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Figure I:  Tomado dataset rendered with different appearance textures. (a) with LIC texture pre-generated from straight flow. (b) with a color 
tube texture. Lighting is used to enhance the depth perception. (c) with a 2D paintbrush texture. 

Abstract 

In this paper we present an interactive texture-based technique for 
visualizing three-dimensional vector fields. The goal of the algo- 
rithm is to provide a general volume rendering framework allowing 
the user to compute three-dimensional flow textures interactively, 
and to modify the appearance of the visualization on the fly. To 
achieve our goal, we decouple the visualization pipeline into two 
disjoint stages. First, streamlines are generated from the 3D vector 
data. Various geometric properties of the streamlines are extracted 
and converted into a volumetric form using a hardware-assisted 
slice sweeping algorithm. In the second phase of the algorithm, 
the attributes stored in the volume are used as texture coordinates 
to look up an appearance texture to generate both informative and 
aesthetic representations of the underlying vector field. Users can 
change the input textures and instantaneously visualize the render- 
ing results. With our algorithm, visualizations with enhanced S ~ N C -  

tural perception using various visual cues can be rendered in real 
time. A myriad of existing geometry-based and texturz-based visu- 
alization techniques can also be emulated. 
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1 Introduction 

Vector fields play an imporlant role in many scientific, engineer- 
ing and medical disciplines. Many visualization techniques have 
been proposed to assist observers in comprehending the behavior 
of the vector field. They can be loosely classified into two cat- 
egories: geometry-based and texture-based methods. Geometry- 
based methods (such as glyph, hedgehog, streamline, stream sur- 
face[Hultquist 19921, flow volume[Max et al. 19931, to name a few) 
use shape, color, and motion of geometric primitives to convey the 
physical characteristics in the proximity of a cerlain point in the 
vector field. Texture-based methods, such as spot noiservan Wijk 
19911, line integral convolution (LIC)[Cabral and Leedom 19931, 
and IBFV[van Wijk 20021, shade every pixel in the visualization 
using manipulated textures which express structural information of 
the vector field. 

In two-dimensional vector fields or flows across a surface in 
three dimensions, the texture-based methods are capable of of- 
fering a clear perception of the vector field since the directions 
of the vector field can be seen globally in the visualization. For 
three-dimensional vector fields, however, the effectiveness is sig- 
nificantly diminished due to the loss of information when the three- 
dimensional data is projected onto a two-dimensional image plane. 
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This drawback can be mitigated to some extent by providing addi- 
tional visual cues. For example, lighting, animation, silhouettes etc. 
can all provide valuable information about the three-dimensional 
structure of the dataset. Comparing visualizations with different 
appearances also helps in understanding the anatomy of the vector 
field. Unfortunately, the high computational cost of 3D texture- 
based algorithms severely impedes the interactive use of visual 
cues. In fact, 3D vector field visualizations by c u e n t  visual cue- 
enhanced texture-based techniques are mostly generated in batch 
mode. Another issue for 3D vector field renderings is occlusion, 
which significantly hinders visualization of intemal structures of 
the volume. Interactivity becomes very important as a result: the 
user needs to be able to experiment freely with textures of different 
pattems, shapes, colors and opacities, and view the results at inter- 
active speeds. Keeping the above desirables in mind, we present a 
flexible and high-speed approach for three-dimensional vector field 
visualization. 

The relative inflexibility of existing texture-based methods is a 
result of the tight coupling between the vector field processing step 
and output texture generation step. For example, in LIC, stream- 
line advection and output pixel value generation are done simul- 
taneously. As a result, the look of the rendering result cannot be 
changed on the fly. We address this issue by decoupling the visual- 
ization pipeline into two disjoint stages. First, streamlines are gen- 
erated from the 3D vector data. Various geometric properties of the 
streamlines are then extracted and converted into a volumetric form 
which we will refer to as the trace volume. In the second phase, 
the trace volume is combined with a desired appeurance texture at 
run-time to generate both informative and aesthetic representations 
of the underlying vector field. 

The two-phase method provides a general framework to mod- 
ify the appearance of the visualization intuitively and interactively 
without having to re-process the vector field every time the render- 
ing parameters are modified. Just by varying the input appearance 
texture, we are able to create a wide range of effects at run time. 
A myriad of existing visualization techniques, including geometry- 
based and texture-based, can also be emulated. Using consumer- 
level PC platform graphics hardware with dependent textures and 
per-fragment shading functionality, visualizations with enhanced 
structural perception using various visual cues can be rendered in 
real time. 

2 Related Work 

Researchers have proposed various vector field visualization tech- 
niques in the past. In addition to the more tradilional techniques 
such as particle tracing or arrow plots, there are algorithms that 
can provide a volumetric representation of the underlying three- 
dimensional fields. Some research has been directed towards inte- 
grating texture or icons into a volume rendering of the flow, [Craw- 
fis and Max 19921 developed a 3D raster resampling technique 
where the volume rendering was built up in sheets oriented parallel 
to the image plane. These sheets were composited[Porter and Duff 
19841 in a back-to-front order. The authors modified the volume 
integral to include the rendering of a tiny cylinder within a small 
neighborhood. A further refinement of this concept was to embed 
the vector icons directly into the splat footprint[Crawfis and Max 
19931 used for volume rendering. Here, small billboard images are 
overlapped and composited together to build up the final image. By 
placing a small icon within the billboard image, and orienting the 
image such that it lies both perpendicular to the viewing ray, and 
parallel to the projected vector direction at the splat’s center point, 
a volume rendered image is produced. 

Line Integral Convolution, or LIC[Cabral and Leedom 19931, 
has been perhaps the most visible of the recent flow visualization 
algorithms. The algorithm takes a scalar field and a vector field 

as input, and outputs another scalar field. By providing a white 
noise image as the scalar input, an output image is generated that 
correlates this noise function along the direction of the input vec- 
tor field. While LIC is effective in visualizing 2D vector fields, it 
is quite computationally expensive. [Stalling and Hege 19951 pro- 
posed an extension to speed up the process. [Shen et al. 19961 pro- 
posed the advection of dyes in LIC computation. LKiu and Banks 
19961 used noises of different frequencies to distinguish between 
regions with different velocity magnitudes. [Shen and Kao 19981 
proposed UFLlC for unsteady flow, and a level of detail approach 
was proposed by [Bnrdoloi and Shen 20021. [Interrante and Grosch 
19971 introduced the use of halos to improve the perceptual effec- 
tiveness when visualizing dense streamlines for 3D vector fields. 
[Rezk-Salama et al. 20001 proposed a volume rendering algorithm 
to make LIC more effective in three dimensions. A volume slicing 
algorithm that utilizes 3D texture mapping hardware is explored to 
quickly adjust slice planes and opacity settings. 

3 The Chameleon Rendering Framework 

The primary goal of our research is to develop an algorithm with 
greater interactivity and flexibility. The traditional texture-based 
algorithm such as LIC is known for its high computation cost when 
applied to three-dimensional data. Tnis high computational com- 
plexity makes it difficult for the user to change the output’s vi- 
sual appearance such as texture pattems and frequencies at an in- 
teractive speed. Although in the past researchers have proposed 
various texture-based rendering techniques for visualizing three- 
dimensional vector fields, there is no common rendering framework 
that allows a mix-and-match of different visual appearances on the 
fly when exploring three-dimensional vector data. In this paper, a 
novel rendering framework is presented to address this issue. In 
the following, we first give an overview of our algorithm, and then 
provide the details of various stages in our algorithm. 

3.1 Algorithm Overview 

Figure 2 depicts the fundamental difference between our algorithm 
and the more traditional texture-based algorithm such as LIC. In 
LIC or similar texture-based algorithms, visual information i s  con- 
veyed to the user through the correlation between the final voxel 
values. Texture synthesis is performed in a manner that the lumi- 
nance of each pixel or vaxel is computed and used as the rendering 
attribute. Once the process is completed, information about the vec- 
tor field cannot be recovered from the resulting texture. If the user 
decides to alter the visual appearance, such as changing the fre- 
quency or the distribution of the noise, the entire texture synthesis 
process needs to he performed again. 

To allow flexible run-time visual mapping, we devise an algo- 
rithm that decouples the processing of the vector field and the map- 
ping of visual attributes. To establish visual coherence for the voxel 
along lhe flow direction, we store, in each voxel, a few attributes 
which are highly correlated along the flow direction. The attributes 
associated with each voxel will be referred to as the trace tuple. 
Trace tuples from the voxels collectively constitute a volume called 
the trace volume. At mn time, the correlation between neighboring 
trace tuples will he translated to coherent visual properties along 
the flow direction. Specifically, the attributes stored in the trace tu- 
ple are used as the texture coordinates to look up an input texture, 
which we will refer to as the appearance texture. The appearance 
texture contains pre-computed 2DI3D visual pattems, which will 
be warped and animated along the streamline directions to create 
the visualization. The appearance texture can be freely specified by 
the user at run time. For instance, it can he a pre-computed LIC 
image, or can be textures with different characteristics such as line 
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Figure 2; Visualization pipelines for LIC (above), and Chameleon 
(below). The Chameleon decouples the advection and texture gen- 
eration stages. Once the trace volume is constructed, any suitable 
appearance texture can he used to generate varied visualizations of 
the same vector dataset. 

bundles, panicles. paint-brush strokes, etc. Each of these can gen- 
erate a unique visual appearance. Our algorithm can alter the visual 
appearance of the data interactively when the user explores the un- 
derlying vector field, and hence is given the name Chameleon. 

Rendering of the trace volume requires a two stage texture 
lookup. Here we give a conceptual view of how the rendering is 
performed. Given the trace volume, we can cast a ray from each 
pixel from the image plane into the trace volume to sample the vox- 
els. At each step of the ray. we sample the volume attribute, which 
is an interpolated trace tuple. This sampled vector is used as the tex- 
ture coordinates to fetch the appearance texture. Visual attributes 
such as colors and opacities are sampled from the appearance tex- 
ture and blended into the final image. Although here we use the 
ray casting algorithm to illustrate the idea, in our implementation, 
we use graphics hardware with per-fragment shaders and dependent 
textures to achieve interactivity. 

In the following sections, we elaborate each step of our algorithm 
in detail. We will focus on the topics of trace volume construction, 
including voxelization (sec.3.2); trace tuple assignment (sec.3.3) 
anti-aliasing (sec.3.4). and interactive rendering (sec.3.5). 

3.2 Trace Volume Creation 

The trace volume is created by vaxelieing the input streamlines. 
Since the trace volume will be a testure input to the 3D texture 
mapping hardware (described later), it is defined on a 3D Cartesian 
grid. For the underlying vector fields, there is no preferred grid type 
because the trace volume is created from a dense set of streamlines 
but not the vector field. We use the method proposed by [lobard and 
Lefer 19971 tocontrol thedensity and the length of streamlines. The 
seeds are randomly selected, and the streamlines are generated by 
the fourth-order Runge-Kutta method. An adaptive step size based 
on curvature [Damofal and Haimes 19921 is used. The advection 
process is stopped whenever the advected streamline gets too close 
to each other. This is to ensure that the thick lines discussed in 
sec.3.4 do not intersect with each other. Otherwise, the race tu- 
ples will be overwritten during voxelization, which would result in  
undesirable dependent texturing artifacts in the rendering stage. 

To voxelize the streamlines, a hardware-assisted slice sweeping 

Figure 3: (a) The slice sweeping voxelization algorithm. The near 
and far clipping planes are translated along the Z axis. At each posi- 
tion of the clipping planes, the streamlines are rendered to generate 
one slice ofthe trace volume. (b) A trace volume containing a thick 
anti-aliased streamline. The streamline parametrization is stored in 
the blue channel, while the streamline identifiers are stored in the 
red and green channels (sec.3.3, sec.3.4). 

algorithm. inspired by the CSG voxelization algorithm proposed by 
[Fang and Liao 20001, is designed to achieve faster voxelization 
speed. The input to our voxelization process is a set of smeamlines 
9 = { s j } .  Each streamline si is represented as a line strip with a 
sequence of vertices 9 = {pi}. Each vertex p j  in the streamline 
si is assigned a trace tuple for the identification and parametriza- 
tion of the streamline. The trace tuple for each streamline vertex is 
specified as a color for the vertex during our voxelization process. 
In this section, we focus on the trace volume scan conversion. More 
details about the trace tuple are provided in the next section. 

Using graphics bardware, our algorithm creates the trace volume 
by scan-converting the input streamlines onto a sequence of slices 
with a pair of moving clipping planes. For each of the X. U, and Z 
dimensions, we first scale the streamline vertices by V / L ,  where V 
is the resolution of the trace volume in the dimension in question, 
and L is the length of the corresponding dimension in the under- 
lying vector field, or a user-specified region of interest. Then we 
render the streamlines orthographically using a sequence of clip- 
ping planes. The viewing direction is set to be parallel to the z axis, 
and the distance between the near and far planes of the view frus- 
tum is always one. Initially, the near and far clipping planes are set 
at I = 0 and z = I ,  respectively. When each frame is rendered, the 
frame buffer content is read back and copied to one slice of the trace 
volume. As the algorithm progresses, the locations of the clipping 
planes are shifted by 1 along the 2 axis incrementally until the en- 
tire vector field is swept. Figure 3(a) illustrates our algorithm. Po- 
sitions for the near and far clipping planes for two different slices 
are shown. 

The performance of the voxelization depends on the rendering 
speed of the graphics hardware for the input streamline geome- 
try. To reduce the amount of geometry to render, streamline seg- 
ments are placed into bins according to their spans along the Z 
direction. During the voxelization, only the segments which in- 
tersect with the current clipping volume are sent to the graphics 
pipeline. The performance for constructing the trace volume can 
he further increased by reading the slicing result directly from the 
frame buffer to the 3D texture memory. This can be done using 
OpenGL‘s glCopyTexSubImage3D command. 

Sometimes it is possible that some of the streamline segments are 
perpendicular to the Z = 0 plane. For orthographic projection, these 
segments will degenerate into a point. In  certain graphics APIs, 
such as OpenGL, the degenerate points are not drawn, which will 
create unfilled voxels in the trace volume. To avoid this problem, 
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Figure 4 The use of trace tuples as texture coordinates. Left: Trace 
tuples are assigned to streamlines and stored in the color channels. 
Right : Trace tuples in the texture space. 

such segments are collected and processed separately in another 
pass, where the viewing direction and the sweeping of the clipping 
volume is set to be along the X-axis. 

3.3 Trace Volume Attributes Generation 

As mentioned earlier, the set of attributes assigned to the voxels in 
a trace volume is referred to as the trace tuple. It stores two com- 
ponents: the streamline identifier, which differentiates individual 
streamlines, and the streamline parametrization, which parameter- 
izes the voxels along the streamline. The dimensions of the trace 
tuple depend on the dimensions of the appearance texture. When 
a two dimensional appearance texture is used, the trace tuple is a 
two-dimensional vector, denoted as ( U , " ) .  The first component (U) 
is used to distinguish between different streamlines, and the second 
component ( v )  stores the parametrization of the voxels along the 
streamline. For example, in figure 4, the two streamlines have dis- 
tinct U coordinates, which will be mapped to different vertical strips 
in the appearance texture. Along each streamline, the voxels are 
parameterized by v, which corresponds to a change in the texture 
coordinates along the vertical direction. When a three-dimensional 
appearance texture is used, the trace tuple is a three dimensional 
vector (u,v>w), where w is used to parameterize the streamline and 
a two-dimensional vector (u ,v )  is used to differentiate the stream- 
lines. 

We encode the trace tuples into the trace volume during the vox- 
elization process using graphics hardware. Without loss of general- 
ity, here we assume that a three-dimensional appearance texture is 
used. Given an input streamline, we assign the trace tuple (u ,v ,  w )  
as colors (red, green, blue) to the vertices of streiimline segments. 
When we slice the streamlines during voxelization, the graphics 
hardware will interpolate the colors, and thus the trace tuples, for 
the intermediate voxels between the streamline vertices. Since all 
vertices along the same streamline share the same streamline iden- 
tifiers, the interpolation will assign the same value. for all interme- 
diate voxels. The graphics hardware will interpolate the stream- 
line parametrization linearly, which allows the appearance texture 
to map evenly across the streamline. 

The precision limitation in the graphics hardware, however, 
poses a problem when using a color channel to parameterize the 
streamline, i.e., representing thew coordinate. In the current graph- 
ics hardware, colors and alpha values are represented by fix point 
numbers (8 hits per channel on most architectures). When we use 
an %hit number to represent the texture coordinate, the quality of 
the texture lookup result can suffer from quantization artifacts. 

The goal of parameterizing the streamline and using the result as 
a texture coordinate to look up the appearance texture is to estab- 
lish the visual correlation between the voxels along the streamline. 
However, we observe that it is sufficient to maintain only the local 
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Figure 5 :  Construction of the thick line. A mask is swept along 
the central streamline. Points on the mask are used to generate 
vertices for the satellite lines. The parametrization for the lines in 
the bundle is the same as the central streamline. The satellite lines 
are assigned identifier values which map to adjacent texels in the 
appearance texture. 

coherence within a nearby vicinity for the voxels along a streamline 
to depict the flow direction. It is similar to the fixed-length convo- 
lution kemel in the LIC. Therefore, to solve the limited precision 
problem when using a color channel to represent the last compo- 
nent of the trace tuple, we can divide the streamline into multiple 
segments, and then map the full range of the texture coordinate, i.e., 
[O,I] onto each segment. In addition, we can have the appearance 
texture wrap around in the dimension that corresponds to the flow 
direction. We have found that this solution produces satisfactory 
rendering result. 

The process of assigning streamline identifiers to different 
streamlines is dependent on the type of appearance texture being 
used. For LIC or line-bundle textures, for example, streamlines are 
randomly assigned identifier values in the range [O,l]. For textures 
containing a well defined solid smcture, as in glyphs, it is impor- 
tant that adjacent voxels are assigned texture coordinates (u ,v Iw)  
which map to adjacent texels in the texture space. Othenvise the 
3D structure present in the appearance texture would break down 
after texture mapping. As will be explained in the next section, we 
model streamlines as a set of lines surrounding a central line. This 
central line gets an identifier (U, U) which maps to the center of the 
3D slmcture in the appearance tc~turc.  The outer lines are mapped 
to a close vicinity in the appearance texture. Figure 3(b) shows the 
voxelization results for such a collection of lines where (U,.) val- 
ues are encoded in the red and green channels, and w is stored in 
the blue channel. 

3.4 Anti-Aliasing 

When the resolution of the trace volume is limited, the above vox- 
elization algorithm will produce jaggy results. In 2D, anti-aliasing 
lines can be achieved by drawing thick lines[Segal and Akeley 
20011. The opacities of the pixels occupied by the thick lines corre- 
spond to the coverage of their pixel squares. Since line anti-aliasing 
is widely supported by graphics hardware, one might attempt to 
use it when slicing through the streamlines during our hardware- 
accelerated voxelization process. However, we have found that this 
doesn't generate the desired effect since no anti-aliasing is per- 
formed across the slices of the trace volume. Hence, to achieve 
streamline anti-aliasing in the voxelization process, one needs to 
model the thick lines and properly assign the opacities. 

We model the 3D thick line as a bundle of thin lines surrounding 
a central line. During advection, the streamlines are generated as a 
set of line segments. After the advection stage, each line segment 
is surrounded by a bundle of satellite lines, denoted as 1 = {bk}, 
where hk is the kth satellite line in the bundle. The line bundle is 
created by extruding a mask = { m k }  along the streamline dur- 
ing the advection process. Each point mk on the mask corresponds 
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to a vertex of the satellite strip. Figure 5 shows two such points on 
the mask. The distance between two adjacent strips should be small 
enough to avoid any vacant voxels within the thick line in the trace 
volume. Initially, the center of the mask is placed at the first ver- 
tex of the streamline. Then the mask is swept along the streamline 
as the advection proceeds. During the sweep, the mask is always 
positioned perpendicular to the tangential direction of the stream- 
line. When the advection of the medial streamline completes, we 
construct the line strip b, by connecting the vertices from the cor- 
responding points in the mask along the sweep trace. 

All the lines in the bundle are assigned the same streamline 
parametrization as the central streamline. As discussed in the pre- 
vious section, the streamline identifiers of the lines are assigned in 
a way that maps them to adjacent texels of the appearance texture. 
Any solid structure present in the appearance texture is preserved 
after the trace volume is texture mapped, In addition, we assign an 
opacity value to each vertex on the line bundle so that anti-aliasing 
can be perfanned in the rendering stage(sec. 3.5). It is stored in 
the alpha channel of the vertex attribute. The opacity value is as- 
signed in a way that the vertices near the surface and the endpoints 
of the thick line receive lower values to simulate the weighted area 
sampling algorithm[Foley et al. 19901. 

3.5 Real-Time Rendering Using Dependent Tex- 
tures 

Today volumetric datasets can he rendered at interactive speeds 
using texture mapping hardware. In the hardware based volume 
rendering methods, the volume data is stored as a texture in the 
graphics hardware. A stack of polygons are textured with the cor- 
responding slices from the volume data and blended together in a 
back-to-front order to form the final image. If the graphics hard- 
ware only supports 2D textures, the volume dataset is represented as 
three stacks of 2 D  textures and the slice polygons are axis-aligned. 
If 3D texture-mapping is supponed, the dataset can he represented 
as a single 3D texture and view-aligned slicing polygons can he 
rendered. 

In our algorithm, rendering the trace volume requires a two-step 
texture lookup. The first texture lookup involves the usual slicing 
through the trace volume, where every fragment of the slicing poly- 
gon receives a color. This color represents the trace tuple, which is 
then used as the texture coordinates to look up the appearance tex- 
ture to get the final color and opacity for the fragment. This two- 
step texture lookup can be performed in real time by employing the 
dependent texture capability provided by the NV-TEXTURE-SHADER 
extension on nVidia Geforce4 FPUs. 

Figure 6 shows the texture shader setting for the fragment pro- 
cessing stage using the nVidia Geforce4 GPUs. The trace volume 
is represented by a RGBA 3 D  texture(Tex0) on the graphics hard- 
ware. With the texture coordinates ( s , t , r )  coming from the sliced 
polygon, an RGBA texel is fetched from the trace volume. It con- 
tains the trace tuple (u ,v :w) ,  as well as the opacity value a for the 
purpose of anti-aliasing described in section 3.4. The appearance 
texture is set to be the second texture, i.e., T a l .  The dependent 
texture shader is configured to use the trace tuple as the texture co- 
ordinates to sample Texl. The anti-aliasing is done by using the 
register combiner ( N L R E G I S T E R ~ C O M F X N ~ )  to modulate a from 
Tex0 with the opacity value from T a l  (figure 10). The normal vol- 
ume, shown as Tex2 in figure 6,  is used for various depth cuing 
effects and will be discussed in the section 4.2. The last texture 
shader stage is assigned with a 2 D  texture (Tex3) which sewers as 
the opacity modulation'function and will be discussed later in sec- 
tion 4.3. 

Figure 6: Texture shader configuration. The trace volume, 
the appearance texture, the and normal volume are represented 
as 3D color textures and assigned to the Ist, 2nd and 3rd 
texture units (GL.TEXTUREOARB, GL.TEXTUREI A R B ,  and 
GL-TEXTUREZARB), respectively. The 1st and the 3rd texture 
Units receive the textnre coordinates interpolated from those speci- 
fied by glMuIfiCoord3f0, then the 2nd and the 4rh texture units take 
their results to perform dependent texturing 

4 Appearance Control 

In this section, we show the use of different appeaance textures and 
various visual cues in our algorithm. We also provide some addi- 
tional implementation details that are not described in the previous 
sections. 

4.1 Appearance Textures 

Our chameleon rendering framework allows the user to experiment 
with different visual mappings at run time when exploring the un- 
derlying vector field. To demonstrate the utility of our algorithm, 
we have created several appearance textures. Each of them presents 
a different look and feel. Figure l(a) shows a LIC-like visualization 
using a 963 tornado dataset. The appearance texture was generated 
using a 2D LIC texture precomputed from a straight flow, which 
can he computed very efficiently. We also generated a visualiza- 
tion using a texture that simulates streamtuhes with illumination 
and saturated colors, as shown in figure I(b). When using opaque 
surface-like textures, a better depth cue can be obtained. Figure 7(a) 
presents a visualization with aninput appearance texture simulating 
the line bundle technique([Crawfis et al. 19941). Similar to the LIC 
texture, the short strokes in the line bundle texture were generated 
using a straight flow. The tails of the strokes are made more trans- 
parent than the heads to emphasize the flow direction. When local 
glyphs are desired, the user can input a simple voxelized glyphs, 
such as the arrowhead-shaped solid shown in figure 7(b). All the 
visualizations were created from the same trace volume, which was 
created only once, in real time. 

4.2 Depth Cues 

Additional depth cues can he used to enhance the perception of the 
spatial relationship between flow traces. In our rendering frame- 
work, we can incorporate various depth cues such as lighting, sil- 
houette, and tone shading. To achieve these effects, we need to 
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Figure 7: Different appearance textures. (a) Line bundles. (bj 
Glyphs. 

supplement the trace volume with a normal vector for each voxel. 
Although normal vectors are typically associated with surfaces 
and not uniquely defined for line primitives, when using 3D thick 
lines for anti-aliasing as described in section 3.4, the normal vec- 
tor { = ( n x ~ n y ~ n z )  for jth vertex mi on strip i can be defined as 
mi - v . ,  where Y .  is the center of the extruding mask. Altema- 
tively, when the light vector L is fixed, the normal vector can be 
defined as the one lying on the L - T plane, where T is the tangen- 
tial vector. This is the technique used by the illuminated streamline 
algorithmIZackler et al. 19961. 

Like trace tuples, normal vectors can he assigned to vertices 
along the thick lines as colors and scan converted during the vox- 
elization process. Since a normal vector is a 3-tuple and the number 
of color channels is not sufficient to represent both the trace tuple 
and the normal vector simultaneously, we employ a second vox- 
elization pass to process the streamlines with normal vectors as the 
colors. Because each component of a normalized normal vector n! 
is in the range of [ - I ,  I], they are shifted and scaled into the [0,1] 
range in order to be stored into the fixed-point color channels. 

Tne normal volume is specified to the second texture unit (TexZ) 
in the texture shader program (Figure 6). The same trace tuple 
fetched from TexO to look up Texl is also used as the texture co- 
ordinates to sample the normal volume. The fetched normal vector 
is then fed to the register combiner stages on the nVidia GeForce4 
GPU to perform various depth cue operations in a single render- 
ing pass. In the following, we provide more details about creating 
the depth cues lighting, silhouette, and tone shading. Due to space 
constraints, we only provide the combiner settings for lighting in 
Figure IO. 

Lighting The lighting equation for each voxel in the trace volume 
is defined as: 

J I 

where N ,  L, H are the normal vector, light vector, and halfway vec- 
tor, respectively. Cdece, and Cspec are the colors fetched from the 
appearance texture, and the color of the specular light. kdilf is a 
constant to control the intensity of the diffuse light. The intensity of 
the specular light is controlled by the magnitude of CApec. and k, is 
the shininess of the specular reflection. Figure 10 shows the config- 
urations of the register combiner stages. Since the normal vector is 
scaled and shifted in the normal volume as discussed above, we use 
the EXPAND-NORMAL-NV input mapping functionality of the regis- 
ter combiner (shown as E.N. boxes in Figure 10) to map it hack 
to the original [-1,1] range before the dot-product operation. The 
input mapping UNSIGNED-IDENTITY-NV (shown as U.I. boxes in 

Figure 8: Different depth cuing techniques. (a) Lighting. (bj: Tone 
shading. 

Figure IO)  clamps any negative dot product result to zero. Figure 
8(aj shows the effect of using lighting. 

Silhouette The spatial relationship between streamlines in the 
trace volume can be enhanced by using silhouettes to emphasize 
the depth discontinuity between distinct streamlines. We use the 
following formula to depict the silhouette of thick lines: 

v = Cdeca, x ( N . E ) P + C ,  x ( I  - ( N . E ) P )  

where E is the eye vector and C, is the silhouette color. Constant 
p is to control the thickness of the silhouette. The larger the p ,  the 
thicker the silhouette. An example of silhouette-enhanced render- 
ing is given in Figure9(aj. 

Tone Shading Unlike lighting, which only modulates the pixel 
intensity, tone shading varies the colors of the pixels to depict the 
spatial structure of the scene. Objects facing toward the light source 
are colored with wanner tones, while the opposite are in cooler 
tones. We achieve the tone shading effect with the following for- 
mula: 

'R = C, X C,,,, x ( N . L )  +C, x (1 - ( N  . L ) )  

where Cw is the warmer color such as red or yellow and C, is the 
cooler color such as blue or pulple. Figure 8(b) shows the rendering 
supplemented by tone shading. 

4.3 Interactive Volume Culling 

Clipping planes and opacity functions can be used to remove unin- 
teresting regions from the trace volume. In our algorithm, since the 
trace volume is rendered using textured slicing polygons, we can 
easily utilize OpenGUs clipping planes to remove polygon slices 
outside the region of interest (Figure 9(a)). 

We can also employ a transfer function T based on the velocity 
magnitude of the vector field to modulate the opacity of the trace 
volume, The final opacity value of the voxel becomes a x T(v,,*), 
where a is the opacity value of a voxel described in section 3.4, 
and vmg is the velocity magnitude at that voxel normalized by the 
maximum velocity magnitude in the vector held. A simple transfer 
function, T ,  that we have used is shown in Figure 9(bj. 

We implement the transfer function lookup and opacity modula- 
tion using texture shader and register combiners. Recall that Tex2 in 
Figure 6 is an RGB 3D texture which stores the normal vectors used 
in various depth cuing techniques. We store the normalized velocity 
magnitude vmnR in the alpha channel of Tex2 and assign the transfer 
function T to the third texture unit Tex3. Although T is essentially a 
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Table 1: Trace volume construction time (in seconds). The number 
of lines (first column) includes the satellite lines as well as the cen- 
tral streamlines used for constructing anti-aliased streamlines (sec. 
3.4). 

Figure 9: Interactive Volume Culling. (a) culling with clipping 
plane and opacity modulation. Rendered with silhouette enhance- 
ment. (b) opacity transfer function T(vmOg) 

ID function hence can be realized by ID dependent texture lookup, 
we construct Tex3 as a 2D texture with identical rows because cur- 
rently only 2DI3D dependent texture lookups are supported by the 
Geforce4 GPU. The shading operation in sfage3 is then configured 
as DEPENDENT_AR_TEXTUREG?D-NV. which uses the alpha and red 
components of the texel fetched from Tex2 as the texture coordi- 
nates to lookup the transfer function bound as Tex3. In the register 
combiners, we modulate the opacity described in section 3.4 with 
the value fetched from Te,r3(Figure IO). The user can interactively 
modify the opacity transfer function and render the trace volume in 
real time. 

4.4 Animation 

For non-directional textures (like a LIC texture), animation pro- 
vides a way to visualize the flow direction. Using the chameleon 
algorithm, one can easily create animations by looping through a 
series of appearance textures, which can he generated easily by con- 
tinuously shifting the appearance texture along the flow direction in 
the 10cdl texture space. Alternatively, an additional stage in the 
texture shader program can he introduced to translate the texture 
coordinates, represented by the trace tuples, along the streamline 
direction at run time when rendering the trace volume. The ad- 
vantage of this approach is that multiple appearance textures need 
not he loaded when producing animations. When the 2D trace tu- 
ple ( U , " )  is used, this translation can be achieved by multiplying 
(U,",  1 )  with the following 2 x 3 matrix M: 

1 0 0  
M = l 0  I 6 1  

where 6 is the translation amount along [he streamline direction 
and is incremented at each animation step. The translated trace tu- 
ple (u,v + 6 )  is then used as the texture coordinates lo sample the 
appearance texture. We implement this by assigning the trace tu- 
ple (U,.) for each vertex on the streamline as color ( u , v , l ) ,  and 
perform the matrix multiplication by the DOT-PRODUCT-NV and 
DOT-PRODUCT_TEXTURE_ZD-NV texture shader operation. To show 
the effectiveness of our algorithm, we have generated several ani- 
mations showing the results of our work on the supplementary files 
accompanying this paper. 

5 Performance 

We implemented our chameleon algorithm on a standard PC using 
OpenGL (for rendering) and MFC (for creating user interface) li- 

Image Resolution 1 600 x 600 I 800 x 800 
1 2 8 ~  volume I 17.07 I 14.95 
25b3 volume I 14.31 1 12.13 

Table 2: Trace volume rendering speed(frdmes1second). 

6 Conclusion and Future Work 

We have presented an interactive texture-based technique for visu- 
alizing three-dimensional vector fields. By decoupling the calcu- 
lation of streamlines and the mapping of visual attributes into two 
disjoint stages in the visualization pipeline, we allow the user to use 
various appearance textures to visualize the vector field with en- 
hanced visual cues. We plan to extend our work to achieve level of 
detail by using multi-resolution trace volumes and next-generation 
graphics hardware which provides full programmability in the ras- 
terization stage. With the suppon of the floating-point datatype on 
the new hardware, the image quality can be further improved. Many 
traditional volume rendering techniques can also he incorporated 
into the Chameleon framework. 
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