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Abstract 

In this paper, we present a space efficient algorithm for speeding 
up isosurface extraction. Even though there exist algorithms that 
can achieve optimal search performance to identify isosurface cells, 
they prove impractical for large datasets due to a high storage over- 
head. With the dual goals of achieving fast isosurface extraction 
and simultaneously reducing the space requirement, we introduce 
an algorithm based on transform coding to compress the interval 
information of the cells in a dataset. Compression is achieved by 
first transforming the cell intervals (minima, maxima) into a form 
which allows more efficient compaction. It is followed by adataset 
optimized non-uniform quantization stage. The compressed data is 
stored in a data structure that allows fast searches in the compres- 
sion domain, thus eliminating the need to retrieve the original rep- 
resentation oi  intervals at run-time. The space requirement of our 
search data structure is the mandatory cost of storing every cell id 
once, plus an overhead for quantization information. The overhead 
is typically in the order of  a few hundredths of the dataset size. 

CR Categories: 1.3.6 [Computer GraphicsJ: Methodology and 
Techniques. 

Keywords: Isosurface, Compression, Transform Coding, Quanti- 
zation 

1 Introduction 

lsosurfacing is one of the most popular methods for visually rep- 
resenting volumetric scalar fields. The effectiveness of isosurface 
visualization is, however, limited to a large extent by the interac- 
tivity of the visualization environment. The scope for interaction 
lies in two orthogonal components: isovalue (isosurtace extraction 
phase) and view parameters (rendering phase). The usefulness of 
the visualization system is severely restricted if either the extrac- 
tion or the rendering cannot be performed at interactive speeds. 

Over the past few years, the sizes of the datasets being visu- 
alized using isosurfaces (among others techniques) have grown at 
an extraordinary ratc. Consequently, achieving interactive speeds 
for the isosurface extraction phase has become progressively more 
and more challenging. Researchers have proposed a variety of 
isosurface-containing-cell' search techniques to expedite the pro- 
cess of isosurface extraction. These algorithms are motivated by 
the fact that given an isovalue, the volume needs to be searched 
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for the cells that contain the isosurface. By pre-computing search- 
friendly data structures, these techniques reduce the time needed to 
search for those cells at run-time. Some techniques approach the 
problem as a search in geometric-space. Others, commonly known 
as value-space methods, search the space of intervals'. In this pa- 
per, we present a value-space algorithm. 

A number of algorithms have been designed based on the con- 
cept of value-space. These algorithms achieve nearly optimal [Liv- 
nat et al. 19961 or optimal [Cignoni et al. 1997) speeds for the 
cell search phase. However, they suffer from one significant dis- 
advantage: the storage requirement for the pre-computed search 
data structures. With very large datasets (such as the visible hu- 
man dataset) becoming commonplace, the high storage overhead 
associated with these search structures is a serious deterrent to their 
use. For example, [Cignoni et al. 19971 states that the space re- 
quirement of Interval trees is four times the number of cells in 
the dataset. The Interval tree data structure for a SlZ3 floating 
point dataset (512MB) will need more than 20i6MB for storage. 
The large space complexity renders these techniques ([Giles and 
Haimes I99OI[Shen and Johnson 19951[Livnat et al. 1996][Shen 
et al. 19961[Cignoni et al. 19971) practically unusable without out- 
of-core modifications. Moreover, the algorithms are slowed down 
considerably because a large amount of time is spent on file I/O. 

With the primary objective of fast isosurface extraction, we pro- 
pose a compression-based solution intended to alleviate the prob- 
lem of bloated search data structures. The extrema1 informa- 
tion (minimum and maximum) of  the cells is compacted using a 
form of compression referred to as transform coding. We pro- 
pose a computationally inexpensive transfonn of the conventional 
[minimre,t,mmimrim] representation of intervals? to a more com- 
pression friendly format. A traditional non-uniform quantizer is 
used to quantize the transformed data. We introduce a search algo- 
rithm to perform the isosurface search directly on the transfurmed 
representation. This eliminates the need for a decoding step to re- 
vert the data back to their original values. The search algorithm 
can be easily modified to do an incremental search, or to run out- 
of-care. We are able to reduce the size of the search data struc- 
tures almost three-fold compared to those used by ISSUE and In- 
terval trees. The compression technique presented provides a stor- 
age friendly yet efficient solution for large dataset isosurface ex- 
traction. The trade-off between storage requirements and the speed 
of the search process can be exploited to suit the available storage 
resources and the performance demands of the visualization envi- 
ronment. 

'We use the lerm cell while referring to the smallest volumetric elemen1 
in a three-dimensional grid. For regular gfids. a cell represents the same 
entity as a V O X ~  For unstructured grids, a cell may be a atrahedrun, prism, 
or any other polyhedron. Our method can be used for datasets on either 
structured or unstructured grids. 

Zhren,nl here refers to the [minimum,nra*imum] interval of a cell. 
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2 Related Work 

Since [Lorensen and Cline 19871 proposed the Marching Cubes 
algorithm for constructing isosurfaces in 1987, a number of tech- 
niques have been proposed to speed up the search for isosurface 
containing cells. Active list [Giles and Haimes 19901. Span Filter 
[Gallagher 19911, Sweeping Simplices [Shen and Johnson 19951, 
and Octrees [Wilhelm and Van Gelder 19921 are a few of the early 
methods. The first three are value-space based methods, while the 
ever popular octree is a geometric-space technique utilizing hier- 
archical spatial subdivision. [Itoh and Koyamada 19951 (extrema 
graphs) and [Bajaj et al. 19961 (seed cell set) use isosurface propa- 
gation techniques to avoid the need to search all the cells intersected 
by the isosurface. Propagation in unstructured grids needs adja- 
cency information to be stored, which increases the storage. Below, 
we mention three value-space algorithms which are most related to 
our technique. 

In 1996, [Livnat et al. 19961 introduced the span space repre- 
sentation for intervals in a near optimal algorithm (NOISE). The 
span space is a two-dimensional space of intervals with the x-axis 
and y-axis representing minima and maxima respectively. Each cell 
can be depicted as a point in the span space with the coordinates 
(minimum,maximum). The span space is subdivided using a kd- 
tree, where each node divides the space into two partitions. The 
subdivision is alternated between a partitioning of the minima-axis 
and the maxima-axis at even and odd levels. The ISSUE algorithm 
by [Shen et al. 19961 employs a lattice-based subdivision of the 
span-space. Sequential and parallel algorithms are presented for 
performing a search over the lattice elements. [Cignoni et al. 19971 
proposed an optimal search algorithm using Interval trees. Each 
node of the tree divides the intervals into three groups: the intervals 
whose maxima are less than the value of the node, those whose min- 
ima are greater than the node value, and the third set which contain 
the node value in between their extrema. The first group of inter- 
vals are passed onto the left child, the second to the right child, and 
the third group is put into two sorted lists associated with the node. 
Next. we discuss the storage requirements of NOISE, ISSUE and 
Interval trees. 

Let us assume that there are N cells in the dataset, and the iden- 
tity of each cell (cell id) is stored as a number that requires c bytes. 
Also, suppose that e x h  data value requires d bytes. A pointer- 
less kd-tree, as used in NOISE, stores the information {cell id, 
minimum, maximum} once for each cell. The space requirement 
is thus ( c  + 2d)N. In ISSUE, all the lattice elements (except those 
intersected by the minimum =maximum line) store two data stiuc- 
tures. Row is a list of {cell id, maximum} pairs sorted by the cell 
maxima. The Column list comprises of {cell id, minimum} sorted 
by cell minima. Each cell in a lattice element contributes once to 
both Row and Column structures. So, the space needed is (c+d)ZN,  
plus overhead. Each node of Interval trees stores two sorted lists: 
dY and 9% a'Y is an ascending list of left extremes, i.e., of 
{cell id, minimum} pairs, and OW is a descending list of right ex- 
tremes, i.e., of {cell id, maximum} pairs. Ignoring the tree over- 
head, the space needed is (c +d)2N.  If cell ids are stored as 4-byte 
(one word) integers and data values as 4-byte floats, then the space 
requirement of NOISE, ISSUE, and Interval trees is respectively 
3N, 4N and 4N words. For a S n 3  floating point dataset (512MB), 
for instance, N = 5 I l 3  and 4N words occupy 2036MB. 

In the case of large datasets, which are common nowadays, the 
high storage requirement severely restricts the usability of these al- 
gorithms. This has prompted researchers to propose modifications 
so that large datasets can be used with these algorithms. [Cignoni 
et al. 19971 presents a 3D chess-board arrangement for regular grids 
to reduce the number of cells the interval tree stores. Cells are col- 
ored using a chess-board pattern, and only cells having black color 
are used to construct the interval tree. [Chiang and Silva 19971 

proposed the first oul-of core isosurfacing technique in the form of 
an U 0  optimal implementation of the interval tree. Later, [Chiang 
et al. 19981 introduced a method to efficiently group individual cells 
into meta-cells. They COnStNCL an interval tree using the meta-cells 
instead of individual cells. Both the chess-board and the meta-cell 
techniques lower the space requirement by reducing the number of 
cells stared in the search data structures. Our algorithm achieves the 
same goal through efficient space utilization combined with com- 
pression of cell [moximumlminimum] information. The compres- 
sion method used is based on transform coding. If desired, the cell 
reduction techniques mentioned above (chess-hoard andor  meta- 
cell) can be incorporated into our algorithm to further decrease the 
search structure size. Let the effective number of cells (individual 
cells, or black cells in the chess-board pattern, or meta-cells) be N. 
In an uncompressed form, the {cell id, minimum, maximum} infor- 
mation requires 3N words. Using transform coding, we compress 
the {minimum, maximum} information to a few hundredths of N 
words. The lo?dl space requirement of our method is thus one and a 
few hundredths of N words, as opposed to 4N words in [Giles and 
Haimes 1990lIShen and Johnson 19951IShen et al. 19961[Cignoni 
et al. 19971. 

Transform coding is a well known data compression approach. 
and has an extensive body of literature. The basic principle uti- 
lized by transform coding is that multiple dimensions of vector 
data are often correlated to a lesser or higher degree. (If the in- 
put data is scalar, multiple samples are collected to form a vector.) 
The redundancy of data values (due to correlation) is exploited for 
compression by transforming the vector data and then quantizing 
each scalar dimension. The transformation allows a better com- 
paction of the data compared to the untransformed values. The best 
compression ratios are achieved if the transformed ddla dimensions 
are not statistically correlated. [Hotelling 19331 presented the first 
transform to de-correlate discrete data in the method of principal 
components. Karhunen and Loeve derived the analogous transform 
for continuous functions, which is now popularly known as the K- 
L transform [Sayood 2000l[Gray and Neuhoff 19981. One of the 
most widely used transform coding applications today is the dis- 
crete cosine transform (DCT), which is a pan of many image and 
video coding standards, e.g., JPEG, MPEG etc. For a more detailed 
review of transform coding and quantization, the reader is referred 
to [Sayood 2000l and [Gray and Neuhoff 19981. 

In the ensuing sections, we present our compression based algo- 
rithm for fast isosurface extraction. 

3 Transform coding for intervals 

A number of isosurface extraction algorithms have been developed 
to perform the search for cells in the value space, i.e., the space of 
[minimum, maximum] intervals of cells. The minima-maxima space, 
however, is not suitable for compression due to the high statisti- 
cal dependence between the minimum and maximum values of cells 
(see figure I) .  To reduce this dependence, we use a linear trans- 
form to transform this space into a new space (which we will refer 
to as the UV-space). This transformation is the first stage of our 
compression algorithm. Sections 3.1 and 3.2 discuss this step in 
greater detail. In the UV-space, each cell (or equivalently, each in- 
terval) is represented by its U-  and v-coordinates. These coordinates 
are quantized using a dataset distribution optimized non-uniform 
quantizer. We use a companded quantizer, which simulates the 
non-uniform quantization process using a uniform quantizer. While 
choosing the output values of the quantizer, quantization errors are 
taken into account. This ensures that the isosurface search does not 
miss any cell that contains the isosurface. The quantization pro- 
cess is described in section 3.3. The compressed information (in 
the form of uv-coordinates) is then stored in a search friendly data 
stmcture, which is presented in section 4.1. At run-time, the search 
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algorithm finds the cells for isosurface extraction based on the sup- 
plied isovalue. The search process is explained in section 4.2. 

In the following sectivns, we give some background on trans- 
form coding, followed by details of the transform and quantization 
phases of our algorithm. 

3.1 Background 

The central theme of transform coding is that the input data is mod- 
ified, using a reversible transform, to another form which can he 
better quantized. The quantized data can then be converted back 
to the original form using the reverse I rdns fO~ .  For the following 
discussion, we represent a multi-dimensional input data sample as 
the vcctor x. There are three stages in transform coding: 

1. Transform: The input data x is transformed into y using a 
reversible transform A, where y = Ax. The transformation A 
is selected such that y has better compression characteristics 
than x, i.e., given a fixed distortion, compressing y yields a 
smaller output than that of x. Or,.given a fixed compression 
rate, y has lower distortion compared to x. The hest com- 
pression results are achieved when the data dimensions are 
uncorrelated. This suggests that the ideal transform for com- 
paction is the method ofprincipal components. This step by 
itself does not result in any compaction of the data, which is 
achieved by the next two steps. 

2. Quantization: The transformed data y is then quantized to a 
finite number of levels. Each dimension of the data can be 
quantized independently using different quantization strate- 
gies. The number of quantization levels depends on the de- 
sired amount of compaction. The statistics of the data y in- 
fluence the design of the quantizer. For example, appropriate 
uniform or non-uniform quantizers can be chosen depending 
on input data properties and desired output statistics. 

3. Encoding: The quantized data is then passed throuzh a binary 
encoding stage (e.g., Huffman or arithmetic coding). This re- 
sults is the final compressed form of the data. 

Constructing a compression scheme thus boils down to three tasks: 
finding an appropriate transform, designing quantizers based on the 
desired compression ratio and error limit constraints, and select- 
ing a proper binary encoder. The data decoding process consists 
of inverting the effects of the first and third stages above. The sec- 
ond stage is lossy, and that information cannot be recovered. The 
compressed data is passed throumh a matching binary decoder, and 
then an inverse transform A-l?s applied to recover the data in the 
original form. 

For the problem we are concerned with, the input data is a set of 
two-dimensional points which represent the [minimum;mo.zimum] 
intervals of cells. In the rest of section 3, we propose a suitable 
transformation for the intervals. and then design a quantization 
scheme for the two transformed axes. Since our primary goal is 
fast isosurface extraction, we do not use any binary encoding stage. 
Such a stage would necessitate a decoder during the cell search 
phase, which would slow it down and defeat the primary purpose of 
this paper. However, if the situation so demands, a binary encoder 
can be easily applied as the third stage of encoding. 

3.2 Transform 

The best compression rates can be attained if we use a transfotmd- 
tion which statistically de-correlates the minima and the maxima 
[Sayood 20001. Hence, the ideal choice for a transformation is the 
method of principal components. However, i t  is very expensive to 
compute, specially for large datasets, which makes it a very im- 
practical choice. Instead, we use a simpler transformation based on 

0 500 1000 ,5011 *ma 2100 
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Figure I:  A histogram plot of the difference between maximum and 
minimum values in  the visible woman dataset. Thex-axis represents 
the difference, and the y-axis shows the number of cells which have 
that difference. The y-axis is shown in a log,, scale. In this dataset, 
the largest difference is 2978, but 90% of cells have a difference 
less than 163. 

the following observation: i f  is usual fur the minima and murimu 
of the cellr ro be highly correlared. That is, cells with higher max- 
ima tend to have higher minima and vice versa. Figure 1 shows a 
histogram plot of the difference between maximum and minimum 
values in the visible woman dataset. As can be expected, the vast 
majority of cells have a very small difference between their maxima 
and minima. 

Consider a two-dimensional space in which the x-axis represents 
the cell minima and the y-axis represents the maxima (span space 
in [Livnat et al. 19961). Since the cells tend to distribute them- 
selves along the minimum = maximum line, the principal compo- 
nent of any dataset will have an orientation close to the mininium = 
marimum line. So. instead of the exact principal component trans- 
formation, we use a transformation to the 45' line. (Note that 
the transformation can be interpreted as rotation of the coordinate 
frame). Each interval is represented as a vector 

minimum 
X =  [ maximum I 

The transformation is given by 

where 6 = 45". After the transformation, each interval is reprc- 
sented by the vector 

We reduce the computational expense of the transform by removing 
the multiplication present in equation (4). This can be viewed as a 
scaling of both components af y, or equivalently as the use of a dif- 
ferent system of units. Hence, this does not affect the compression 
results. Defining 

( 5 )  y = Bx = (&A)x 

we get 

U =  maimum+minimum (6)  
1' = maximum -minimum (7) 

Each cel l  is represented as a point with coordinates ( I I : V )  in the u- 
v frame, which is obtained by a counter-clockwise rotation of the 
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Figure 2: UV-Space. The UV-space is a two-dimensional space of 
intervals. Each cell is represented as a point with coordinates (U; v )  
defined by the equalions ( 6 )  and (7). The U-" frame is obtained by 
a counter-clockwise rotation of the original m i n - m u  frame by 45O, 
followed by a scaling by a. The isosurface passes through the 
cells in the shaded region. 

original min-mu frame by 45". followed by a scaling with 4 (fig- 
ure 2). We will refer to the two-dimensional space represented by 
the U-" frame as the UV-Space. Note that, U can be thought of as 
twice the mid-point of the interval, and I' is the range of the interval. 

Using the equations (6) and (7). the interval minimum and 
me\in!unl Can he expressed as 

minimum = ( i i - v ) / 2  (8) 
marimum = ( u + Y ) / ~  (9) 

The cells which contain the isosurface satisfy the following condi- 
tion: 

minimum < isvvalue < maximum (10) 

For simplicity, we have assumed minimum # isovulue # maximum. 
From equations (X), (9) and (IO) ,  we can derive the following con- 
dition for a cell which intersects the isosurface 

v > I U-isowlue x 2 1 (1 1) 

In figure 2, any cell lying inside the shaded region (defined by equa- 
tion (1 l)) will be intersected by the isosurface. 

In addition to permitting better compression rates, the transfor- 
mation given by equations (6) and (7) also has other advantages. 
First, it requires very little computation in the form of a couple of 
additive operations. An inverse transformation is not needed: the 
isosurface test can be done in the transform domain using equation 
(11). Moreover, the transformed space lends itself to a simple and 
efficient search data structure, which we will present in section 4. 
As will be evident, we will need to store only one sorted list of 
cells, as opposed to two sorted lists in most algorithms ([Ciles and 
Haimes 199OllShen and Johnson 19951rShen et al. 19961[Cignoni 
et al. 19971). 

3.3 Quan t i za t ion  

Quantization of the UV-space is performed in two phases: first, the 
u-axis is quantized, followed by a quantization of the y-axis. For 
both axes, we use data distribution optimized non-uniform quanti- 
zation. 

3.3.1 Companded Quantization 

After the transformations given by equations (6)  and (7) let the 
minimum u value for the dataset be uL3 and the maximum U value 

he uR. We want to quantize the range [uL,uR]  into M intervals, 
where M is input by the user. The design of the quantizer involves 
deciding the following two sets of values: 

Decision Boundaries: The M+ 1 endpoints {hi}Eo of the M 
intervals. We already have bo = uL, and h, = uR. 

0 Reconstrucrion Lewls:  The M representative values ( r i } E ,  
for each interval. 

The quantizer function, e ( . ) ,  is given by 

Q(u)  = ri iff < U 5 bi (12) 

Since the distribution of cells in along the u-axis can be (and usually 
is) non-uniform, we will use a non-uniform quantization strategy. 
Specifically, we will use an approach called Companded Quanti- 
zation [Gray and Neuhoff 1998][Sayood 20001, which simulates 
a distribution optimized non-uniform quantizer. A compander has 
three stages: 

1. Compressor: The input values ( U  coordinates of cells) are 
mapped into another value (say, U') such that the output (U ' )  

is uniformly distributed. The regions of the input which have 
high density are stretched, while regions with low density are 
compressed. The mapping conserves the ordering of the input 
values, i.e., if ui  < u j .  then U:. < U>.  The concept is the same 
as that used in image equalization. 

2. Uniform Quantizer: The output of the compressor stage (U') 
is quantized into M levels using a uniform uantizer. The de- 

struction values are {r j}El .  

cision boundaries of this quantizer are {hj}i=o, 3 and the recon- 

3. Expander: The quantized U' values are mapped hack to the 
u-axis using an expander function, which inverts the warp- 
ing introduced by the compressor function. The compander 
decision bounds { b ; } L  are derived from {hj}EO. and the re- 
construction levels { r i } E ,  are obtained from { ~ } E ,  

3.3.2 Quantization of U-axis 

For the first phase, the user specifies the number of quantization 
intervals, M, of the u-coordinates. We implement the compressor 
stage by sorting the cells by their u-coordinates. If the u-values of 
two cells are equal, we break the tie using cell ids. The position 
of a cell in the sorted sequence is used as its U' value for the uni- 
form quantizer. The first n, = N / M  cells are quantized into the 
first interval, the next n cells in the second interval and so on. The 

quence positions of the extreme (the first, and the last) cells of the 
intervals. The expander stage involves mapping the {b:}E, values 
to the u-axis using an inverse of the compressor stage. Let the u- 
value of the jth cell (in the sorted sequence) be u j .  and let q = nM. 
Then the compander decision boundaries, (bi}&. are defined as 

decision boundaries, {bi}+,, I j Y  of the uniform quantizer are the se- 

h, = U L  
bl  = ( U 0  + u s + J / 2  

(U*, fU2?+1)/2 (13) h2 = 
. .  . .  

b, = U R  

We have assumed that { u ~ . ~  # U , , , , + ~ } E " , ~ .  If that does not hold, 
we take bi as the average of the u-values of the next two satisfying 
cells. Figure 3 shows the quantization of u-coordinates with M = 
11. The vertical lines at the decision boundaries divide the 
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Figure 3: Quantization of u-axis. The u-axis is divided into M = 
1 I levels. The decision boundaries {bi}:& are given by equation 
(13). For the given isovalue, the reconsfrirction levels are given by 
equation (14): rI = b, ,..., r, = b,, r8 = b7 ...., rt! ,= bto.  r7 is not 
used by the search algorithm. The A4 = I I panltlons of the UV- 
space will be referred to as U-partitions. 

UV-space into M = 1 1  partitions {e}::, , which we will refer to as 
the U-partitions. 

Unlike usual quantization procedures, the definition of the re- 
construction values {rijMI is deferred till run-time. To avoid holes 
in the isosurface due to quantization errors, we need to incorpo- 
rate the isovalue into the assignment of {r i}Ml .  Consider the 
cells A and B in the U-partition f4 in figure 3, where the value 
uiio = 2 x isovulue lies in U-partition P7. Both will have the same 
quantized u-coordinate r,, which will he used at run-time for the 
isosurface test in equation (1 I). If cell B fails the test, the resulting 
isosurface will have a hole in it. To prevent any potential isosurface 
cell from failing the test, we have to ensure that the right-hand side 
of the inequality ( v  >I U - isovalue x 2 1 )  does not increase as a re- 
sult of quantization. Hence, we choose the reconstruction level to 
be the greatest rr-coordinate any cell in partition P4 can take. This 
happens lo he the right decision boundiuy of P4. and so we take r4 
to be equal to b,. For the same reasons, cells C and D in panition 
f l l  are assigned the reconstruction value r l I  = b to .  Note that cells 
A and D will satisfy equation (1 I )  and will be sent to the geometry 
extraction phase, which will simply ignore them. For the partition 
P,. which contains the value u ; , ~ ~ .  all the cells are presumed to have 
passed the test. We define the reconstruction levels in terms of the 
stored decision boundaries and the given ivovalue using the follow- 
ing formula: assuming birn-l < isovalue x 2 < bi,yo 

(14) 

3.3.3 Quantization of v-axis 

After the quantization of the u-axis, we proceed to the second phase 
of our algotithm. We quantize the v-axis in each partition {<}Et 
of the UV-space separately. The quantization strategy is similar to 
that used for the u-coordinates. The user specifies the number of 
quantization levels, L, for each U-partition. The following actions 
are then performed for each partition e. (i = I ..,M). The cells are 

Figure 4 Quantization of  v-axis. After the u-axis has been quan- 
tized using M = 1 I ,  the v-axis is quantized separately into L = 7 lev- 
els for each U-partition { P j j ~ ~ , .  The v-axis reconstruction levels, 
which are also the decision boundaries, are shown as the horizontal 
lines, and the values are calculated from equation (IS). The L = 7 
intervals of each U-partition will be referred to as UV-partitions. 

initially sorted by their v-values, breaking ties by cell ids. The first 
nL = nM/L cells are put in the first interval, the next nL cells in 
the second interval and so on. Unlike the quantization stage of u- 
axis, we do not prevent cells with the same v-values from being 
put into different intervals. We do so ti) ensure that each interval 
contains the same number (n,) of cells. As a result, we do not have 
to explicitly store the number of cells in each interval in our data 
Structure. 

In the previous discussion on quantizing the wixis, we argued 
the need to prevent quantization enors  which might result in holes 
due to isosurface-containing cells being indicated otherwise. In the 
isosnrface test (v >) U - isovalue x 2 1, equation (1  I)), this trans- 
lates to the requirement that the "-value should not decrease after 
quantization. Accordingly, for each interval, the highest ,,-value of 
its member cells is used as the reconstruction level for that inter- 
val. Let the v-value of the kth cell (in the sorted sequence) in the 
U-partition P, be vii. Then, the reconstruction values, {s,}k, .we 
given by 

v. hi Sil = 

si, = V .  a",.) 
Figure 4 shows the quantization of v-coordinates after the u-axis 

has been quantized (with M = 1 I ,  as shown in figure 3). Each U- 
partition has been further divided by L(= 7) horizontal lines, which 
represent the reconstruction levels (also the decision boundaries) 
of the v-values within the U-partition. We will call the resulting 
rectangular regions UV-partitions. The UV-partitions which are to 
the left of the U-partition P, are represented by the uv-coordinates 
of their top-right comers. Similarly, those IO the right o f f ,  are 
represented by the uv-values of their top-left corners. For the given 
isovalue, the shaded UV-pllrtitions pass the isosurface test as their 
representative corners satisfy equation ( I  I). 

4 Search Algorithm 

Following the transform coding steps outlined in the previous sec- 
tion, we construct data structures which store the information of the 
UV-space in a compressed form (section 4.1). These can then he 
used for fast isosurface extraction searches (section 4.2): 
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4.1 Data Structures 

The preprocessing stage of our algorithm consists of the transfor- 
mation and quantization steps that have been mentioned in sections 
3.2 and 3.3 respectively. The results of the preprocessing stage 
are stored in appropriate data structures that enable a fast run time 
search for isosurface containing cells. The information that needs 
to be stored is: the user-specified quantization parameters M and L, 
the reconstruction levels for the U- and Y-axes, and the cell ids in 
each UV-partition. We use the dam structures given below to store 
that information: 

I .  U-Array: The decision boundaries [b i }& for the u-axis, 
given by equation (13). These values are required at run time 
to derive the reconstruction levels for u-coordinates according 
to equation (14). The storage required is the space for M + 1 
values. 

2. V-Array: A two-dimensional array {dij}%f,j=l with each el- 
ement storing the v-axis reconstruction levels of the corre- 
sponding UV-partition given by equation (15). For example, 
dii stores the decision boundary of the j th  U\'-partition of the 
ith U-partition. This needs a storage of ML values. 

3. ID-Array: A two-dimensional array { A i j } Z f , j = l  with each 
element storing the ids of cells in the corresponding UV- 
partition. A ( i ,  j )  stores the cells within the ,jth UV-partition 
of the ith U-partition. The storage needed is that for N cell 
ids. 

The total storage requirement is the space needed for N cell ids and 
M L +  M + I quantization levels, where M L +  M i 1 is typically of 
the order of a hundredth of N .  This offers significant space reduc- 
tion compared to most algorithms ([Giles and Haimes 1990lLShen 
and Johnson 199511Shen et al. 1996][Cignoni et al. 1997]), which 
store 2N cell ids and 2 N  min-max values. During preprocessing, the 
three arrays are filled simultaneously through the quantization pro- 
cess described in section 3.3. To recap, each cell is transformed to 
uv-coordinates using equations (6) and (7). They are then sorted by 
their u-coordinates and the quantization interval endpoints (b j}Mo 
derived using equation (13). The cells are then grouped into M U- 
partitions. The cells in each U-partition are now sorted by their 18- 

values. For each U-partition i, the V-array elements (v-axis decision 
bounds) are filled in according to equation (1 5). Simultaneously, ids 
of cells in each UV-partition are stored in the ID-Array. 

Incremental Search 

If the isovalue is changed by a small amount from the previous iso- 
value, it is advantageous to do an incremental update to the results 
of the previous search. We assume that the previous isovalue search 
results for each U-partition are stored. For each U-partition, we also 
need to remember the position of last UV-partition accessed before 
the traversal was terminated. Let the previous isovalue be imp. 
Without any loss of generality, let us assume that the isovalue has 
increased to a new value ison. Let the corresponding u-axis points 
be U,, = 2 x iso,, and U ,  = 2 x iso, respectively. Then the addition 
of new cells and removal of cells no longer intersecting the isosur- 
face are handled as follows: 

4.2 Search 

Given an isovalue, the search for isosurface containing cells over 
the UV-space can be decomposed into separate starches over each 
U-partition. For a given U-partition, the search can be thought of 
as a search for satisfying UV-partitions (because all the cells within 
a given UV-partition have the same quantized uv-values). The U- 
partition is traversed in order of decreasing v-coordinates, begin- 
ning with the topmost UV-partition (the one with highest v-value). 
The reconstruction values of the UV-partition are read from the 
U-Array and the V-Array, and tested in equation (1 I). If the UV- 
partition satisfies the isosurface test, all the cells in the correspond- 
ing ID-Array position are selected for geometry extraction, and the 
search moves to the next UV-partition (the one below). When a 
UV-partition is reached whose uv-coordinates fail equation (1 I),  
the traversal for the current U-partition is terminated and the an- 
other U-panition is taken up for traversal. The search is comolete 
when all the U-partitions have been individually searched 

Addition: New cells will he added to U-partitions that are 
to the right of umid = (U,, + u,j/2. For these U-partitions, 
we start an incremental search from the previous terminat- 
ing UV-partition. The current traversal i s  continued till a UV- 
partition is reached which does not satisfy the isosurface con- 
dition (equation (1 I ) ) .  The cells of the newly traversed UV- 
partitions are added to the isosurface extraction list. 

Removal: For U-partitions to the left of umid, we will need 
to potentially remove cells which were selected for isosurfac- 
ing for the previous isovalue. Each U-partition is traversed 
upwards (towards increasing v-values), starting from the ter- 
minating UV-partition of the previous traversal. The upward 
traversal is stopped when a UV-partition is reached which sat- 
isfies the isosurface test. The UV-partitions encountered dur- 
ing this reverse traversal no longer contain the isosurface and 
are removed. 

The U-partition which contains umid can belongs to the addition 
category if the previous terminating UV-partition satisfies the iso- 
value. Otherwise, i t  is in the removal set. As in any incremental 
update search, this is more beneficial in case of small datasets, for 
which the intermediate results can he stored in main memory. 

4.3 Errors 

The quantization of the UV-space introduces errors which may re- 
sult in false conclusions for some cells in the isosurface test (equa- 
tion (1 l)). We have designed our quantizer (section 3.3) such that 
the search does not miss any cell that contains the isosurface. In- 
stead, some cells that do not truly intersect the isosurface will sat- 
isfy equation ( I  I) .  The errors are the combined effect of U-value 
quantization error and the v-axis quantization error. Below, we give 
an empirical discussion on the average effect of the u-axis quanti- 
zation on the number of such erroneous cells. For this discussion, 
we first assume that the v-values are not quantized. Later, we will 
extend the error analysis to include the v-coordinate quantization. 

Consider the U-partition Pi in figure 5(a), which is to the left 
of u ; , ~ ~  = 2 x isnvalue. In other words, hi < 2 x isovalue. Due to 
quantization of u-coordinates, all the cells within the shaded trian- 
gular region will satisfy the isosurface test, and will constitute the 
error for this U-partition. Each U-partition that is searched will con- 
tribute a similar group of erroneous cells. It should be noted that if 
the top-most UV-panition of a U-partition fails the isosurface test, 
it will not be traversed at all and hence will not contribute any error. 
For instance, in figure 4, the U-partitions P , P and P3 will not have 
any error since the topmost UV-partitions lie outside the isosurface 
region. In practice, the dynamic range of u-values is usually much 
higher than the spread of v-values. As a result, a large number of 
U-partitions will not he traversed and so will not contribute any er- 
ror. For this discussion, we assume that on an average, a fraction 
h of the total number M of U-partitions is traversed. Let the av- 
erage width of a U-partition be u., .~,  and the mean concentration 

I. 2 
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~ Y = 2*isoualus - b, 

Figure 5: Quantization Errors. All the cells in the shaded triangular 
region in figure (a) satisfy the isosurface test and contribute to the 
error due to quantization of u-axis. The error that is added to this 
by vaxis  quantization is shown in figure (b). 

of cells be cave. Then, on an average, each U-partition will con- 
tribute (u2,,/2)cOve false cells. If the u-valuc limits for the dataset 
are [i i , , :uR].  then the nverage number of cells which falsely satisfy 
equation (1 1) is 

Next, the additiondl effect of v-coordinate quantization is con- 
sidered. In figure 5(b), all the cells in the UV-partition Vij have the 
same uv-coordinates ( h i , s i ( j + l j ) ,  and thus all satisfy equation ( I  I ) .  
The triangular region contains cells which incorrectly satisfy the 
isosurface test due to u-axis quantization errors. Tbc error added 
by y-axis quantization are those cells in the UV-partition Vi j  whose 
v-coordinates are less than vi = 2 x isovalue - bi .  If the total num- 
ber of cells in the dataset is N, and M and L are the number of  
quantization levels for U- and waxes respectively, then each UV- 
partition has nL = N/ML cells. On an average, the total number of 
erroneous cells due to v-coordinate quantization is 

(17) 
hN 

Average V-Error = hM . “L = - 
2 2L 

5 Results and Discussion 
In  this section, we first discuss the effect of the quantization pa- 
rameters M and L on the size and search efficiency of the search 
data structures. We then present out-of-core results from our algo- 
rithm and also compare the performance with that of the interval 
tree. We have tested our algorithm on the UNC MR-brain dataset 
(256 x 256 x 109 2-byte integer), a Rayleigh-Taylor hydrodynamic 
instability dataset (256’ floating-point) which we will refer to as 
Rage256, and the visible woman dataset (512 x 5 12 x 1728 2-byte 
integer). 

5.1 Compression and Errors 

We have mentioned before that either the meta-cell technique [Chi- 
ang et al. 19981 or the chess-board method [Cignoni et al. 19971 
can be used with our algorithm. For the following discussion, we 
will denote the number of effective cells (single cells, meta-cells, a 
black cells in the chess-board pattern) by N. The space requirement 
of our search data structure is the storage for N cell ids (ID-Array) 

Compression Ratios 
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Fieure 6: Effect of Quantization parameters M and L o n  data struc- - 
lure size. 
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Figure 7: Effect of Quantization parameters M and L on search error 
for the MR-brain (isovalue = 1070.5, number of isosurface cells = 
4352196). 

and M L + M  + 1 quantization levels (U-Array and V-Array). Since 
we are not compressing the cell ids, the space required to store the 
ID-Array will remain consfant for all quantization parameters. We 
present the compression results as the ratio of thc Size of the U- 
Array and V-Array to the space required for storing the min-max 
values for every cell. Figure 6 shows the compression ratios for the 
MR-brain dataset. Interval trees and ISSUE data structures Store 
2N cell ids and N min-max pairs. Compared to these, the stor- 
age required by our search data structure is 37.1% for MR-brain, 
21.4% for Rage256, and 33.4% for visible woman dataset for a 
(M = 4000, L = 400) quantization. 

Figure 7 shows the variation of error with L and M. The error 
is due to cells which are selected by the search algorithm but do 
not contain the isosurface. Please note that there is no error in the 
isosurface itself. The error is defined as the ratio of the erroneous 
cells to the number of isosurface containing cells. AS expected, 
the error decreases with increase in both L and M. Note that the 
rate of decrease Falls as L or M get larger. Keeping in mind the 
trade-off between search and space efficiencies, users can choose 
an (M,L)  combination suitable for their requirements. For instance, 
the very little difference between performance of the M = 2000 and 
M = 4000 graphs may not justify the associated increase in storage 
space. Table 1 gives the preprocessing, bearch and extraction times 
for the MR-brain dataset for a subset of quantization parameters 
from figures 6 and 7. 
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Comp- 1 Error I Pre- 1 Search 1 Extract 1 Dataset Search Search Search 
Method structure size Time 

14000, 400 I 11.42% 1 0.44% 1 11.50s 1 0.03s 1 7.43s 1 
Table I:  Search and space eSficiency trade-off. Processing times 
on a 600MHz PlI1 for different (M,L) combinations are shown (iso- 
value= 1070.5). Theextractiontime farazerosearcherror is 7.41s. 
The associated compression and errors are shown in figures 6 and 
7. 

500,SO 0.18% 2.33% 
2000.200 2.86% 0.66% 

lsovalue Cells Error Search Entraction 
600.5 2,066,710 4.39% 0.05s 13.0s 
1100.5 4,433,023 4 .288  0.12s 27.7s 
1400.5 809,193 9.47% 0.045 

______ 

Table 2: Search and extraction times for the visible woman dataset 
using a compression of 3.27% of the min-max values. The size of 
the search data structure is 34.5% of the size of the ISSUEJlnterval- 
Tree data structures. 2 x 2 x 2 meta-cells are used while construct- 
ing the search data structures. The number of isosurface containing 
meta-cells are given, along with the error introduced by qu;intiza- 
tion. 

11.03s 0.04s 7.48s 
11.40~ 0.03s 7.44s 

5.2 Performance 

In case of large datasets, the search data structures may not fit into 
main memory and out-of-core techniques have to be implemented. 
Because we store the min-max information and the cell ids in sepa- 
rate data structures, we do not need to modify our search algorithm 
for large datasets. Only the U-Array and the V-Array need to be 
kept in-core. During the search phase, the V-Array is scanned as 
described in the search algorithm (sec.4.2). If the uv-coordinates 
stored at a V-Array position pass the isosurface test, the corespond- 
ing ID-Array entry is mad from the dirk and the cells passed to the 
extraction stage. Table 2 shows the search and extraction times for 
the visible woman dataset. For this experiment, we have used a 
2 x 2 x 2 meta-cell for constructing our data structure. The error 
(number of meta-cells selected due to quantization error) is given 
as a percentage of the isosurface meta-cells, given in the second 
column. The data-structure I/O times are included in the extraction 
times. The compression ratio of min-man information is 3.276 for 
the data structures used. The size of the search data structure is 
34.5% of the size of the ISSUEflnterval-Tree data structures. 

Table 3 compares the size and performance of our algorithm to 
an in-core interval tree implementation on a MIPS RIO000 Proces- 
sor. We present results for a floating-point MR-brain dataset and 
the Rage256 dataset for both methods. The interval tree search per- 
forms marginally better than the search using compressed min-max 
values. The search data structures of our algorithm are smaller by a 
factor of four or more compared to the interval tree. 

6 Conclusion and Future Work 

We have presented a data Structure For speeding up isosurface ex- 
traction using transform coding techniques. Significant reduction is 
achieved in terms of the space requirement of the search structures, 
without compromising the search speed. In the future, we want to 
extend the compression to cell ids to further reduce the size of the 
search structure, and to entend the algorithm to time-varying data. 

MR-brain j I-Tree 1 93.8MB 1 0.13s 1 I Rage256 1 QS (1.3%) I 49.0MB 1 0.09s 1 
1 Rage256 I-Tree I 221.4MB 1 0.07s I 

Table 3: Comparison of search times for the quantized search (QS) 
and the interval tree (I-Tree). The compression ratios for the min- 
max data are given in parentheses. 
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