Time-Critical Multiresolution Volume Rendering using 3D Texture
Mapping Hardware

Xinyue Li and Han-Wei Shen
Department of Computer and Information Science
The Ohio State University
Columbus, Ohio 43210
E-mail: xli@cis.ohio-state.edu and hwshen@cis.ohio-state.edu

Abstract

This paper presents a LOD selection algorithm for render-
ing multiresolution volumes using 3D texture mapping hard-
ware. The main focus of our algorithm is to automati-
cally select appropriate LODs from the volume hierarchy
so that the rendering is completed within the user speci-
fied frame time. We use an intra-frame predictive-reactive
scheme which does not require a precise performance model
nor suffers from frame rate oscillations. In addition, our al-
gorithm has a direct control on how the availble rendering
time is distributed among the volume subdomains to ensure
that important regions are appropriately emphasized. Our
experiments showed that we are able to control the render-
ing time within a 10% difference from the user specified time
budget.

1 Introduction

Although the speed of volume rendering has significantly
increased in the last several years, the size of an average
volumetric data set also continues to grow. To address the
challenges imposed by the large data sets, intensive research
efforts have been undertaken. Among the available methods,
hierarchical rendering algorithms have shown a great poten-
tial. In essence, hierarchical methods first create a multires-
olution representatoin for the underlying volume. Data of
different resolutions in different regions are then chosen at
run time to perform rendering. The goal of the algorithms
is to adaptively simplify the rendering in regions where data
are relatively unimportant or uninteresting, so that both the
memory consumption and computational cost are reduced
without significantly affecting the rendering quality.

While the hierarchical algorithms[1][2][3] can accelerate
the speed of rendering, the selection of appropriate vol-
ume resolutions, or level of detail (LOD), for effective qual-
ity speed tradeoff is often done on an ad-hoc basis. Fre-
quently used approaches such as selecting the volume res-
olutions based on the volume block’s distance to the view
point and the angle to the viewing vector [1][2], or based
on user specified error tolerances [4] cannot effectively con-
trol the rendering time or quality. Although LOD selection
algorithms [5][6] for polygon rendering systems have been in-
tensively studied in the past, LOD selection algorithms for
volume rendering, however, are still scarce. This is primar-
ily because not until recently cost-effective 3D texture map-
ping hardware used for interactive volume rendering became
widely available. However, in order to successfully apply vol-
ume rendering to time-critical applications such as virtual
surgery[7] or real time volume navigation[8], the ability to
perform time-critical volume rendering with flexible level of
detail control is now becoming increasingly important.

This paper presents a LOD selection algorithm for ren-
dering hierarchical volumes using 3D texture hardware. The

main focus of our algorithm is to automatically select appro-
priate LODs from the volume hierarchy so that the rendering
is completed within the user specified frame time. Unlike the
previous time-critical polygon rendering systems which per-
form time-critical control using static heuristics[9][10][11],
inter-frame feedback[12][13], or global optimization[5][6] , we
use an intra-frame predictive-reactive scheme which does not
require a precise performance model nor suffers from frame
rate oscillations. In addition, our algorithm has a direct con-
trol on how the available rendering time is distributed among
the volume subdomains to ensure that important regions are
appropriately emphasized. Our experiments showed that we
are able to control the rendering time within a 10% error of
the user specified time budget.

The rest of the paper is organized as follows. In section
2, we discuss related work on time-critical rendering algo-
rithms. In section 3, we give an overview of our multireso-
lution rendering method. In section 4, we present our time-
critical volume rendering algorithm in detail. Experimental
results are discussed in section 5. Conclusion and future
work are discussed in section 6.

2 Background

Previously researchers have proposed various run-time LOD
selection methods for scenes consisting of polygonal models.
Based on the selection strategies, existing methods can be
classified into three categories: static heuristics, inter-frame
feedkback, and global optimization. Algorithms based on
static heuristics[9][10][11] determine LODs using fixed crite-
ria such as object distance, view angles, or screen coverage.
Feedback control algorithms[12][13] adjust the LODs accord-
ing to the difference between the desired and the actual ren-
dering time from the previous frame. Global optimization
algorithms [5][6], on the other hand, rely on rendering perfor-
mance models and object benefit heuristics. The objective of
the optimization methods is to maximize the image benefit
while limiting the rendering cost to the user-specified frame
time.

Generally speaking, static heuristics cannot precisely con-
trol the rendering time because the relationship between the
exact rendering time and the heuristics in use is hard to
find. Inter-frame feedback schemes can suffer from frame-
to-frame rendering time oscillation and thus can be ineffec-
tive. Adopting the global optimization methods for LOD
selections can be difficult in practice because a precise per-
formance model for the rendering pipeline is difficult to get.
Many dynamic factors such as memory page fault and sys-
tem call delays will affect the rendering performance but
these factors are difficult to model. In addition, for scenes
with a large number of textures and when the total size of
the textures is larger than the texture memory capacity, it
is non-trivial to predict in advance whether a particular tex-
ture will be resident in the texture memory or not when it

is needed.

To control the run-time performance of volume rendering,
previously we proposed an automatic error tolerance speci-
fication system for hardware volume rendering using Fuzzy
Logic Control [12]. The system was able to dynamically
track the performance of rendering and adjust the error tol-
erances on the fly to satisfy the user’s performance goal.
While effective, the algorithm has several drawbacks. First,
the algorithm is based on feedback control, which can suffer
from the frame time oscillation problem. The second prob-
lem of our previous algorithm is that there is no explicit
control on how the time should be spent to render different
portions of the volume. For instance, given a fixed amount of
computation time, the user may want to render the volume
in a medium resolution uniformly. Or, the user can use the
same amount of time to render certain regions in a higher
quality and tolerate a lower quality in other regions. Our
previous algorithm, as well as most of the time-critical algo-
rithms, do not allow such a flexible control. In this paper,
we propose a time-critical algorithm for hierarchical volume
rendering that can both guarantee the rendering frame rate
and allow a flexible control in the rendering quality.

3 Multiresolution Volume Rendering

Before talking about our time-critical volume rendering al-
gorithm, we first give a brief overview on how we build our
multiresolution volume hierarchy and how we perform the
multiresolution rendering.

3.1 Multiresolution Volume Construction

We build our hierarchical volume structure using an algo-
rithm similar to the one proposed by Weiler et al.[2]. Ini-
tially, the entire volume space is subdivided into smaller
blocks, hereafter called subvolumes. For each subvolume,
we create different levels of detail by repeatedly filtering the
voxel data contained in the subvolume. Starting from the
raw data, we average every 2 x 2 x 2 voxels to create a lower
resolution subvolume. We continue this filtering process
until a predefined minimum resolution for the subvolume
is obtained. To avoid seams between adjacent subvolumes
of different resolutions, we adopt the method proposed by
Weiler et al.[2], which copies data points on the boundaries
from low resolution to high resolution volumes to ensure a
smooth transition when interpolation is performed. More
details about the data filtering and seam prevention can be
found in [2].

Our algorithm differs from the method proposed by Weiler
et al.[2] in that the subvolumes in our case have different
sizes. Instead of subdividing the volume uniformly into sub-
volumes of equal size, we take into account the volume’s spa-
tial coherence when performing the subdivision. In regions
where data values are more coherent, we merge the voxels
together to form a larger subvolume. On the other hand, if
the data values in a region have higher variations, we split
the region into smaller subvolumes. There are two primary
reasons for us to use subvolumes of different sizes. First,
breaking a volume into subvolumes creates overhead since
more slicing planes are needed when rendering the volume.
Volume data that have high spatial coherence can usually
be rendered using lower resolution data so breaking a larger
subvolume into smaller ones is unnecessary. On the other
hand, if the volume contains values that are less coherent,
breaking the volume into smaller subvolumes can allow us
to use higher resolution data in those interesting but local
regions while using low resolution data elsewhere.

We implement this adaptive subdivision of the volume
using a method similar to the algorithm proposed by Laur

and Haranhan[4]. A complete octree is first created in which
each tree node records the standard deviation of the voxel
data within the corresponding region. The subvolumes are
then formed by using a user-specified threshold to traverse
the octree. Starting from the root of the octree, a splitting of
the volume into eight subvolumes is performed when (1) the
size of the subvolume is larger than the texture memory (2)
the standard deviation of the subvolume is higher than the
user-supplied threshold. Once the subvolumes are obtained,
we perform the multiresolution filtering as mentioned above.

3.2 Multiresolution Rendering

The final rendering image is produced by rendering individ-
ual subvolumes in front to back order and blend the results
together. For each subvolume, we first select an appropriate
LOD, then use a standard 3D texture mapping algorithm[14]
to perform the rendering. Specifically, the texture hardware
rendering algorithm consists of computing a sequence of slic-
ing polygons perpendicular to the view vector within the
subvolume, and then use OpenGL 3D texture mapping and
alpha blending functions[15] to shade and blend the polygons
together. Data of the selected LOD for each subvolume need
to be loaded into the texture memory before the subvolume
is rendered. To minimize the texture creation and loading
overhead, we create an OpenGL texture object for each of
the different LODs for every subvolume before the render-
ing starts. During the rendering stage, a texture object bind
corresponding to the selected LOD data for each subvolume
is performed. The use of OpenGL texture objects allows the
reuse of existing textures, which is much faster than reload-
ing the texture data using glTexImage*D(). In addition, if
the underlying implementation of OpenGL supports texture
working set, transmissions of some texture objects from main
memory to the texture memory can be completely avoided.

4 Time-Critical LOD Volume Rendering

Given the different LODs for each subvolume, the goal of
our time-critical volume rendering algorithm is to select an
appropriate LOD for each subvolume at run time so that
the overall rendering time will be close to the user-specified
frame time. In addition, to make sure that regions of interest
are appropriately emphasized, our algorithm allocates the
rendering time to different subvolumes based on the user-
defined importance values, which can be simple heuristics
such as the distance to the view point, the volume opac-
ity, or other application-specific criteria. Based on these
requirements, we propose an intra-frame predictive-reactive
algorithm to perform time-critical volume rendering. In the
following, we describe our algorithm in detail.

4.1 Intra-Frame Prediction Reaction

Our algorithm takes into account the run-time behavior of
the rendering program when determining the LODs for the
volume. As mentioned previously, the entire volume is sub-
divided into a list of subvolumes, which are rendered in a
front-to-back sequential order. Instead of making a global
decision about the LOD for every subvolume at once, the
LOD decision for each subvolume is deferred until the sub-
volume is ready to be rendered. In our algorithm, the LOD
for each subvolume is determined based on the following
run time characteristics. First, performance statistics for
rendering the previous subvolumes are gathered, which are
then used to predict the rendering times for the different
LODs of the next subvolume. Second, we keep track of the
amount of time that is left, and the relative importance val-
ues among the remaining subvolumes. The importance of a

Subdivide volume

into subvolumes

Split time budget
among subvolumes

(Get next subvolume)

Estimate rendering
time of different LODs
of the subvolume

[Decide the LOD j

(Renderthesubvolume)
[

¥

Budget rendering
time for the subvolume

Figure 1: Algorithm Overview

subvolume is determined by the user-specified criteria. Fi-
nally, we allocate a share of the remaining rendering time
to the next subvolume based on its relative importance, and
then choose one of the LODs that has the closest predicted
rendering time to the allocated time budget. We repeat this
process for every subvolume until the rendering of the en-
tire volume is complete. Figure 1 gives an overview of our
algorithm.

Our algorithm differs from the existing LOD selection al-
gorithms in several aspects. First, the LOD determination
is performed at an intra-frame level in an adaptive manner,
which makes it more effective in avoiding frame to frame
rendering time oscillation. Second, the dynamic control of
rendering speed does not totally depend on having an accu-
rate performance model, which makes our algorithm more
robust in practice. Third, we are able to control the ren-
dering time allocated to each subvolume in a more direct
manner, which makes it easier to emphasize regions of inter-
est. In the following, we provide an in-depth discussion of
several important components in our algorithm.

4.2 Rendering Time Prediction

As described above, we need to estimate the rendering cost
for each of the LODs associated with a subvolume at run
time. Instead of completely relying on a static performance
model to perform the prediction, we take into account the
system’s run-time behavior by continuously collecting the
performance statistics from the previously rendered subvol-
umes to assist the process. We use the following performance
model to describe the rendering time T for a subvolume at
a particular LOD using texture hardware:

t i X Thali
T = ttemtuTe_loading + max geometrry slices
trasterize X Mslices

where ticoture_loading 1S the time to load the volume tex-
ture of the LOD, tgeometry is the average geometry process-
ing cost to render a slice within the subvolume (transfor-
mation, clipping, per vertex lighting, etc.), trgsterize i the
average rasterization cost to render each slice, and n4j;ces is

the number of slices used for the LOD in question. Mod-
ern graphics hardware implements geometry processing and
rasterization in a pipelining manner. Therefore, the over-
all rendering time for a graphics object is dependent on the
bottleneck of the pipeline, which is the maximum of the
geometry processing and the rasterization time. Although
the slicing polygons in a subvolume have different sizes and
shapes, we can calculate the average cost per slice by divid-
ing the processing time by the number of slices. We note
that in this performance model we assume that the same
average geometry processing time and average rasterization
time per slicing polygon for different LODs in a subvolume.
This assumption is based on our observation that the slicing
polygons in the subvolume of a particular LOD are evenly
distributed in space. When we change the LODs, although
the number of slices is reduced, the new set of slicing poly-
gons still spread evenly across the entire subvolume. There-
fore, similar geometric characteristics such as the average
size and the average projection area will be kept. Hence,
the per slice average geometry processing and rasterization
cost remain approximate the same.

To use the above performance model in practice, we need
to estimate the values of the performance variables used in
the formula. Specifically, given a LOD of a fixed size, we
need to know the texture loading time, the geometry pro-
cessing time, and the rasterization time. Unlike the pre-
vious methods[5][6] which use static profiling, we compute
the values based on dynamic profiling. That is, we collect
the performance statistics based on the previously rendered
subvolumes and estimate the rendering time for the new sub-
volumes. In essence, our run-time profiling and prediction
consist of two parts: texture loading time prediction and
slice rendering time prediction. In the following we discuss
these two parts in detail.

4.2.1 Predict the texture loading time:

We assume that the texture loading time is in proportion to
the number of voxels in the LOD. That is, it can be written
as:

ttemture_loading = (tavg_vomel * nvomel) * (1 - R)

Where t,vg_vozer is the average time to load each voxel,
Twozel 1S the number of voxels in the LOD, and R is a boolean
value depicting whether the texture is already resident (R =
1) in the texture memory or not (R = 0). In our implemen-
tation, to minimize the run time texture loading overhead
we create a texture object for each of the LODs associated
with a subvolume at the rendering program’s initialization
stage. To use a particular texture object during rendering,
we use the openGL glBindTexture() command to activate
the texture. Since multiple texture objects can be resident
in the texture memory if the texture working set feature
is supported by the underlying graphics hardware, we need
to know first whether the texture object is resident in the
texture memory when it is activated before determining the
texture loading time, i.e., to find the value of R. This can
be achieved by calling glAreTexturesResident() to query the
residency of all the subvolume’s LOD textures simultane-
ously.

To find the per voxel loading time t,yg_vozer, We perform
profiling in the initialization stage of the program. After
the texture objects are created, we call glBindTexture() for
every texture object and force the graphics hardware to load
the texture data to texture memory by drawing a dummy
polygon using each of the textures. After all the textures
are processed, we divide the total time taken by the number
of voxels to get per voxel loading time.

4.2.2 Predict the slice rendering time

To predict the rendering time for the subvolume slices, we
need to know the per slice average geometry processing time
tgeometry, and the average rasterization time t,qsterize. In
theory, we also need to know exactly whether the render-
ing is geometry limited or rasterization (fill) limited for a
given viewing parameter. However, since in our performance
model both the total geometry processing time and the ras-
terization time for a LOD of a subvolume is linearly pro-
portional to the number of slices in the subvolume, and the
sizes of subvolumes in the volume do not vary dramatically,
given the same viewing parameters, we can assume that all
the subvolumes have similar rendering characteristics, i.e,
they are either all geometry limited, or all fill limited under
the same viewing parameters. Based on this assumption,
we only need to know the average processing (geometry or
rasterization) time for each slice for the given viewing pa-
rameters at run time, and do not need to know whether the
current rendering is geometry or fill limited. Hence, we can
modify the performance model to:

T= ttemture_loading + tprocessing * Nglices

where tprocessing is the average processing time for each
slice. 'We obtain this number through the run-time, that
is, we accumulate the slice rendering time for all the subvol-
umes that have been rendered (excluding the texture loading
time), and then dividing it by the total number of rendered
slices so far. The resulting average processing time is then
the tprocessing, and can be used to predict rendering time for
the next subvolume.

4.3 Time Budget Allocation

A unique feature of our time-critical algorithm is that it is
able to take into account the importance of the subvolume,
and to assign different time budget for different subvolumes
based on their importance, that is, we will spend less time
to render the unimportant subvolumes, and the time saved
is devoted to more important subvolumes so that it is pos-
sible to render them in a higher quality. Our time budget
allocation algorithm is done by using an importance func-
tion supplied by the user. The importance function defines
an importance value for each subvolume and can be chosen
based on the particular need of the underlying application.
Assuming an importance function is available, our time bud-
get allocation algorithm works as follows. At the end of ren-
dering each subvolume, we recalculate the available time T3
that is left, and then redistribute it to the remaining k sub-
volumes v;, j = 1..k. Assuming that each subvolume v; has
an importance value I;, our algorithm calculates the time
budget ¢; for the subvolume as:

I;

Ej:l..k I

With the above equation, we are able to give a larger
amount of time budget to a subvolume with a higher impor-
tance value. The importance parameters used in our algo-
rithm include:

t; =Tp X

e Maximum opacity: The maximum opacity of a sub-
volume is determined by the highest opacity of all the
voxels in the subvolume. The rationale behind is that a
more opaque region in the volume should be rendered
in a higher accuracy. Therefore, a larger amount of
time budget should be given.

e Distance to the view point: Here the distance is cal-
culated from the center of the subvolume to the view

point and the reciprocal of the distance is used as the
importance function. For those subvolumes that are
closer to the view point, as they have high importance
value, they will be assigned more time budget and ren-
dered in a high quality. For other subvolumes, as they
are farther away and may be occluded, a lower time
budget will be given.

e Projection area: Projection area is calculated based
on the bounding box of a subvolume. For those sub-
volumes with high projection area, as we need more
time to perform scan conversion, a higher time budget
should be assigned to them.

e Gaze distance: This parameter is specially useful for
gaze-directed rendering. Gaze distance is the distance
between the center of the gaze area and the center of
the projected area of a subvolume. For those regions
that are closer to the gaze area, we assign more time
budget to generate higher image quality. For those re-
gions that are farther away from the gaze area, lower
time is assigned and the image becomes blur.

We note that by appropriately assigning the time budget,
we can easily modify the behavior of the volume renderer.

4.4 LOD Selection

The decision on the appropriate LOD for a subvolume is
based on its budgeted rendering time and the predicted ren-
dering time for all the possible LODs. The selection algo-
rithm works as follows:

e Query the texture residency for all the LOD textures.

e Calculate the average processing time per slice based
on the history as described previously.

o Calculate the predicted rendering time for each LOD of
the subvolume using the performance model described
above.

e Choose the LOD which has an predicted rendering time
closest to the budgeted rendering time.

Since each subvolume typically only has 4-5 different
LODs, the process of estimating the rendering time for all
the LODs, and thus the LOD selection, can be done very
fast. Therefore, the control overhead is very minor.

4.5 Temporal Coherence Consideration

The above LOD selection algorithm will be executed for ev-
ery frame, which could cause the subvolume’s LOD changes
frequently. However, frequent change of volume LODs can
cause the image to flick, which can be an undesirable effect.
To solve this problem, we take special care to maintain the
temporal coherence in consecutive rendering frames. We re-
alize temporal coherence by recording the importance value
of each subvolume from the last rendering. When a new
frame is being rendered, if the user changes viewing direc-
tion or gaze area, the importance value of each subvolume
will be recalculated. For those subvolumes whose impor-
tance value does not differ too much (we use a threshold of
percentage to decide this), we do not change its LOD when
rendering this frame, and thus maintain a good temporal
coherence.

5 Results and Discussion

We have implemented our time-critical LOD volume ren-
dering algorithm on an SGI Octane workstation with 4M
bytes of texture memory. Two data sets were used for the
experiments. One is a delta wing data set with a size of
222 x 253 x 103; the other is a MRI brain data set with a
size of 256 x 256 x 145. Both of the data sets are in the
floating point format. OpenGL’s texture color lookup fea-
ture was used in our rendering program.

5.1 Guarantee the Desired Rendering Speed

In this section, we compare our time-critical algorithm with
the following three methods:

e No LOD selection: each subvolume is rendered using
the highest resolution.

o Octree based volume rendering algorithm: this method
is similar to the algorithm wused by Laur and
Hanrahan[4]. A fixed error tolerance was specified to
traverse the octree and each subvolume is rendered in
a resolution corresponding to the level that the traver-
sal stops. In this algorithm, different subvolumes are
rendered using different resolutions based on their stan-
dard deviations.

e Feedback control algorithm: This algorithm is based
on our previous work[12], in which we adjust the error
tolerance based on the difference between the rendering
time of the previous frame and the target frame time.

Figure 2 and figure 3 show the comparison of the render-
ing speed of the four algorithms with the two experimental
data sets. For each algorithm, we used the same sequence of
200 frames. In the first 50 and last 50 frames, the renderings
are performed with different image scales. In the middle 100
frames, the renderings are performed using different viewing
angles. The desired rendering speed was set to ten frames
per second. Figure 2 and 3 (a) show the results of no LOD
selection. Based on the texture memory size of our test ma-
chine, 33 subvolumes were generated for the delta wing data
set, and 39 subvolumes were generated for the brain data
set. When the subvolumes were rendered using the highest

8 16 ‘
/’ 14
B 212 ﬁﬁ
o
g g 10
£ £ 8
6
2 4
c 50 150 200 e 50 150 200
Frames Frames
(a) no LOD selection (b) octree rendering
16 16
14 4 14
o
@ g 1]
g 121 T 12
® 10 4 210 FW"#M"’M"W
g g
S8 t E 84
6 6
4 4
c 50 150 200 [§ 50 150 200
Frames Frames

(c) feedback algorithm (d) our agorithm

Figure 2: Rendering performance comparison of the four
algorithms for the delta wing data set when the desired frame
rate is set to 10 frames per second. (a)No LOD selection;
(b) Octree based volume rendering algorithm; (c) Feedback
control algorithm; (d) Our time critical algorithm.

6 14 W
@5 £ 1
8 7 : A
o 4 E 10 P
g . / S 8
r 3 Y6
2 4
c 50 150 200 c 50 150 200
Frames Frames
(a) no LOD selection (b) octree rendering
16
14
[

2 5 12
o o
) v 10 O,
5 < 8 T
I <ol

4

[50 150 200
Frames Frames

(c) feedback algorithm (d) our algorithm

Figure 3: Rendering performance comparison of the four al-
gorithms for the brain data set. The desired frame rate is
set to 10 frames per second.(a) no LOD selection; (b) Oc-
tree based volume rendering algorithm (c) Feedback control
algorithm; (d) Our time critical algorithm.

resolution, the rendering speed can not reach the target 10
frames per second. Figure 2 and 3 (b) show the results of
the octree based volume rendering in which one fixed error
tolerance was used for traversal and rendering. From the fig-
ure we can see, by appropriately choosing an error tolerance,
we can reach the target frame rate when we only rotated the
volume. However, as soon as we zoom in and zoom out to
change the volume scales, fixed error tolerance can not guar-
antee a constant frame rate any longer. Figure 2 and 3 (c)
show the results of using the feedback control algorithm, in
which the error tolerance is adjusted based on a fuzzy logic
control method. The frame rate oscillation is clearly notice-
able. Another problem for the feedback control algorithm is
that the error tolerance used for adjusting the LOD is not a
continuous variable and does not have a direct relationship
with the rendering speed. Figure 2 and 3 (d) show the re-
sults of the proposed time-critical LOD selection algorithm.
Results showed that our control algorithm can guarantee the
rendering frame rate within a 10% error range.

5.2 LOD Selection Overhead

In our algorithm, the overhead for selecting appropriate
LODs for the subvolumes is very small. Table 1 shows the
time spent on the LOD selection algorithm and its relative
percentage to the total rendering time for rendering the delta
wing data set. Table 2 shows the result for the brain data
set. The target frame rate was set to 10, 15, 20, and 25.
Results showed that our control algorithm has very small
overhead (1-2%) and thus is negligible compared to the to-
tal rendering time.

target time | actual time | control time | percentage

(ms) (ms) (ms)

0.1 0.0996 0.000998 1.002%
0.067 0.0709 0.001027 1.447%
0.05 0.054 0.000868 1.608%
0.04 0.0402 0.000907 2.257T%

Table 1: Control overhead for delta wing data set.

(©

Figure 4: Comparison between image generated using our time critical algorithm for delta wing data set with and without
considering opacity as importance parameter. (a) without considering opacity; (b) considering opacity; (c) full resolution

image

target time | actual time | control time | percentage

(ms) (ms) (ms)

0.1 0.1048 0.001189 1.135%
0.067 0.069 0.001365 1.976%
0.05 0.0505 0.000922 1.824%
0.04 0.0424 0.000916 2.161%

subvolume without considering | considering
category opacity opacity
low opacity 34.93% 27.74%
medium opacity 32.75% 24.59%
high opacity 32.32% 47.68%

Table 2: Control overhead for brain data set.

5.3 Flexible Time Budget Allocation

To test the effectiveness of our time budget allocation algo-
rithm, we consider various importance parameters set by the
user. For the delta wing data set, the maximum opacity in
the subvolume is used as the importance parameter. For the
brain data set, a combination of viewing distance and pro-
jection area with an equal weight is used as the importance
parameter. In the following, we show that our algorithm can
successfully allocate more time to render subvolumes that
are considered more important. We note that our algorithm
can easily incorporate other importance functions as well.
(1) Maximum opacity

Table 3 shows a comparison of time spent to render sub-
volumes with different opacities using our time-critical al-
gorithm with and without considering opacity importance.
The rendering frame rate was set to 10 frames per second.
In the table, we categorized the subvolumes into three im-
portance groups based on their maximum opacities - low
opacity subvolumes, medium opacity subvolumes, and high
opacity subvolumes. From the table we can see, without con-
sidering opacity importance, the total rendering time is al-
most uniformly distributed among the three categories. But
with considering opacity importance, high opacity subvol-
umes were rendered using more time than medium and low
opacity subvolumes.

Figure 4 shows images generated using our time-critical
algorithm for the delta wing data set. The desired frame
rate was set to 10 frames per second. Image(a) was gener-
ated without considering opacity importance. Image(b) was
generated considering the maximum opacity of each subvol-
ume. Image(c) is the full resolution image with a rendering
frame rate of about 6 frames per second. We show that by
considering the opacity importance, the image quality was
much improved. This is because we allocated more time
budget to the areas that are non-transparent.

Table 3: Comparison of rendering time distribution for the
delta wing data set when using opacity as importance pa-
rameter

(2) Viewing distance and projection area

The other importance function that we used was a com-
bination of viewing distance and projection area with equal
weight. We use this importance function for the brain data
set. That is, subvolumes that are closer to the screen and
have larger projection area should be rendered in a higher
quality as they are less likely to be occluded. To demon-
strate the utility of our algorithm, we also categorized the
subvolumes into three categories based on their importance
values. Table 4 shows the time spent on rendering high,
medium and low importance areas using our time critical al-
gorithm, with and without considering the two importance
factors. From the table, it can be seen that we are able to
increase the time spent on rendering the high importance
blocks from 32.29% to 49.59% after taking into account the
importance factors in our algorithm.

Figure 5 shows images generated using our time-critical
algorithm for the brain data set. The desired frame rate was
set to 10 frames per second. Image(a) was generated with-
out considering viewing distance and projection area impor-
tance. Image(b) was generated considering the combination
of the two importance parameters. We show that by con-

subvolume without considering | considering
category importance importance
low importance 24.98% 31.02%
medium importance 25.43% 36.69%
high importance 32.20% 49.59%

Table 4: Comparison of rendering time distribution for the
brain data set when using a combination of viewing distance
and projection area as the importance parameter

(b)

Figure 5: Comparison between image generated using our
time critical algorithm for brain data set with and without
considering viewing distance and projection area as impor-
tance parameters. (a) without considering importance fac-
tors; (b) considering importance factors;

sidering the importance parameters, the image quality was
improved as we allocated more time budget to the areas that
are closer to view point and have larger projection area.

5.4 time-critical gaze-directed rendering

In this section, we demonstrate an application of our time-
critical algorithm: time-critical gaze-directed rendering. In
gaze-directed rendering, areas that are closer to the gaze area
are considered to be more important, and therefore should
be rendered using high resolutions; areas that are farther
away from the gaze area are considered less important, and
thus should be rendered using lower resolutions if necessary.
To achieve this goal, the gaze distance which is the distance
between the gaze center and the center of the projection area
of a subvolume can be used as the importance parameter.
This way, our algorithm will assign less time to the areas that
are farther away from gaze area and save time for areas that
are closer to gaze area so that those areas can be rendered
at higher quality.

Table 5 and Table 6 show the rendering time distribution
with our time-critical algorithm for the two data set with
and without considering gaze distance as the importance
parameter. The target frame rate was set to 10 frames per
second. The subvolumes are divided into three categories
based on their gaze distance - small, medium or large. From
the two tables we can see, by considering gaze distance as

subvolume without considering | considering
category gaze distance gaze distance
large gaze distance 43.39% 12.42%
medium gaze distance 29.26% 24.19%
small gaze distance 27.35% 63.39%

Table 5: Comparison of rendering time distribution for delta
wing data set when using gaze distance as importance pa-
rameter

subvolume without considering | considering
category gaze distance gaze distance
large gaze distance 20.49% 11.14%
medium gaze distance 33.19% 22.60%
small gaze distance 46.32% 66.26%

Table 6: Comparison of rendering time distribution for brain
data set when using gaze distance as importance parameter

importance parameter, we can effectively allocate more time
to render subvolumes that are closer to gaze area. Figure 6
shows the time-critical gaze-directed rendering results for the
brain data set when we change gaze area to different parts
of the viewport. From the figure we can see that our time-
critical algorithm can render areas that are closer to the gaze
area with higher resolutions and thus generate better quality
images. For the areas that are farther away from the gaze
area, as the available time was limited, they were rendered
using low resolution and the rendering became blur.

6 Conclusion and Future Work

This paper presents a time-critical algorithm for LOD vol-
ume selection and rendering using 3D texture mapping hard-
ware. Our algorithm can automatically select appropriate
LOD from different regions of the volume to guarantee the
desired rendering time, and in the mean time maximize the
visualization quality by appropriately distributing the ren-
dering time budget to regions of different importance. Fu-
ture work includes designing intuitive user interface so that
the user can specify importance functions and rendering time
budget more easily. We will also experiment different impor-
tance functions to achieve different rendering goals.

References

[1] E. LaMar, B. Hamann, and K. Joy. Multiresolution
techniques for interactive texture-based volume visual-
ization. In Proceedings of Visualization ’99, pages 355~
361. IEEE Computer Society Press, Los Alamitos, CA,
1999.

[2] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman,
and T. Ertl. Level-of-detail volume rendering via 3d
textures. In Proceedings of 2000 Symposium on Volume
Visualization, pages 7-13. ACM SIGGRAPH, 2000.

[3] D. Ellsworth, L. Chiang, and H.-W. Shen. Accelerat-
ing time-varying hardware volume rendering using tsp
trees and color-based error metrics. In Proceedings of
2000 Symposium on Volume Visualization. ACM SIG-
GRAPH, 2000.

[4] D. Laur and P. Hanrahan. Hierarchical splating: A
progressive refinement algorithm for volume rendering.
In Proceedings of SIGGRAPH 91, pages 285-287. ACM
SIGGRAPH, 1991.

[6] T. Funkhouser and C. Sequin. Adaptive display algo-
rithms for interactive frame rate during visualization of
virtual environment. In Proceedings of SIGGRAPH 93,
pages 247-254. ACM SIGGRAPH, 1993.

[6] E. Gobbetti and E. Bouvier. Time-critical multireso-
lution scene rendering. In Proceedings of 1999 Sym-
posium on Volume Visualization, pages 123-130. ACM
SIGGRAPH, 1999.

[7] J. Bryan, D. Stredney, R. Wiet, and D. Sessanna. Vir-
tual temporal bone dissection: A case study. In Pro-
ceedings of IEEE Visualization 2001. IEEE Computer
Society Press, Los Alamitos, CA, 2001.

[8] L. Hong, S. Muraki, A Kaufman, D. Bartz, and T. He.
Virtual voyage: Interactive navigation in the human
colon. In Proceedings of SIGGRAPH 97, pages 27-34.
ACM SIGGRAPH, 1997.

Figure 6: Time-critical gaze-directed rendering. The target frame rate is set to 10 frames per second. (a)(b)(c) show the

(b)

results when gaze area is placed at different parts of the viewport.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Reddy, A. B. Watson, N. Walker, and F. L. Hodges.
Managing level of detail in virtual environments: a per-
ceptual framework. In Presence: Teleoperators and Vir-
tual Environments, pages 658—666, 1997.

Vrml 97, international specification iso/iec is 14772-1.
1997.

Open Inventor C++ Reference Manual: The official
Reference Document for Open Systems. Open Inven-
tor Architecture Group. Addison-Wesley, Reading, MA,
USA, 1994.

X. Li and H.-W. Shen. Adaptive volume render-
ing using fuzzy logic control. In Proceedings of Joint
Eurographics-IEEE TCVG Symposium on Visualiza-
tion. Springer-Verlag, 2001.

J. Rohlf and J. Helman. Iris performer: A high perfor-
mance multiprocessing toolkit for real-time 3d graphics.
In Proceedings of SIGGRAPH 94, pages 381-395. ACM
SIGGRAPH, 1994.

J. T. Cullip and U. Neumann. Accelerating volume
reconstruction with 3d texutre hardware. In Tech. Rep.
TR93-027, 1993.

M. Woo, Neider J., and Davis T. OpenGL Programming
Guide. OpenGL Architecture Review Board. Addison-
Wesley, USA, July, 1997.

