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Abstract

We present a new parallel multiresolution volume rendering algorithm for visual-
izing large data sets. Using the wavelet transform, the raw data is first converted to
a multiresolution wavelet tree. To eliminate the data dependency between proces-
sors at run-time, and achieve load-balanced rendering, we design a novel algorithm
to partition the tree and distribute the data along a hierarchical space-filling curve
with error-guided bucketization. Further optimization is achieved by storing recon-
structed data at pre-selected tree nodes for each processor based on the available
storage resources to reduce the overall wavelet reconstruction cost. At run time, the
wavelet tree is first traversed according to the user-specified error tolerance. Data
blocks of different resolutions that satisfy the error tolerance are then decompressed
and rendered to compose the final image in parallel. Experimental results showed
that our algorithm can reduce the run-time communication cost to a minimum and
ensure a well-balanced workload among processors when visualizing gigabytes of
data with arbitrary error tolerances.
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1 Introduction

An increasing number of scientific applications are now generating high resolu-
tion three-dimensional data sets on a regular basis. The sizes of those data sets
are often so large that it is almost impossible to perform interactive data analy-
sis using only a single PC or workstation. Take the time-dependent Richtmyer-
Meshkov turbulence simulation [18] as an example, at each time step the sim-
ulation produced about 7.5 gigabytes of data defined on a 2048× 2048× 1920
rectilinear grid. Not surprisingly, data of this scale can not be handled easily
by a single machine with limited computational resources. A viable solution
to address this challenge is to utilize a cluster of PCs to distribute the data
and perform the computation and rendering in parallel.

As visualization is an iterative and exploratory process, rendering a lower reso-
lution of data sometimes is sufficient for the user to get a quick overview before
querying further details in selected regions. Given the physical limitation in the
current generation of display devices, it is also not always desirable to render
the entire data set at the finest resolution considering that the projection of
such a large data set can exceed the highest screen resolution currently avail-
able. For this reason, many visualization algorithms now provide the user with
the ability to perform multiresolution rendering for interactive and adaptive
data navigation.

In this paper, we present a parallel algorithm for multiresolution volume ren-
dering. Although researchers previously have proposed various techniques for
multiresolution encoding and rendering of large scale volumes on a single
graphics workstation [27,15,9], fewer studies were focused on designing paral-
lel algorithms for such a purpose using PC clusters. Several issues need to be
addressed in order to achieve efficiency and scalability when parallel multireso-
lution volume rendering is performed. One is the issue of designing an effective
data distribution scheme that can minimize both space and run-time compu-
tation overheads for storing and reconstructing the multiresolution volumes.
When hierarchical encoding schemes such as the wavelet transform is used, the
multiresolution data are often represented in the form of a hierarchical tree
[9]. Obviously, the sheer size of the data prohibits the replication of the entire
tree in every processor so it is necessary to partition and distribute the mul-
tiresolution hierarchy. Since there is often a great deal of dependency among
the parent and child nodes in the data hierarchy, it is critical to design an
efficient partitioning and distribution algorithm to minimize such dependency
and thus reduce the run time inter-processor communication cost for data
reconstruction. Another issue that needs to be addressed is load balancing.
At run time, when the user specifies arbitrary error tolerance to visualize the
volume, different spatial subvolumes of various levels of detail will be recon-
structed, which could cause uneven rendering workloads among the processors.
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It is important to design an effective workload distribution scheme, so that
the rendering subtasks can be evenly distributed among the processors for
any given error tolerance used to traverse the multiresolution data hierarchy.
It is also crucial for the workload distribution algorithm to work hand-in-hand
with the data distribution scheme so as to avoid expensive data redistribution
at run time.

In our algorithm, we exploit the wavelet transform to convert the data into
a hierarchical multiresolution representation, called a wavelet tree. To allevi-
ate the long chains of parent-child node dependencies when reconstructing
volumes of different resolutions, the wavelet tree is partitioned into distribu-

tion units in a way that no data dependency exists between processors. To
balance the volume rendering workload without run-time data redistribution,
we utilize a scheme based on hierarchical space-filling curves and error-guided

bucketization to distribute the data and the rendering tasks. Moreover, to min-
imize the run-time wavelet reconstruction cost, we employ an effective greedy
algorithm which utilizes the additional disk space allowed at each processor
to store the reconstructed data at selective nodes in the distribution units.

The remainder of the paper is organized as follows. First, we review related
work in Section 2. From Section 3 to Section 7, we describe our parallel mul-
tiresolution volume rendering algorithm, including the construction of the
wavelet tree with hierarchical error metric calculation, data distribution with
error-guided bucketization, greedy selection of nodes to store reconstructed
data, and run-time parallel multiresolution volume rendering. Results on mul-
tiresolution rendering and load balancing among different processors are given
in Section 8 and the paper is concluded in Section 9 with an outline of future
work for our research.

2 Related Work

Having the ability to visualize data at different resolutions allows the user to
identify features in different scales, and to balance image quality and computa-
tion speed. Along this direction, a number of techniques have been introduced
to provide hierarchical data representations for volume data. Burt and Adel-
son [2] proposed the Laplacian Pyramid as a compact hierarchical image code.
This technique was extended to 3D by Ghavamnia and Yang [8] and applied
to volumetric data. Their Laplacian pyramid is constructed using a Gaussian
low-pass filter and encoded by uniform quantization. Voxel values are recon-
structed at run time by traversing the pyramid bottom up. To reduce the high
reconstruction overhead, they suggested a cache data structure. LaMar et al.
[15] proposed an octree-based hierarchy for volume rendering where the octree
nodes store volume blocks resampled to a fixed resolution and rendered us-
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ing 3D texture hardware. A similar technique was introduced by Boada et al.
[1]. Their hierarchical texture memory representation and management policy
benefits nearly homogeneous regions and regions of lower interest.

Wavelets are used to represent functions hierarchically, and have gained in-
creasing popularity in several areas of computer graphics [25]. Over the past
decade, many wavelet transform and compression schemes have been applied
to volumetric data. Muraki [19,20] introduced the idea of using the wavelet
transform to obtain a unique shape description of an object, where 2D wavelet
transform is extended to 3D and applied to eliminate wavelet coefficients of
lower importance. The use of a single 3D [12,13] or multiple 2D [21] Haar
wavelet transformations for large 3D volume data has been well studied, re-
sulting in high compression ratios with fast random access of data at run time.
More recently, Guthe et al. [9] presented a hierarchical wavelet representation
for large volume data sets that supports interactive walkthrough using a single
commodity PC. Only the levels of detail necessary for display are extracted
and sent to texture hardware for viewing.

Parallel computing has been widely used in large volume visualization. Hansen
and Hinker [10] proposed a parallel algorithm on SIMD machines to speed
up isosurface extraction. Ellsiepen [5] introduced a parallel implementation
for unstructured isosurface extraction with a dynamical block distribution
scheme. Crossno and Angel [4] devised an isosurface extraction algorithm us-
ing particle systems and its parallel implementation. A parallel isosurface ex-
traction algorithm based on span space subdivisions was described in [24]. To
speed up the volume rendering process, Ma et al. [17] proposed a parallel al-
gorithm that distributes data evenly to the available computing resources and
produces the final image using binary-swap compositing. Schulze and Lang
[23] provided a parallelized version of perspective shear-warp volume render-
ing algorithm [14]. A scalable volume rendering technique was presented in
[16], utilizing lossy compression to render time-varying scalar data sets inter-
actively. To further reduce the rendering time of large-scale data sets, several
parallel visualization algorithms [11,6,7] with visibility culling were introduced
to render only visible portion of a data set in parallel.

Balancing the workload among the processors is always a key issue in a parallel
implementation. In [3], Campbell et al. showed a load-balanced technique
using the space-filling curve [22] traversal. In this method, the spatial locality
preserved by a space-filling curve was utilized to balance the workload. Gao
et al. [7] also showed that, even after visibility culling, the parallel volume
rendering algorithm can still achieve well-balanced workload by distributing
volume blocks to processors along a space-filling curve.
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3 Algorithm Overview

Our parallel multiresolution volume rendering algorithm consists of two stages:
preprocessing and run-time rendering. In the preprocessing stage, we first
construct a hierarchical wavelet tree and then compress the wavelet coefficients
using a combination of run-length and Huffman encoding. Coupled with the
construction of the wavelet tree, a hierarchical error metric is used to calculate
the approximation error for each of the tree nodes, which will be used to control
the tradeoff between image quality and rendering speed at run time. This error
metric can be rapidly computed, and also guarantees that the error value of
a parent node will be greater than or equal to those of its eight child nodes.
The data blocks associated with the wavelet tree nodes are then distributed
among different processors along a hierarchical space-filling curve with an
error-guided bucketization scheme to ensure load balancing. In the case that
additional disk space at each processor can be allocated, certain tree nodes
in the distribution units assigned to each processor are selected to store the
reconstructed data to improve the run-time data reconstruction time.

At run time, our parallel multiresolution volume rendering algorithm is per-
formed according to a user-specified error tolerance. The wavelet tree is first
traversed front to back to identify the nodes with varied resolutions that sat-
isfy the error tolerance. Then, the wavelet-compressed data associated with
those nodes are decompressed and the data blocks are reconstructed on the
fly. Finally, the processors render the selected data blocks of various levels
of detail in parallel. The final image is generated by compositing the partial
images rendered at different processors.

In the following, we describe each stage of our algorithm in detail. We first
present the multiresolution wavelet tree construction algorithm and the er-
ror metric. Then, we discuss our data distribution scheme for the purpose of
minimizing the dependency among processors and ensuring run-time load bal-
ancing. Finally, we introduce our greedy optimization algorithm that selects
nodes from distribution units assigned to each processor to store the recon-
structed data. Implementation details about our parallel volume rendering will
follow.

4 Wavelet Tree Construction with Hierarchical Error Metric Cal-

culation

Our hierarchical wavelet tree construction algorithm is similar to the methods
described in [9,26], where a bottom-up blockwise wavelet transform and com-
pression scheme is used. The algorithm starts with subdividing the original
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three-dimensional data into a sequence of blocks. We assume each raw volume
block has n voxels. Without loss of generality, we also assume n = 2i×2j ×2k,
where i, j, k are all integers and greater than zero. These raw volume blocks
form the leaf nodes of the wavelet tree. After performing a 3D wavelet trans-
form to each block, a low-pass filtered subblock of size n/8 and wavelet coef-
ficients of size 7n/8 are produced. The low-pass filtered subblocks from eight
adjacent leaf nodes in the wavelet tree are then collected and grouped into
a single block of n voxels, which will become the lower resolution data block
represented by the parent node in the wavelet hierarchy. We recursively apply
this 3D wavelet transform and subblock grouping process until the root of the
tree is reached, where a single block of size n is used to represent the entire
volume. As we arrive at the root of the wavelet tree, since the root node has no
parent, no 3D wavelet transform is performed. To save space and time for the
wavelet tree construction, unnecessary wavelet transform computation could
be avoided by checking the uniformity of the data block. If the data block
is uniform, we can skip the 3D wavelet transform process and set the low-
pass filtered subblock to that uniform value and all its corresponding wavelet
coefficients to zero.

To reduce the size of the coefficients stored in the wavelet tree, the wavelet co-
efficients associated with a tree node resulting from the 3D wavelet transform
will be compared against a user-provided threshold and set to zero if they
are smaller than the threshold. These wavelet coefficients are then compressed
using run-length encoding combined with a fixed Huffman encoder [9]. This
bit-level run-length encoding scheme exhibits good compression ratio if many
consecutive zero subsequences are present in the wavelet coefficient sequence
and is very fast to decompress. The compressed bit stream is saved into an
individual file.

At run time, a data block at a certain resolution is reconstructed as follows: the
low-pass filtered subblock of size n/8 is first retrieved from its parent node.
This may entail a sequence of recursive requests of the low resolution data
blocks associated with its ancestor nodes. Reconstructions will be performed
in those nodes if necessary. The wavelet coefficients of size 7n/8 are obtained
by decoding the corresponding bit stream. Finally, we group the low-pass
filtered subblock and the wavelet coefficients and then apply an inverse 3D
wavelet transform to reconstruct the data block.

Coupled with the construction of the wavelet tree, an error value is calculated
at every tree node. Our error metric is based on the mean square error (MSE)
calculation. As shown in Figure 1, let us assume that the current wavelet tree
node in question is S, the ith child node of S is Si, i ∈ [0, 7], and the data
block of n voxels associated with S that approximates the original subvolume
V is B. One way to calculate the error metric is to compute the MSE between
the low resolution data block B and the corresponding raw data in subvolume
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Fig. 1. Calculating the error metric of a wavelet tree node S. B is the low resolution
data block associated with S, representing the raw data subvolume V . The three
nodes and their associated data blocks (drawn with same pattern) are examples
used to illustrate the data relationship of the parent node S and it child nodes Si,
where 0 ≤ i ≤ 7.

V using the following formula:

E =

(
∑

(x,y,z)∈V

(v(x, y, z) − f(x, y, z))2)

m

where v(x, y, z) is the original scalar data value at location (x, y, z) in V .
f(x, y, z) is the interpolated data value at its corresponding position in B. m
is the total number of voxels in V . The interpolation function for obtaining
the approximated data value can be either nearest neighbors or linear. For
any wavelet tree leaf node, we define E = 0.

The main drawback of calculating the error metric this way is that when
the underlying data set is large, it can be very slow to perform the error
computation. The MSE calculation will become progressively more expensive
as we traverse toward the wavelet tree root since the size of the volume covered
by a tree node will increase proportionally. Furthermore, a large I/O overhead
is involved because the computation requires the raw data as well as the
approximated data.

To overcome these problems, we propose a much faster way to calculate the
error metric which considers the MSE between the data in a parent node and
the data in its eight immediate child nodes, taking the maximum error value
of the child nodes into account. We compute the error in a bottom-up manner
as follows:

E =

7∑

i=0
(

∑

(x,y,z)∈B

(bi(x, y, z) − f(x, y, z))2)

8n
+ maxE
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where bi(x, y, z) is the data value at location (x, y, z) in the data block asso-
ciated with Si. f(x, y, z) is the interpolated data value at its corresponding
position in B. maxE is the maximum error of Si, where 0 ≤ i ≤ 7. Again, the
interpolation function for getting the approximated data value can be either
nearest neighbors or linear. Essentially, the error E of a parent node S is cal-
culated by adding maxE to the MSE between the eight data blocks associated
with the child nodes Si and their corresponding low-pass filtered data in B.
A nice feature of this error metric is that it guarantees that the error value of
any parent node is greater than or equal to those of its corresponding eight
child nodes. For any wavelet tree leaf node, we define E = 0.

5 Hierarchical Data Distribution with Error-Guided Bucketization

For large scale data sets, the resulting wavelet hierarchy needs to be parti-
tioned and distributed among the processors since it is impractical to replicate
the data everywhere. To ensure the scalability of the parallel algorithm, it is
important that the partitioning result will minimize the dependency among
the processors and ensure a balanced workload. In this section, we describe
our data distribution and load balancing algorithm in detail.

Fig. 2. Only the nodes at every k levels starting from the root (drawn in black)
store the data blocks. The ellipsis show partitions of the distribution units. In the
figure, k = 2 and h = 6. A binary tree rather than an octree tree is drawn here for
illustration purpose only.

One of the primary issues to be addressed when designing the data distri-
bution scheme is to minimize the dependency among the processors. In the
wavelet tree structure mentioned above, there exist long chains of parent-child
node dependencies - a node needs to recursively request the low-pass filtered
subblocks from its ancestor nodes in order to reconstruct its own data. When
nodes with such dependencies are assigned to different processors, expensive
communications at run time become inevitable. To eliminate such dependency
among processors, we design the following EVERY-K storage strategy to ar-
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range the multiresolution data blocks in the wavelet tree. Instead of having
the leaf and intermediate nodes store the wavelet coefficients, and only the
root node store the low resolution data block, we reconstruct and store low
resolution data blocks in advance for nodes at every k levels starting from the
root, where k < h, and h is the height of the wavelet tree. (In practice, h may
not be an exact multiple of k and this can be easily handled.) We call a node
that stores the reconstructed data block a representative node, while a node
that stores only wavelet coefficients an associated node. By default, the root of
the wavelet tree is a representative node and all the leaf nodes of the tree are
associated nodes. Figure 2 shows an example of such schemes where k = 2 and
h = 6. It is clear that data reconstruction only needs to be performed for the
associated nodes by recursively requesting their parent nodes up to the closest
representative node, where the low resolution data have already been recon-
structed. We define a distribution unit as the data at a representative node
along with the wavelet coefficients at all its descendent nodes which depend
on the representative node. This definition implies that there must be one
and only one representative node in a distribution unit and all the nodes in
one distribution unit are independent of nodes in any other distribution units.
We use the distribution units to form a partition of the wavelet tree, and a
distribution unit is used as the minimum unit to be assigned to a processor.
Since there is no data dependency among distribution units during wavelet
reconstruction, we are able to eliminate the dependency among processors at
run time.

Fig. 3. A simplified 2D example of data distribution along the hierarchical
space-filling curve. All the wavelet tree nodes are traversed level by level in a
breadth-first search manner. The numbers associated with the tree nodes indicate
the traversal order given by the space-filling curve. A popular space-filling curve,
the Hilbert curve, is used in this example.
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An optimal data distribution scheme should ensure that all the processors
have an equal amount of rendering workload at run time. However, when
multiresolution rendering is performed, different data resolutions, and thus
different rendering workload, will be chosen to approximate the local regions.
This makes the workload distribution task more complicated. In the follow-
ing, we describe a static load distribution scheme to solve the load balancing
problem.

In general, a volumetric data set usually exhibits strong spatial coherence.
Given an error tolerance, if a particular data resolution is chosen for a subvol-
ume, it is more likely that a similar resolution will also be used for the neigh-
boring subvolumes. In our multiresolution algorithm, this means if a block at
a certain level is selected to be rendered, it is most likely that its neighboring
regions will also be rendered from the blocks in the same tree level. Thus, if
neighboring data blocks at a similar resolution are evenly distributed to differ-
ent processors, each processor will receive approximately the same rendering
workload in that local neighborhood. Based on this idea, a space-filling curve
[22] is utilized in our data distribution scheme to assign the distribution units
to different processors. The space-filling curve is used for its ability to preserve
spatial locality, i.e., the traversal path along a space-filling curve always visits
the adjacent blocks before it leaves the local neighborhood. The hierarchical
property of a space-filling curve also makes it suitable to be applied to a hier-
archical algorithm. In Figure 3, we give a simplified 2D example of a wavelet
tree and its corresponding space-filling curve at each level. The numbers in
the figure show the traversal order along the hierarchal space-filling curve.

Fig. 4. An example of data distribution along the hierarchical space-filling curve
with error-guided bucketization. The numbers associated with the distribution units
shown in the figure indicate the traversal order given by the space-filling curve. In
this example, a total of 21 distribution units with three different resolutions are
distributed among four processors.
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To ensure load balancing at run time under different error tolerances, data
blocks with similar error values should be distributed to different processors
since our error-guided wavelet tree traversal algorithm usually selects them
together for rendering. To achieve this, in addition to the hierarchal space-
filling curve traversal, we include an error-guided bucketization mechanism
in our data distribution scheme. As illustrated in Figure 4, our algorithm
works as follows: The whole error range [errmin, errmax] is first partitioned
into several error intervals, where errmin and errmax are the minimum and
maximum error values of the representative nodes from all the distribution
units. Then, we traverse along a hierarchical space-filling curve, where every
distribution unit encountered is sorted, according to the traversal order, into
a bucket whose error range covers the error of its representative node. The
intervals of the buckets will be adjusted so that each bucket holds similar
number of distribution units. Finally, all sorted distribution units in each of
the buckets are distributed among processors in a round-robin manner.

Utilizing our hierarchical error-guided data distribution scheme, neighboring
distribution units with similar errors will be distributed to different processors.
As demonstrated in Section 8, our error-guided hierarchical data distribution
scheme can achieve well-balanced workload among processors.

6 Reconstructed Data Storage with Greedy Optimization

According to the EVERY-K scheme described in Section 5, only data at the
representative node of each distribution unit are pre-reconstructed. This means
most of the nodes assigned to a processor store compressed wavelet coefficients.
Reconstruction of those nodes can be expensive, and hence will slow down the
overall run-time rendering performance. In the case when there is additional
storage space available in each of the processors, it can be beneficial to recon-
struct and store the low resolution data in more tree nodes to trade space for
run-time efficiency.

Given that the available storage space can be limited, the selection of nodes
from the distribution units for storing the reconstructed data is primarily
based on the benefit of those nodes, that is, how much the nodes can contribute
to the reduction of the reconstruction time if their wavelet coefficients are
decompressed and reconstructed in advance. The amount of reconstructed
data that can be stored is subject to the additional storage space that the
user is willing to commit in each processor. To determine which tree nodes
should have their data pre-reconstructed, we define two functions, Benefit and
Cost. Benefit estimates the degree of usefulness when keeping reconstructed
data at a node, and Cost evaluates the amount of the additional storage space
required to keep the reconstructed data rather than the compressed wavelet
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coefficients. The goal can be then stated as:

Maximize:
∑

ω∈Ω Benefit(ω)

Subject to:
∑

ω∈Ω Cost(ω) ≤ ∆

where Ω is the set of nodes selected to keep the reconstructed data. ∆ is the
additional storage space the user is allowed to use in each processor.

We propose a greedy algorithm to tackle this optimization problem by repeat-
edly selecting a node i with the highest benefit until there is no more storage
space available. Specifically, our greedy algorithm assigns each node a ben-
efit value, and selects the one with the highest benefit at each iteration by
traversing the wavelet tree nodes in all distribution units assigned to a proces-
sor. Every time when a node is selected to store the reconstructed data, the
benefit values for the remaining nodes in its corresponding distribution unit
need to be updated. Finding the exact optimal solution for this optimization
problem is actually NP-complete, which prompted us to adopt an approximate
greedy solution.

We define the benefit B(i) for each node i by considering the visiting likelihood
L, the penalty factor P , and the quality of reconstruction R, which can be
written as:

B(i) = L(i) × P (i) × R(i)

We now need to define L(i), P (i), and R(i).

L(i): This function approximates the likelihood of a node being visited. A node
will be visited more often when (1) it is closer to the root of the distribution
unit since the reconstructions of data in its descendant nodes will depend on it;
(2) it is not a uniform node, hence contains more information. We characterize
L(i) by the error calculated for the node, that is:

L(i) = E(i)

where E(i) is the error value of node i. The value L(i) is normalized before
being used in function B(i) to calculate the benefit.

P (i): For a node i, when a large portion of the nodes in its distribution unit
have already been chosen to store the reconstructed data, it is less beneficial
to select this node. This is because an uneven distribution of the additional
resources among the distribution units will lead to uneven speedups when
different error tolerances are used for traversing the multiresolution tree, a
cause for load imbalance. To avoid this problem, we prevent this clustering
effect by adding a penalty factor into the benefit measure:
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P (i) = pλ

where p ∈ (0.0, 1.0) is the penalty heuristic and λ is the number of nodes
already selected to store reconstructed data in node i’s distribution unit.

Time Description

T1 load the file stream of the reconstructed data from disk

T2 load the compressed file stream of the wavelet coefficients from disk, and
perform decoding to get the coefficients, proportional to the size of the
stream

T3 retrieve the low-pass filtered subblock from the ancestor nodes recur-
sively

T4 compose the low-pass filtered subblock and wavelet coefficients into one
block, and perform a 3D inverse wavelet transform to get the recon-
structed data

T5 extract the low-pass filtered subblock from a data block

Table 1
Notations used to calculate T (i) and T ′(i) in the calculation of R(i) for determining
the benefit function, B(i).

R(i): This is used to estimate the contribution to the reduction of overall re-
construction time by allocating additional disk space to keep the reconstructed
data for node i. The following formula is used:

R(i) =
T ′(i) − T (i)

S(i) − S ′(i)

where S(i) is the storage space that node i will consume to store the recon-
structed data if it is selected, and S ′(i) is the storage space that node i will
need to store wavelet coefficients when it is not selected. T (i) is the time to
load the reconstructed data if node i is selected, while T ′(i) is the time to load
and reconstruct the data if node i is not selected.

Following the notations defined in Table 1, T (i) is computed as:

T (i) = T1(i)

And T ′(i) is computed as:

T ′(i) = T2(i) + T3(i) + T4(i)

where T3(i) depends on the current selecting status of the parent node j of
node i, and is calculated as:

13



T3 = {
T (j) + T5(i) j ∈ Ω

T ′(j) + T5(i) j /∈ Ω

The calculation of the reconstruction time of all the descendant nodes of node
i in its distribution unit depends on whether node i is selected or not. After
the algorithm selects a node to store reconstructed data, the benefit values
of the remaining nodes in the same distribution unit need to be recomputed.
The total number of nodes that can be selected is limited by the additional
storage space ∆ allocated at the processor.

7 Parallel Multiresolution Volume Rendering

Before rendering each frame, the wavelet tree is traversed if the viewing pa-
rameter or the error tolerance has been changed. This could be done either by
the host processor which in turn broadcasts the traversal result to all the other
processors, or by all processors simultaneously (each processor only needs to
have a copy of the wavelet tree skeleton with error at each node regardless of
whether it actually has been assigned the data block or not), obviating the
communication among the processors. Our error-guided tree traversal algo-
rithm allows the user to specify an error tolerance as the stopping criterion so
that regions having smaller errors can be rendered at their lower resolutions.
The nodes in the wavelet tree are recursively visited in the front-to-back order
according to the viewing direction and a series of subvolumes with different
resolutions that satisfy the error tolerance are identified. If the data blocks as-
sociated with those selected subvolumes have not been reconstructed, we need
to perform reconstruction before the actual rendering begins. Our wavelet tree
partition and data distribution scheme ensures that the reconstruction depen-
dencies could only exist within a distribution unit. This will reduce the overall
reconstruction time since the cost of retrieving the low-pass filtered subblock
is bounded by the height of the subtree corresponding to a distribution unit,
which is usually a small number, two or three in our experiments.

During the actual rendering, each processor only renders the data blocks pre-
assigned to it during the data distribution stage, so that there is no expensive
data redistribution between processors. The screen projection of the entire
volume’s bounding box is partitioned into smaller tiles with the same size,
where the number of the tiles equals the number of processors. Each processor
is assigned one tile and is responsible for the composition of the final image
for that tile. Each time a processor finishes rendering one data block, the re-
sulting partial image is sent to those processors whose tiles overlap with the
block’s screen projection. After rendering all the data blocks, the partial im-
ages received at each processor are composited together to generate the final
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image for its assigned tile. Finally, the host processor collects the partial im-
age tiles and creates the final image. Because we perform data distribution
along the hierarchical space-filling curve and image space partition for the
image composition, each processor renders a similar number of data blocks
and composites a similar number of image tiles, which ensures a well-balanced
workload among processors.

As we may anticipate reusing most of the reconstructed data blocks for sub-
sequent viewings due to the spatial locality and coherence exploited by the
wavelet tree structure, it is desirable to cache the data blocks that have al-
ready been reconstructed during the rendering for better performance. The
user can predefine a fixed amount of disk space and memory dedicated for the
caching purpose. Upon requesting a data block for the rendering, we retrieve
its data from the memory, provided the block is cached in the main memory.
Otherwise, we need to load the data from the disk if the reconstructed data
block is on disk. If it is neither cached in memory nor on disk, then we need
to reconstruct the data block and load it into the main memory. When the
system runs short of the available storage for caching the reconstructed blocks,
our replacement scheme will swap out a data block that has been visited least
often.

8 Results

In this section, we present the experimental results of our parallel multireso-
lution volume rendering algorithm running on a PC cluster that consists of 32
2.4GHz Pentium 4 processors connected by Dolphin Networks. The test data
set was the 7.5GB 2048 × 2048 × 1920 Richtmyer-Meshkov Instability (RMI)
data set from Lawrence Livermore National Laboratory.

The dimensions of the leaf node blocks in our wavelet tree were set to be
128 × 128 × 64, or 1MB in the total size. This is a tradeoff between the cost
of performing the wavelet transform for a single data block, and the rendering
and communication overheads for final image generation. Since each voxel
value is represented using a single byte, Haar wavelet transform with a lifting
scheme was used to construct the data hierarchy for simplicity and efficiency
reasons. A lossless compression scheme was used with the threshold set to
zero. We considered one voxel overlapping boundaries between neighboring
blocks in each dimension when loading data from original brick data files in
order to produce correct rendering results. The wavelet tree we constructed
has a depth of six with 10,499 non-empty nodes.

For comparison, we chose two schemes to partition the wavelet tree and form
the distribution units. The first one is the EVERY-2 scheme without greedy op-
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timization, and the second one is the EVERY-2 scheme with greedy optimiza-
tion. The construction of the wavelet tree was performed on a 2.0GHz Intel
Pentium 4 processor with 1GB main memory. It took about an hour to com-
plete and the compressed data size was around 2.65GB. The data associated
with the wavelet tree nodes were distributed using the hierarchical data dis-
tribution scheme with error-guided bucketization described in Section 5. The
space-filling curve used in our implementation was the Hilbert curve. For both
schemes, we allocated 256MB temporary disk space and 128MB main memory
at each processor for run-time caching of the reconstructed data blocks.

speed T1 T4 T5

6.542MB/s 0.0286s 0.3563s 0.0018s

Table 2
The benchmark test results.

For the EVERY-2 scheme with greedy optimization, in order to achieve better
load balancing, we took into account the actual non-empty nodes in the dis-
tribution units when distributing the data along the hierarchical space-filling
curves. A processor would not receive any more distribution units if the total
number of non-empty nodes in the distribution units already assigned to it had
exceeded the average limit (the total number of non-empty nodes in a wavelet
tree divided by the total number of processors). We performed benchmark
tests to obtain the constants (decompression speed, T1, T4, and T5) for the
performance model presented in our greedy selection algorithm. The results
are shown in Table 2. The average decompression speed for the run-length
and fixed Huffman decoding was around 6.542MB/s, which included disk file
I/O. For every node i, the benchmark results were used to calculate the tim-
ing of T2(i) and T3(i). The penalty heuristic p in the benefit function B(i)
was set to 0.8. When testing our greedy selection algorithm, rather than spec-
ifying exact permanent storage sizes for each processor, the space allocated
to store the additional reconstructed data was set to different percentages of
the total non-empty nodes in each processor in order to have more intuitive
comparisons.

Fig. 5. The number of data blocks distributed to each of the 32 processors for the
EVERY-2 scheme.
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Fig. 6. The number of data blocks rendered at each of the 32 processors for the
EVERY-2 scheme under three different error tolerances. A total of 1,510, 3,602, and
3,850 blocks were rendered for error tolerances of 5,000, 1,000, and 500 respectively.

Fig. 7. The number of data blocks reconstructed at each of the 32 processors for the
EVERY-2 scheme with greedy optimization under three different error tolerances. In
all the three cases, 20% of non-empty nodes were selected to store the reconstructed
data at each processor. A total of 657, 1,767, and 1,859 blocks were reconstructed
for error tolerances of 5,000, 1,000, and 500 respectively.

Fig. 8. The number of data blocks reconstructed at each of the 32 processors for the
EVERY-2 scheme with greedy optimization under error tolerance of 1,000. Three
different percentages of non-empty nodes were selected to store the reconstructed
data at each processor. A total of 1,203, 1,767, and 2,845 blocks were reconstructed
for percentages of 40%, 20%, and 0% respectively.

The error-guided hierarchical data distribution allowed our parallel multireso-
lution volume rendering algorithm to effectively balance the workload. Figure 5
shows the number of data blocks distributed to each of the 32 processors for
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Percentage Total Reconstruction Raycasting Overhead

0% 53.021s 31.466s 15.603s 5.952s

20% 35.430s 21.567s 12.486s 1.377s

40% 27.701s 14.527s 11.413s 1.761s

Table 3
The timing for for the EVERY-2 scheme with greedy optimization under error tol-
erance 1,000. 40%, 20% and 0% of non-empty nodes were selected to store the
reconstructed data at each of the 32 processors. The overhead included the initial-
ization, image composition and communication overhead.

the EVERY-2 scheme. Figure 6 shows the number of data blocks rendered at
each of the 32 processors when three different error tolerances were used. For
the EVERY-2 scheme with greedy optimization, Figure 7 shows the number
of data blocks reconstructed at each of the 32 processors when three differ-
ent error tolerances were used. Since the processors reconstructed/rendered
approximately an equal number of blocks, it can be seen that good rendering
load-balancing was achieved. Figure 8 shows the number of data blocks recon-
structed at each of the 32 processors for the EVERY-2 scheme with greedy
optimization under error tolerance of 1,000. Three different percentages of
non-empty nodes were selected to store the reconstructed data at each proces-
sor. Table 3 shows the corresponding timing results using software raycasting
and the time spent on each of the stages. As we can observe, when we chose a
higher percentage of nodes to store the reconstructed data, the time to perform
wavelet reconstruction decreased accordingly. This demonstrates the effective-
ness of our greedy optimization algorithm in trading additional storage space
for the wavelet reconstruction time. The well-balanced workload implies that
our parallel algorithm is highly scalable. For the EVERY-2 scheme with greedy
optimization under error tolerance 1,000, when 40% of non-empty nodes were
selected to store the reconstructed data, it took 840.838s total time to render
the data on a single processor. (We actually increased the main memory size
for caching to 1GB for the single processor. If we still use 128MB main memory,
the total rendering time was 898.303s with many more data blocks shuffling
between memory and disk.) Our algorithm can achieve approximately 94.86%
parallel CPU utilization, or a speedup of 30.36 times for 32 processors.

Figure 9 shows several results with different levels of detail for the RMI data set
rendered using software raycasting. When the error tolerance became higher,
data of lower resolutions were used, which resulted in a smaller number of
blocks being rendered. It can be seen that, although more delicate details of
the data were revealed when reducing the error tolerance, images of reasonable
quality can still be obtained at their lower resolutions. The use of wavelet-
based compression also allowed us to produce images of good visual quality
with much smaller space commitment.

18



(a) the RMI data set (b) low resolution (c) high resolution

Fig. 9. Multiresolution rendering of the RMI data set. The resolution of the out-
put images is 512 × 512. Image (a) shows a rendering of the data. Images (b)
(E = 40, 000, 21 blocks rendered) and (c) (E = 30, 000, 120 blocks rendered) were
zoomed-in views using different error tolerances with the same viewing setting. As
can be seen, the lower the error tolerance was, the more delicate details of the data
were revealed.

9 Conclusion and Future Work

We have presented an efficient parallel multiresolution volume rendering algo-
rithm. A multiresolution wavelet tree is used to allow for interactive analysis
of large data and flexible run-time tradeoff between image quality and ren-
dering speed. To ensure the algorithm’s scalability, we propose a unique tree
partitioning and distribution algorithm, and utilize a hierarchical space-filling
curve with error-guided bucketization scheme to eliminate the parent-child
node wavelet reconstruction dependencies, balance the rendering workload,
and minimize the run-time communication overhead. A greedy optimization
algorithm is introduced to store reconstructed data at selective nodes for each
processor as a further speedup. The experimental results demonstrate the ef-
fectiveness and utility of our parallel algorithm. Future work includes utilizing
graphics hardware to perform wavelet reconstruction and rendering, and ex-
tending our parallel multiresolution volume rendering algorithm to large-scale
time-varying data.
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