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GPU-based 3D Wavelet Reconstruction with Tileboarding

Abstract In this paper, we present a GPU-based algorithm
for reconstructing 3D wavelets using fragment programs. To
minimize the data transfer and fragment processing over-
head, we propose a novel scheme which uses tileboards as a
primary layout to organize 3D wavelet coefficients. By ac-
cessing the tileboards with correct texture coordinates, Haar
and Daubechies wavelets can be evaluated by the GPU in
real time. The tileboard also serves as input to the render-
ing programs. We demonstrate how the tileboards allow us
to efficiently cull unnecessary data, and we extend our work
to render large volumes with multiple resolution levels.

Keywords Tileboards· Wavelets

1 Introduction

Natural phenomena are very difficult to represent with reg-
ular geometry; therefore, they are sampled into grids with
high-quality devices, such as CT scans. Grid resolutions are
typically high, which results in huge demands of storage.
To reduce the storage requirements, wavelets can be used
for data compression and multiresolution analysis. In fact,
wavelets have been widely adopted in computer graphics
and visualization, especially in areas such as image process-
ing and volume rendering where explorations of large datasets
have become commonplace.

In general, wavelet compressed data need to be recon-
structed before further processed by application-dependent
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software such as 3D volume rendering. Although software-
based wavelet reconstruction can be sufficient for simple
types of wavelets, such as Haar, it is expensive to compute
for types that achieve higher compression ratios and bet-
ter image quality, such as Daubechies. As programmable
graphics processing units (GPUs) become increasingly suit-
able for general purpose computation, studies to reconstruct
wavelets using graphics hardware have been done [7][8][21].
However, they mostly focused on 2D images, and the limi-
tations of the available graphics hardware have not yet made
hardware reconstruction competitive against the software coun-
terpart.

With the advent of programmable graphics hardware and
high-level shading languages, 3D wavelet reconstruction can
now be fully realized faster and easier than before. High-
precision texture formats with full floating-point pipelines
and pbuffers for off-screen rendering give the necessary in-
gredients to implement robust fragment programs capable of
carrying out the tasks for wavelet reconstruction. In this pa-
per, we propose an interactive algorithm that performs 3D
wavelets reconstruction using GPUs by mapping textures
that contain wavelet coefficients and by evaluating wavelet
reconstruction formulae at each fragment. Although our ren-
dering primitives are quadrilaterals, which are 2D entities,
they are the means to reconstruct a brick of voxels, which
is a 3D entity. Since it is necessary to be able to access el-
ements at different locations inside the brick, we propose
the concept of tileboarding, which flattens a brick of voxels,
such that each slice of the brick becomes a tile. The tileboard
makes an efficient entity in terms of texture management and
it proves to be highly flexible for rendering schemes that pro-
duce 3D texture coordinates [10][12]. With this approach,
we depart from previous approaches that compute the recon-
struction through convolution operators and the framebuffer.
Furthermore, we incorporate this building block into a mul-
tiresolution hierarchy to render a wavelet octree [5].

The paper is organized as follows: section 2 reviews the
previous work for wavelets and GPU programming; section
3 reviews the Haar and Daubechies wavelets; section 4 de-
scribes our GPU-based reconstruction algorithm, which in-
cludes the concept of tileboarding and its application during
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the stages of the algorithm; section 5 presents our results;
and finally, section 6 summarizes with our conclusions and
possibilities for future work.

2 Previous Work

Volume rendering applications typically involve large amounts
of data; therefore, compression and multiresolution schemes
that allow for visualization of combined levels-of-detail are
attractive tools. With the support of 3D textures and its ap-
plication for volume rendering [4], many visualization algo-
rithms have been proposed, so that they avoid decompres-
sion [15][18] and fetch bricks from multiresolution octrees
based on viewing metrics [11], all in an effort to accelerate
rendering speed.

Wavelet theory provides a robust foundation for filter
banks [19][20], which are important for multiresolution anal-
ysis. In fact, Westermann describes a multiresolution frame-
work using wavelets for volume rendering [22]. Other au-
thors have also exploited features of the decomposition to
render wavelets fast, such as runs of zeros [9][16]. Among
the different types of wavelets, the haar wavelet [1] and the
Daubechies wavelet [2] are typical in studies. The first be-
cause it is very fast to calculate, and the second because it
keeps details better albeit at a cost of slower reconstruction.
The literature presents the reconstruction of both wavelets
mostly in software. Guther et.al. [5] go one step further with
wavelets and deploy them into an elegant multiresolution oc-
tree, but the reconstruction is still done in software.

Hardware implementations of wavelet transformations
have mainly focused on images rather than volumes. Since
wavelets can be regarded as combinations of down-sampling,
up-sampling and filtering operations, Hopf et.al. proceed to
solve them by applying convolution operators using OpenGL
extensions [6][7][8]. As it will be explained, we organize the
data in a 2D layout that allows the transformation of 3D tex-
ture coordinates into 2D counterparts [10][12] and then ap-
ply reconstruction formulae that follow the tensor product
given by Muraki [14]. Wang et.al. follow Muraki’s approach
to transform wavelets on the GPU for RGB images [21].

With GPUs, the range of applications for computer graph-
ics has widened, and complex operations at vertex and frag-
ment levels are now available [3]. Shading languages com-
plete the package to simplify much of the programming ob-
stacles that one faced with fixed pipelines and assembly code
[13][17]. In our work, we apply them to evaluate the recon-
struction formulae.

3 Wavelets

Before presenting our GPU-based wavelet reconstruction al-
gorithm, in this section we briefly overview the elements
from wavelet theory that are relevant to the various stages
of our process. Wavelets are defined on the basis functions
that filter a set of original values (hereafter referred to as A

values) into two parts: the averages or low-frequency coef-
ficients (L values) and the details or high-frequency coef-
ficients (H values). The process can be repeated on the L
values to create a hierarchy of resolutions [20]. If the data
has multiple dimensions, wavelets are applied successively
on each dimension. Figure 1 shows the different kind of co-
efficients that result from decomposing the input in 1, 2 and
3 dimensions.
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Fig. 1 Wavelet Decomposition in 1, 2 and 3 Dimensions. In the one
dimensional case (a), the original A values are divided into the Low and
High coefficients. In the case of multiple dimensions (b), successive
transformations produce combinations of Low and High coefficients.
The input for our implementations has the format of the 3D case.

Since there are many choices for the basis functions,
there are many ways to reconstruct the values. We have cho-
sen, without loss of generality, the two that are mostly used:
one for its simplicity and the other for its detail compactness.

3.1 Haar

Haar wavelets are the simplest to compute, but unfortunately
they suffer a larger penalty on image quality when dropping
high-frequency coefficients, which happens in multiresolu-
tion environments or time critical conditions. Haar’s recon-
struction formulae are given in the following equations:

A2i =
Li√

2
+

Hi√
2

(1)

A2i+1 =
Li√

2
− Hi√

2
(2)

3.2 Daubechies

Daubechies’s wavelets are more expensive to compute, but
they keep better image quality. As opposed to Haar wavelets,
quantizing them into integer pipelines results in too much
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precision loss, which is problematic for solutions that at-
tempt to use the framebuffer as the reconstruction target.
Daubechies’s reconstruction formulae are the following:

A2i = h0Li +h2Li−1 +h3Hi +h1Hi−1 (3)

A2i+1 = h1Li +h3Li−1−h2Hi −h0Hi−1 (4)

where
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The presence of Li−1 and Hi−1 requires special handling
at boundaries. This can be dealt with by zeroing, mirroring
or replication [2]. In our implementations, we choose the
latest, because it is known to reduce reconstruction artifacts.
Finally, these formulae are part of the known Daubechies-4
(db4) wavelet. Other kinds, such as Daubechies-6 (db6) or
Daubechies-12 (db12), follow the same reconstruction logic
as db4, but they require more coefficients to reconstruct,
which would imply more texture lookups as we will see in
the following section.

The equations given in this section will be evaluated in-
side a fragment program, which based on texture coordi-
nates, determines between the equations forA2i andA2i+1.
Furthermore, the data is three-dimensional, therefore, the
formulae will be evaluated three times.

4 GPU Reconstruction

The input to a reconstruction algorithm typically comes as a
series of 3D bricks that represent different kinds of wavelet
coefficients (L and H values). A standard approach would
fetch them from disk, arrange them into a convenient layout
and, by using software, reconstruct into the original data (the
A values). The reconstructed volumes are later uploaded into
texture memory and rendered. This software-based approach
incurs high computation overhead when used together with
interactive applications such as texture-based 3D volume ren-
dering, because there is a lot of memory copying and re-
ordering. To minimize the overhead, our algorithm moves
the reconstruction stage into the GPU, where the 3D L and
H coefficients are uploaded into texture memory. By render-
ing quadrilaterals bound to those textures with a specialized
fragment program, the A values can be computed and stored
into an intermediate texture that is directly accessible by the
rendering fragment program without the copying and the re-
ordering.

Assume each coefficient brick is a three-dimensional en-
tity that hasd elements along each dimension, making it ad3

brick of voxels. As shown in figure 1, there will be 8 bricks
of coefficients, LLL, LLH, LHL, LHH, HLL, HLH, HHL
and HHH, coming from the wavelet transform of the orig-
inal (2d)3 volume. To reconstruct the A values from those
bricks, a simple GPU solution is to upload into 3D textures
two bricks at a time that represent the corresponding low-
frequency and high-frequency coefficients in the z direction

(those pairs with mismatching H and L in the left-most let-
ter, that is, LLL and HLL, LLH and HLH, LHL and HHL,
and LHH and HHH). Then, we render quadrilaterals using
the same z slice from each of the two coefficient bricks as
textures and combine the values together using equations 1
and 2 (for Haar), or equations 3 and 4 (for Daubechies)
to produce the z-reconstructed intermediate values. The val-
ues are copied into another texture. When all z slices are
processed, we have 4 new bricks ofd2×2d. The process re-
peats for the y-dimension and later for the x-dimension for
which the quadrilaterals must be aligned accordingly, pro-
ducing a reconstructed brick of2d×2d×2d original values.
While straightforward, this solution has the overhead of tex-
ture copying and involves too many reconstruction passes.
In a sense, it will be no different from what previous ap-
proaches have suggested [7].

To minimize the reconstruction overhead, we present a
new approach that recognizes the fact that the initial 8 bricks
can be compacted into 2 bricks with 4-value elements, and
stored in floating-point RGBA textures, so that texture lookups
are reduced. However, we use 2D textures to represent the
compacted bricks and this is done by flattening the two 3D
compacted RGBA bricks into two 2D RGBA tileboards, where
each tile in the tileboard represents a slice in the 3D brick.
The reconstruction formulae are applied to these RGBA tile-
boards to produce the reconstructed tileboard, which is the
input for the rendering. The tileboard layout enable us to
use off-screen rendering that keeps the precision and avoids
texture copying and/or reordering. Even though we have a
2D tileboard, we are still able to perform 3D volume ren-
dering with view-aligned slicing by transforming 3D texture
coordinates into 2D counterparts. Figure 2 shows the whole
reconstruction process. The blue boxes represent fragment
programs that will be explained in the following sections.

4.1 Tileboards

A tileboard is our primary data structure inside the GPU and
it represents a 3D brick that has been flattened into a 2D
layout. The tileboards are implemented with 2D textures,
and depending on the data sources, they are referred to as
either input tileboards or output tileboards. The input tile-
boards hold the L and H coefficients and are implemented
with the OpenGL functionglTexImage2D. The output tile-
boards, on the other hand, hold the reconstructed values and
are implemented withpbuffers[3]. The dimensions of a tile-
board (TW, TH ) and the number of tiles in each dimension
(Nx, Ny) are derived from the dimensions of a brick withd3

coefficients as follows:

Nx = 2dlog2
√

de, Ny = 2blog2
√

dc
TW = d×Nx, TH = d×Ny

Since each brick hasd slices, the tileboard hasd tiles
and they are arranged into a board ofNx×Ny tiles, where
each tile hasd×d elements. We will keep in mind that the
dimensions and number of tiles of a reconstructed tileboard
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Fig. 2 An overview of the reconstruction process. Each coefficient
brick, after being retrieved from disk, is uploaded into a separate tile-
board; then the 8 tileboards are separated into 2 groups. Each group
is packed into an RGBA tileboard such that each color channel cor-
responds to one of the individual tileboards of the group. The 2 new
tileboards (L- and H-tileboard) serve as input for the reconstruction
stage, which generates a tileboard with double the number of tiles.
This tileboard serves as input for rendering. When rendering, 3D tex-
ture coordinates must be converted into 2D counterparts to access the
reconstructed tileboard.

are derived from a brick with2d3 voxels. An example of a
reconstructed tileboard is shown in figure 3.

With such a tileboard layout, all elements from the orig-
inal coefficient brick are placed in one 2D texture, hence a
single texture id is sufficient to bind it with fragment pro-
grams. Also, accessing a specific element is straightforward
even in the case of rendering using 3D texture coordinates.
Details for texture coordinate transformations will be pre-
sented in a later section.

The tileboards provide the foundation for packing, re-
construction and rendering, which are now presented.

Fig. 3 A partial view of the reconstructed tileboard for the 1283 vortic-
ity dataset. A single tile has 1282 reconstructed voxels, and the whole
tileboard is a 2048×1024 2D texture. In order to enhance the tiles, ar-
tificial boundaries are included.

4.2 Packing

Before reconstruction, the original volume as a whole is first
divided into small volume blocks of2d× 2d× 2d voxels,
each of which is then transformed using wavelets into 8
coefficient bricks ofd× d× d coefficients. The coefficient
bricks will undergo some compression transformation be-
fore they are saved to disk [5].

Since multiple coefficients that are in different bricks but
at the same location will be needed to evaluate the formulae
presented in section 3, being able to reduce the number of
texture lookups during reconstruction can effectively accel-
erate the calculations. In most of the graphics hardware, a
single texture lookup can retrieve four color channels simul-
taneously with an optimized performance, so it will be ben-
eficial if we can have four coefficients into a single RGBA
texture. We exploit this property by packing our coefficient
bricks into RGBA tileboards at the beginning of the recon-
struction stage. Initially, we will retrieve the 3D bricks from
disk and upload each one into its respective one-component
tileboard. Then, using a fragment program, we look up each
single-component tileboard texture and compact them into
two RGBA tileboards: one tileboard will hold the L coeffi-
cients in Z, i.e., LLL, LLH, LHL, and LHH, and the other
tileboard will hold the H coefficients (HLL, HLH, HHL, and
HHH). In the compacted tileboard, each floating-point color
channel will be used to hold one coefficient brick. For exam-
ple, in the first compacted tileboard, the red channel stores
the coefficients from LLL; the green channel stores the co-
efficients from LLH; the blue channel stores the coefficients
from LHL; and the alpha channel stores the coefficients from
LHH. The 2 compacted tileboards are known henceforth as
the L-tileboard and the H-tileboard.

The separate uploading for each coefficient brick at the
beginning of the packing process has the advantage that if
one deems a given brick unnecessary, such as all coefficients
being zeroes, then the uploading is eliminated. However,
since the reconstruction process still needs to access those
zero coefficients, a ZERO tileboard is used for binding in-
stead of the coefficients from the discarded brick. This arti-
ficial tileboard is loaded only once with zeroes and has the
same dimensions as a regular coefficient brick. Another ad-
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vantage is the flexibility to incorporate methods that upload
compressed textures, such as the work of Kraus et.al. [10],
whose adaptive textures can easily be integrated.

With the L- and H-tileboard ready, the reconstruction
stage can now proceed to evaluate the equations given in
sections 3.1 and 3.2.

4.3 Reconstruction

The goal of the reconstruction stage is to transform the val-
ues stored in the L- and H-tileboard into a new tileboard that
will hold the A values for rendering. A specialized fragment
program will perform this task by rasterizing a quadrilateral
that uses the two input tileboards to produce the new tile-
board. As described in section 4.1, the output tileboard will
have2d tiles with each tile having a total of2d×2d voxels,
and the input tileboard hasd tiles withd×d coefficients.

In our GPU program, when rasterizing the quadrilateral,
each fragment will receive texture coordinates (cx, cy) that
correspond to a location in the output tileboard, where A
values are written out; therefore, (cx, cy) vary from (0, 0) to
(TW, TH ), which are the dimensions of the output tileboard.
In order to retrieve the coefficients from the input tileboards,
since the size of the textures are different, it is necessary to
transform the texture coordinates into the coordinate space
of the input tileboards before we can reconstruct. Further-
more, it is also necessary to determine which equations to
use for the reconstruction in each dimension.

First, given the texture coordinates (cx, cy), we need to
determine which tilesi and j this fragment corresponds to
in the input and output tileboards respectively, because all
calculations are performed inside their dimensions. We cal-
culatei and j as follows

j = bcx/2dc+ bcy/2dcNx
i = b j/2c

whereNx is the number of tiles in the x dimension of the out-
put tileboard. We also determine (cx, cy)’s relative position
(c jx, c jy) inside the tilej by:

c jx = cx%(2d)
c jy = cy%(2d)

where % is the mod operator. In essence, the tiles in each
tileboard are numbered linearly even though conceptually
the tileboard has a two-dimensional layout. The 3D coor-
dinates (c jx, c jy, j) decide the reconstruction formulae to
apply in each dimension. If a value for a corresponding di-
mension is even, we useA2i ’s formula; otherwise, we use
A2i+1’s formula.

Finally, to retrieve the coefficients from the input tile-
boards and complete the formulae, we need to find the lo-
cation (cix, ciy) that is inside tilei. We proceed to findi’s
beginning (ox, oy) and then offset by half of (c jx, c jy). The
calculations proceed as follows usingNx of the input tile-
boards:

ox = (i%Nx)×d
oy = bi/Nxc×d
cix = ox + bc jx/2c
ciy = oy + bc jy/2c

With all locations calculated, we reconstruct according
to the type of wavelet. In the case of Haar, looking up both
the L- and H-tileboard with the same texture coordinates
(cix, ciy) fetches 8 coefficients (2 RGBA values). Thej in-
dex decides between equations 1 and 2 to apply on the
2 RGBA tuples, thus reconstructing in the z-dimension and
leaving a new RGBA tuple.c jy decides the reconstruction
of two more values based on this new tuple: one combining
its red and blue channel, and the other combining its green
and alpha channel. Finally,c jx decides how to reconstruct
the remaining two values into an A value for rendering. In
the case of Daubechies, the calculations are not so straight-
forward, but it follows the same logic. The 8 values fetched
are insufficient to evaluate equations 3 or 4 because of the
Li−1 andHi−1 terms. Therefore, we need an additional co-
ordinate, which we derive fromi−1. In the case thati = 0,
then we derived it fromd− 1. This completes the require-
ments but only for the Z dimension. For the sake of sim-
plicity, we perform a separate pass to reconstruct the XY
dimension, which uses the output of the first pass. For every
position in this second pass, 4 lookups with 4 values each
are performed, yielding the 16 coefficients to reconstruct an
A value. The 0 condition in the XY pass is enforced inside
of a tile, moving to the last row or last column as needed.

4.4 Tileboard Rendering

The last stage performs the traditional 3D volume rendering
algorithm [4] on a reconstructed tileboard. The volume is
sliced by a set of polygons that are composited back-to-front
and clipped to the boundaries of the volume. However, the
tileboard is a 2D texture that represents a 3D object; there-
fore, a fragment program must convert the texture coordi-
nates before lookup of the value can take place. The follow-
ing does the conversion from 3D coordinates (c3x, c3y, c3z)
to 2D coordinates (c2x, c2y) usingNx of the reconstructed
tileboard:

c2x = (bc3zc%Nx)×2d+c3x
c2y = (bc3zc/Nx)×2d+c3y

The integer part of the z-component is decomposed into
the indices that indicate the row and the column of the target
tile in the reconstructed tileboard. Multiplying the indices
by the tile resolution (2d) results in the target tile’s begin-
ning. Finally, the xy-components are added to form the 2D
coordinate that accesses the tileboard. This emulates the op-
tion GL NEAR. To emulateGL LINEAR, linear filtering is
turned on for the reconstructed tileboard, and a second co-
ordinate is calculated by using the xy-components on tile
bc3zc+ 1. After performing both bilinear lookups, we in-
terpolate between the retrieved values with the fractional
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Fig. 4 Image samples of the Shockwave dataset. Left column shows
the rendering of the reconstructed tileboard using nearest neighbor in-
terpolation. Right column shows simulated trilinear interpolation.

part of the z-component. Figure 4 showsGL NEARand
GL LINEARemulation for the shockwave dataset.

With all stages described, we present our results for both
single bricks and multiresolution hierarchies in the next sec-
tion.

5 Results

Our datasets, either consisting of a single brick or multires-
olution hierarchies, were transformed into the wavelet co-
efficients with an off-line decomposition program. For sin-
gle brick testing, the following1283 volumes were used: the
vorticity dataset, which contains 8-bit integer voxels; and
theshockwavedataset, which has 8-bit voxels. For multires-
olution testing, the dataset was thevisible woman dataset,
but we extracted a4803 subvolume and converted the 12-bit
values to floating-point values.

All our testings were performed on a 3.0GHz Intel Xeon
processor with 3GB main memory, and an nVidia Quadro
FX 3400 graphics card with 256MB video memory. The
fragment programs were written using NVIDIA’s Cg lan-
guage [13] and, as mentioned in section 4.3, Daubechies is
done in two passes: one for the Z-dimension and the other
for the XY-dimensions. Finally, our software implementa-
tion followed the process described in section 3. Tileboards
were implemented with 32-bit floating-point channels and
NVIDIA’s GL TEXTURERECTANGLENV. However, re-
constructed tileboards used 8-bit channels when interpola-
tion was turned on, because floating-point interpolation is
currently not supported for this card.

Brick GPU Haar GPU Daub
Size Total (Up/Rec) Total (Up/Rec)

(voxels) (msec) (msec)
1283 102.89 (44.12/15.24) 124.61 (43.89/37.34)
643 33.28 (5.78/13.20) 33.44 (5.64/16.48)
323 16.64 (0.94/0.12) 16.80 (0.93/0.12)
163 16.64 (0.12/0.08) 16.72 (0.10/0.08)

Table 1 Total rendering timings for single varying brick size under
Haar and Daubechies GPU reconstruction using the vorticity dataset.
The numbers enclosed in parenthesis are the timings of the uploading
and the reconstruction stages. The window size in these testings was
2562 pixels.

Brick Size 2562 5122 10242

(voxels) (msec) (msec) (msec)
1283 43.20 121.25 419.85
643 16.80 64.22 210.47
323 16.56 63.28 209.12
163 16.64 61.87 210.33

Table 2 Timings of the rendering algorithm under varying window
size using the vorticity dataset. The largest tileboard tested takes a per-
formance hit that is in average twice that of the other tileboards.

First, we discuss our findings for single bricks. We reg-
istered the average timings of an animation that rotates the
brick with all stages turned on, which means that for ev-
ery frame we uploaded, reconstructed and rendered. As ex-
pected, the Haar wavelets are faster to reconstruct than the
Daubechies ones, but we also noticed that certain brick sizes
made a difference for the packing and rendering stages. From
table 1, we see that the uploading stage scales as expected
with brick size. The reconstruction stage experiences a sud-
den increase when processing bricks of163 and643 voxels.
This may be related to the parallel execution of the frag-
ment program and how texture memory is organized. When
the hardware is rendering, we see that brick sizes that are
greater than643 voxels experience overhead.

In table 2, we show the performance of the rendering
stage alone with varying window size. The packing and re-
construction was done only for the first frame and the results
were reused for the rest of the animation. We increased the
window size to generate more rendering fragments, and we
see that for all but the largest brick, the transformation from
3D textures coordinates to 2D counterparts is transparent to
the user and scales accordingly. The1283 brick size makes a
2048×1024texture that is well within the maximum texture
size of 4096, but the graphics hardware makes more effort to
access the texels, which may be related to cache coherency
and texture memory organization. From these findings, we
choose the643 brick size to decompose big volumes into
multiresolution hierarchies.

We decomposed thevisible womandataset into643 over-
lapping bricks and generated 5 levels of detail with 585 re-
construction nodes. Since it is our intention to see the per-
formance of the reconstruction, we rendered all nodes, disre-
garding viewing metrics and empty spaces. Figure 5 shows
sample images at different levels of the reconstruction. Ta-
bles 3 and table 4 show the performance under Haar and
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Daubechies respectively. In these tests, the time to retrieve
all bricks from the disk fluctuated between1 and0.80 sec-
onds. We compared against our software implementation that
uses 3D textures for rendering, and we immediately see the
difference. Furthermore, the packing stage shows its power
when we start to discard high frequency coefficients, which
in a multiresolution scenario is very likely to happen. From
table 3 and 4, we see that if we systematically drop co-
efficient bricks, it affects the timings of the reconstruction,
which includes uploading and packing. The timing of the
rendering stage remains the same since the window size is
kept at5122 pixels. The numbered lines indicate that we are
reconstructing with that many bricks, 8 bricks for full recon-
struction and 1 brick for no uploading. Of course, the manip-
ulation of the bricks comes at a visual cost. Figure 6 shows
the gradual loss of quality when discarding high-frequency
coefficient bricks for thevorticity dataset. Daubechies is
able to keep the features of the data better than Haar, which
reconstructs most of the features with even half the coeffi-
cient bricks. However, when Haar reconstructs with just a
couple of the bricks, the known blocking pattern starts to
emerge.

Software counterparts cannot take advantage of the dis-
carding of bricks since they always upload a brick to a 3D
texture with the same dimensions. Moreover, in software im-
plementations, there is an additional step for overhead: once
the parent reconstructs its brick, children extract parts of it,
for which a copying is performed. Our packing stage, which
does the interleaving and formatting into RGBA textures,
takes care of this extraction by calculating correct texture
coordinates given the child’s initial offsets, so no additional
copying is introduced.

Finally, the speedup between software and hardware, with
full 8-brick reconstruction, is5.83 for Haar, and6.76 for
Daubechies. This makes GPU-based 3D wavelet reconstruc-
tion competitive against software counterparts and completes
the findings of this work.

Type Total Speedup Rendering Haar
(sec) (sec) (sec)

Software 29.40 1.00 0.29 28.11
& 3D Textures

GPU
8 5.04 5.83 0.29 3.90
7 4.60 6.39 0.27 3.46
6 4.16 7.06 0.27 2.92
5 3.87 7.59 0.28 2.68
4 3.30 8.90 0.28 2.13
3 2.80 10.50 0.29 1.66
2 2.34 12.56 0.28 1.18
1 1.90 15.47 0.27 0.75

Table 3 Total rendering, loading and reconstruction time using Haar
wavelets for the visible woman dataset and for a5122 window size.
Full GPU reconstruction achieves a 5.83 speedup with respect to the
software implementation, and, by dropping coefficient bricks, the GPU
gains further speed in the reconstruction stage.

Fig. 5 A gradual reconstruction for the resolution levels of the visible
woman dataset. The480×480×480dataset is decomposed into 5 lev-
els with 585 nodes of Haar wavelets. Starting at the upper left corner
and going clockwise: level 2 (1 reconstructed node), level 3 (9 nodes),
level 4 (73 nodes) and level 5 (585 nodes). As a low-resolution level is
processed, the reconstructed tileboard serves as input for the next level.

Type Total Speedup Rendering Daub
(sec) (sec) (sec)

Software 55.31 1.00 0.29 53.79
& 3D Textures

GPU
8 8.18 6.76 0.25 6.92
7 7.56 7.31 0.25 6.48
6 7.09 7.80 0.25 5.99
5 6.60 8.38 0.30 5.39
4 6.15 8.99 0.30 4.94
3 5.72 9.66 0.29 4.56
2 5.44 10.16 0.29 4.27
1 5.15 10.73 0.29 4.04

Table 4 Total rendering, loading and reconstruction time using
Daubechies wavelets for the visible woman dataset and for a5122 win-
dow size. In this case, the gains are better than Haar’s since software
implementations are slower.

6 Conclusions & Future Work

We have devised an algorithm that can successfully utilize
GPUs to reconstruct wavelet coefficients in the form of sin-
gle bricks or bricks from a multiresolution hierarchy. We
construct a pipeline divided into 3 stages: packing, recon-
struction and rendering. All stages are accessing or render-
ing to tileboards that represent a 3D brick, even though, they
are in fact 2D texture entities. The tileboards are directly in-
put to our hardware-based volume renderer with fragments
programs that transform 3D texture coordinates into 2D coun-
terparts. The flexibility of the tileboard allows for rendering
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Fig. 6 A comparison between Haar (left column) and Daubechies
(right column) wavelets for the vorticity dataset. Haar shows artifacts
as coefficients are dropped. The images on the top have dropped the
HLL, HLH, HHL and HHH coefficient bricks; while those at the bot-
tom have dropped everything but LLL and LLH. At this point, Haar
shows the traditional blocky pattern.

to textures through pbuffers, which are efficient and allow to
carry out the reconstruction of wavelets.

We believe that this work for 3D wavelets is unique com-
pared to the previous approaches based on convolution. No
unnecessary copying of frame buffers is done at any stage
and no reordering is needed to accommodate for different
dimensions.

We are able to embed our reconstruction algorithm in the
context of multiresolution, and see that it provides benefits
for not only reconstruction but also uploading. Although, we
have not optimized our implementation, the initial results
are quite encouraging. We are planning to include caching
mechanisms, out-of-core algorithms and parallel distribu-
tions that can benefit the most from this experience.
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