
are then performed for each partition e. (i = I ..,M). The cells are

Figure 4 Quantization of v-axis. After the u-axis has been quan-
tized using M = 1 I , the v-axis is quantized separately into L = 7 lev-
els for each U-partition { P j j ~ ~ , . The v-axis reconstruction levels,
which are also the decision boundaries, are shown as the horizontal
lines, and the values are calculated from equation (IS). The L = 7
intervals of each U-partition will be referred to as UV-partitions.

initially sorted by their v-values, breaking ties by cell ids. The first
nL = nM/L cells are put in the first interval, the next nL cells in
the second interval and so on. Unlike the quantization stage of u-
axis, we do not prevent cells with the same v-values from being
put into different intervals. We do so ti) ensure that each interval
contains the same number (n,) of cells. As a result, we do not have
to explicitly store the number of cells in each interval in our data
Structure.

In the previous discussion on quantizing the wixis, we argued
the need to prevent quantization enors which might result in holes
due to isosurface-containing cells being indicated otherwise. In the
isosnrface test (v >) U - isovalue x 2 1, equation (1 I)), this trans-
lates to the requirement that the "-value should not decrease after
quantization. Accordingly, for each interval, the highest ,,-value of
its member cells is used as the reconstruction level for that inter-
val. Let the v-value of the kth cell (in the sorted sequence) in the
U-partition P, be vii. Then, the reconstruction values, {s,}k, .we
given by

v. hi Sil =

si, = V . a",.)
Figure 4 shows the quantization of v-coordinates after the u-axis

has been quantized (with M = 1 I , as shown in figure 3). Each U-
partition has been further divided by L(= 7) horizontal lines, which
represent the reconstruction levels (also the decision boundaries)
of the v-values within the U-partition. We will call the resulting
rectangular regions UV-partitions. The UV-partitions which are to
the left of the U-partition P, are represented by the uv-coordinates
of their top-right comers. Similarly, those IO the right o f f , are
represented by the uv-values of their top-left corners. For the given
isovalue, the shaded UV-pllrtitions pass the isosurface test as their
representative corners satisfy equation (I I).

4 Search Algorithm

Following the transform coding steps outlined in the previous sec-
tion, we construct data structures which store the information of the
UV-space in a compressed form (section 4.1). These can then he
used for fast isosurface extraction searches (section 4.2):

205

4.1 Data Structures

The preprocessing stage of our algorithm consists of the transfor-
mation and quantization steps that have been mentioned in sections
3.2 and 3.3 respectively. The results of the preprocessing stage
are stored in appropriate data structures that enable a fast run time
search for isosurface containing cells. The information that needs
to be stored is: the user-specified quantization parameters M and L,
the reconstruction levels for the U- and Y-axes, and the cell ids in
each UV-partition. We use the dam structures given below to store
that information:

I . U-Array: The decision boundaries [b i }& for the u-axis,
given by equation (13). These values are required at run time
to derive the reconstruction levels for u-coordinates according
to equation (14). The storage required is the space for M + 1
values.

2. V-Array: A two-dimensional array {dij}%f,j=l with each el-
ement storing the v-axis reconstruction levels of the corre-
sponding UV-partition given by equation (15). For example,
dii stores the decision boundary of the j th U\'-partition of the
ith U-partition. This needs a storage of ML values.

3. ID-Array: A two-dimensional array { A i j } Z f , j = l with each
element storing the ids of cells in the corresponding UV-
partition. A (i , j) stores the cells within the ,jth UV-partition
of the ith U-partition. The storage needed is that for N cell
ids.

The total storage requirement is the space needed for N cell ids and
M L + M + I quantization levels, where M L + M i 1 is typically of
the order of a hundredth of N . This offers significant space reduc-
tion compared to most algorithms ([Giles and Haimes 1990lLShen
and Johnson 199511Shen et al. 1996][Cignoni et al. 1997]), which
store 2N cell ids and 2 N min-max values. During preprocessing, the
three arrays are filled simultaneously through the quantization pro-
cess described in section 3.3. To recap, each cell is transformed to
uv-coordinates using equations (6) and (7). They are then sorted by
their u-coordinates and the quantization interval endpoints (b j}Mo
derived using equation (13). The cells are then grouped into M U-
partitions. The cells in each U-partition are now sorted by their 18-

values. For each U-partition i, the V-array elements (v-axis decision
bounds) are filled in according to equation (1 5). Simultaneously, ids
of cells in each UV-partition are stored in the ID-Array.

Incremental Search

If the isovalue is changed by a small amount from the previous iso-
value, it is advantageous to do an incremental update to the results
of the previous search. We assume that the previous isovalue search
results for each U-partition are stored. For each U-partition, we also
need to remember the position of last UV-partition accessed before
the traversal was terminated. Let the previous isovalue be imp.
Without any loss of generality, let us assume that the isovalue has
increased to a new value ison. Let the corresponding u-axis points
be U,, = 2 x iso,, and U , = 2 x iso, respectively. Then the addition
of new cells and removal of cells no longer intersecting the isosur-
face are handled as follows:

4.2 Search

Given an isovalue, the search for isosurface containing cells over
the UV-space can be decomposed into separate starches over each
U-partition. For a given U-partition, the search can be thought of
as a search for satisfying UV-partitions (because all the cells within
a given UV-partition have the same quantized uv-values). The U-
partition is traversed in order of decreasing v-coordinates, begin-
ning with the topmost UV-partition (the one with highest v-value).
The reconstruction values of the UV-partition are read from the
U-Array and the V-Array, and tested in equation (1 I). If the UV-
partition satisfies the isosurface test, all the cells in the correspond-
ing ID-Array position are selected for geometry extraction, and the
search moves to the next UV-partition (the one below). When a
UV-partition is reached whose uv-coordinates fail equation (1 I),
the traversal for the current U-partition is terminated and the an-
other U-panition is taken up for traversal. The search is comolete
when all the U-partitions have been individually searched

Addition: New cells will he added to U-partitions that are
to the right of umid = (U,, + u,j/2. For these U-partitions,
we start an incremental search from the previous terminat-
ing UV-partition. The current traversal i s continued till a UV-
partition is reached which does not satisfy the isosurface con-
dition (equation (1 I)) . The cells of the newly traversed UV-
partitions are added to the isosurface extraction list.

Removal: For U-partitions to the left of umid, we will need
to potentially remove cells which were selected for isosurfac-
ing for the previous isovalue. Each U-partition is traversed
upwards (towards increasing v-values), starting from the ter-
minating UV-partition of the previous traversal. The upward
traversal is stopped when a UV-partition is reached which sat-
isfies the isosurface test. The UV-partitions encountered dur-
ing this reverse traversal no longer contain the isosurface and
are removed.

The U-partition which contains umid can belongs to the addition
category if the previous terminating UV-partition satisfies the iso-
value. Otherwise, i t is in the removal set. As in any incremental
update search, this is more beneficial in case of small datasets, for
which the intermediate results can he stored in main memory.

4.3 Errors

The quantization of the UV-space introduces errors which may re-
sult in false conclusions for some cells in the isosurface test (equa-
tion (1 l)). We have designed our quantizer (section 3.3) such that
the search does not miss any cell that contains the isosurface. In-
stead, some cells that do not truly intersect the isosurface will sat-
isfy equation (I I) . The errors are the combined effect of U-value
quantization error and the v-axis quantization error. Below, we give
an empirical discussion on the average effect of the u-axis quanti-
zation on the number of such erroneous cells. For this discussion,
we first assume that the v-values are not quantized. Later, we will
extend the error analysis to include the v-coordinate quantization.

Consider the U-partition Pi in figure 5(a), which is to the left
of u ; , ~ ~ = 2 x isnvalue. In other words, hi < 2 x isovalue. Due to
quantization of u-coordinates, all the cells within the shaded trian-
gular region will satisfy the isosurface test, and will constitute the
error for this U-partition. Each U-partition that is searched will con-
tribute a similar group of erroneous cells. It should be noted that if
the top-most UV-panition of a U-partition fails the isosurface test,
it will not be traversed at all and hence will not contribute any error.
For instance, in figure 4, the U-partitions P , P and P3 will not have
any error since the topmost UV-partitions lie outside the isosurface
region. In practice, the dynamic range of u-values is usually much
higher than the spread of v-values. As a result, a large number of
U-partitions will not he traversed and so will not contribute any er-
ror. For this discussion, we assume that on an average, a fraction
h of the total number M of U-partitions is traversed. Let the av-
erage width of a U-partition be u., .~, and the mean concentration

I. 2

206

~ Y = 2*isoualus - b,

Figure 5: Quantization Errors. All the cells in the shaded triangular
region in figure (a) satisfy the isosurface test and contribute to the
error due to quantization of u-axis. The error that is added to this
by vaxis quantization is shown in figure (b).

of cells be cave. Then, on an average, each U-partition will con-
tribute (u2,,/2)cOve false cells. If the u-valuc limits for the dataset
are [i i , , :uR]. then the nverage number of cells which falsely satisfy
equation (1 1) is

Next, the additiondl effect of v-coordinate quantization is con-
sidered. In figure 5(b), all the cells in the UV-partition Vij have the
same uv-coordinates (h i , s i (j + l j) , and thus all satisfy equation (I I) .
The triangular region contains cells which incorrectly satisfy the
isosurface test due to u-axis quantization errors. Tbc error added
by y-axis quantization are those cells in the UV-partition Vi j whose
v-coordinates are less than vi = 2 x isovalue - bi . If the total num-
ber of cells in the dataset is N, and M and L are the number of
quantization levels for U- and waxes respectively, then each UV-
partition has nL = N/ML cells. On an average, the total number of
erroneous cells due to v-coordinate quantization is

(17)
hN

Average V-Error = hM . “L = -
2 2L

5 Results and Discussion
In this section, we first discuss the effect of the quantization pa-
rameters M and L on the size and search efficiency of the search
data structures. We then present out-of-core results from our algo-
rithm and also compare the performance with that of the interval
tree. We have tested our algorithm on the UNC MR-brain dataset
(256 x 256 x 109 2-byte integer), a Rayleigh-Taylor hydrodynamic
instability dataset (256’ floating-point) which we will refer to as
Rage256, and the visible woman dataset (512 x 5 12 x 1728 2-byte
integer).

5.1 Compression and Errors

We have mentioned before that either the meta-cell technique [Chi-
ang et al. 19981 or the chess-board method [Cignoni et al. 19971
can be used with our algorithm. For the following discussion, we
will denote the number of effective cells (single cells, meta-cells, a
black cells in the chess-board pattern) by N. The space requirement
of our search data structure is the storage for N cell ids (ID-Array)

Compression Ratios

Ouantlzation Levais
“S

Fieure 6: Effect of Quantization parameters M and L o n data struc- -
lure size.

e
P

e ::
z

Search Error
vs

Ouantizatlon Levels

1=50 L - 1 0 0 L - m o L;“

+ax& qu*nfizafbn krsls

Figure 7: Effect of Quantization parameters M and L on search error
for the MR-brain (isovalue = 1070.5, number of isosurface cells =
4352196).

and M L + M + 1 quantization levels (U-Array and V-Array). Since
we are not compressing the cell ids, the space required to store the
ID-Array will remain consfant for all quantization parameters. We
present the compression results as the ratio of thc Size of the U-
Array and V-Array to the space required for storing the min-max
values for every cell. Figure 6 shows the compression ratios for the
MR-brain dataset. Interval trees and ISSUE data structures Store
2N cell ids and N min-max pairs. Compared to these, the stor-
age required by our search data structure is 37.1% for MR-brain,
21.4% for Rage256, and 33.4% for visible woman dataset for a
(M = 4000, L = 400) quantization.

Figure 7 shows the variation of error with L and M. The error
is due to cells which are selected by the search algorithm but do
not contain the isosurface. Please note that there is no error in the
isosurface itself. The error is defined as the ratio of the erroneous
cells to the number of isosurface containing cells. AS expected,
the error decreases with increase in both L and M. Note that the
rate of decrease Falls as L or M get larger. Keeping in mind the
trade-off between search and space efficiencies, users can choose
an (M,L) combination suitable for their requirements. For instance,
the very little difference between performance of the M = 2000 and
M = 4000 graphs may not justify the associated increase in storage
space. Table 1 gives the preprocessing, bearch and extraction times
for the MR-brain dataset for a subset of quantization parameters
from figures 6 and 7.

207

Comp- 1 Error I Pre- 1 Search 1 Extract 1 Dataset Search Search Search
Method structure size Time

14000, 400 I 11.42% 1 0.44% 1 11.50s 1 0.03s 1 7.43s 1
Table I: Search and space eSficiency trade-off. Processing times
on a 600MHz PlI1 for different (M,L) combinations are shown (iso-
value= 1070.5). Theextractiontime farazerosearcherror is 7.41s.
The associated compression and errors are shown in figures 6 and
7.

500,SO 0.18% 2.33%
2000.200 2.86% 0.66%

lsovalue Cells Error Search Entraction
600.5 2,066,710 4.39% 0.05s 13.0s
1100.5 4,433,023 4 .288 0.12s 27.7s
1400.5 809,193 9.47% 0.045

Table 2: Search and extraction times for the visible woman dataset
using a compression of 3.27% of the min-max values. The size of
the search data structure is 34.5% of the size of the ISSUEJlnterval-
Tree data structures. 2 x 2 x 2 meta-cells are used while construct-
ing the search data structures. The number of isosurface containing
meta-cells are given, along with the error introduced by qu;intiza-
tion.

11.03s 0.04s 7.48s
11.40~ 0.03s 7.44s

5.2 Performance

In case of large datasets, the search data structures may not fit into
main memory and out-of-core techniques have to be implemented.
Because we store the min-max information and the cell ids in sepa-
rate data structures, we do not need to modify our search algorithm
for large datasets. Only the U-Array and the V-Array need to be
kept in-core. During the search phase, the V-Array is scanned as
described in the search algorithm (sec.4.2). If the uv-coordinates
stored at a V-Array position pass the isosurface test, the corespond-
ing ID-Array entry is mad from the dirk and the cells passed to the
extraction stage. Table 2 shows the search and extraction times for
the visible woman dataset. For this experiment, we have used a
2 x 2 x 2 meta-cell for constructing our data structure. The error
(number of meta-cells selected due to quantization error) is given
as a percentage of the isosurface meta-cells, given in the second
column. The data-structure I/O times are included in the extraction
times. The compression ratio of min-man information is 3.276 for
the data structures used. The size of the search data structure is
34.5% of the size of the ISSUEflnterval-Tree data structures.

Table 3 compares the size and performance of our algorithm to
an in-core interval tree implementation on a MIPS RIO000 Proces-
sor. We present results for a floating-point MR-brain dataset and
the Rage256 dataset for both methods. The interval tree search per-
forms marginally better than the search using compressed min-max
values. The search data structures of our algorithm are smaller by a
factor of four or more compared to the interval tree.

6 Conclusion and Future Work

We have presented a data Structure For speeding up isosurface ex-
traction using transform coding techniques. Significant reduction is
achieved in terms of the space requirement of the search structures,
without compromising the search speed. In the future, we want to
extend the compression to cell ids to further reduce the size of the
search structure, and to entend the algorithm to time-varying data.

MR-brain j I-Tree 1 93.8MB 1 0.13s 1 I Rage256 1 QS (1.3%) I 49.0MB 1 0.09s 1
1 Rage256 I-Tree I 221.4MB 1 0.07s I

Table 3: Comparison of search times for the quantized search (QS)
and the interval tree (I-Tree). The compression ratios for the min-
max data are given in parentheses.

Acknowledgement

This research was supponed in part by NSF grant ACR 01 18915,
NASA grant NCC-1261, Ameritech Faculty Fellowship and Ohio
State Seed Grant. We thank the anonymous reviewers for their help-
ful comments.

References

BAJAJ. C. L. . PASCUCCI, V., AND SCHIKORE. D. R. 1996. Fast is"-
contouring for improved interactivity. In 1996 Symposium for Volume
Visualiznrion, IEEE Computer Society Press, Los Alamitus, CA, 3946.

CHIANG, Y . - J . , A N D SILVA, C. T. 1997. 110optimal isosurfaceenvaction.
In Pmceedings qf Wsirulizorion '97, 293-300.

CHIANG, Y . - J . , SILVA. C. T., AND SCHROEDER, W. J . 1998. Interactive
out-otcore isosurface extraction. In Proceedings of Wsaalizarion '98,
293-300.

CIGNONI. P., MARINO, P.. MONTANI, E. , PUPPO, E., AND SCOPIGNO.
R . 1997. Spceding up irosurface exmaction using interval trees. IEEE
Transacrionr on W.~unlizorion and Compuler Graphicr 3, 2, 158-170.

GALLAGHER, R. S. 1991. S ~ a n filter: An ootimization scheme for volume
visualization of large finite element mad& I n Procerding.7 of Vi.wal-
izarion '91.68-75.

GILES. M., AND HAIMES, R . 1990. Advancedinteractivevisualiiationfor

GRAY, R . M . , AND NEUHOW, D. L. 1998. Quantization. IEEETranrac-

HOTELLING. H . 1933. Analwir of U comolen of statistical variables

CFD Compuring Sysrerns in Enximering I , I , 5 1 4 2 .

tions on Informarion Theow 44.6.2325-2383.

into principal components. Joumal of Educational P&gcology 24, 417-
44 1,4Y8-520.

ITOH, T., A N D KOYAMADA, K . 1995. Autumatic isosurface propagation
using an extrema graph and sorted boundary ce l l lists. IEEF Tranracrions
on Wsualizaiiun and Compurer Graphics I , 4,319-327.

LIVNAT, Y . , SHEN, H.-W., AND JOHNSON, C . R . 1996. A near optimal
isosurfacc extraction algorithm using the span space. IEEE Trnnsocrions
on Wsunliiarion and Compurer Graphics 2 , I (March).

1987. Marching cubes: A high
resolution 3d surface construction algorithm. Compurer Graphics 21.4
(July). 163-169.

SAYUOD. K. 2000. lnrmrlucrion IO Dam Compression. Morgan Kaufmmn
Publishers, Inc.

LORENSEN. W. E.. AND CLINE. H. E.

SHEN, H. -W. , AND JOHNSON, C. R. 1995. Sweeping simplices: A fast
isosurface extraction algorithm for unstructured grids. In Pmceedingr q'
Visualization '95, 143-151.

SHEN, H.-W., HANSEN. C. D., LIVNAT. Y. , AND JOHNSON, C . R. 1996.
Isosurfacing in span space with utmost efficiency (ISSUE). In Procerd-
ings <$Wsunlirarion '96.287-294.

WILHELM. J . . AND VAN GELDER. A. 1992. Octrees for faster isosurface
generation. ACM Transacrionr on Graphics 11, 3 (July), 201-227.

208

