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Multi-variate, Time-varying, and Comparative

Visualization with Contextual Cues

Jonathan Woodring and Han-Wei Shen

Abstract— Time-varying, multi-variate, and comparative data sets are not easily visualized due to the amount of data that is presented
to the user at once. By combining several volumes together with different operators into one visualized volume, the user is able to
compare values from different data sets in space over time, run, or field without having to mentally switch between different renderings
of individual data sets. In this paper, we propose using a volume shader where the user is given the ability to easily select and operate
on many data volumes to create comparison relationships. The user specifies an expression with set and numerical operations and
her data to see relationships between data fields. Furthermore, we render the contextual information of the volume shader by
converting it to a volume tree. We visualize the different levels and nodes of the volume tree so that the user can see the results
of suboperations. This gives the user a deeper understanding of the final visualization, by seeing how the parts of the whole are
operationally constructed.

Index Terms—multi-variate, time-varying, comparative, focus + context

F

1 INTRODUCTION

Fig. 1. From left to right, top to bottom: a set intersection operation
result with two volumes A and B of clear, A out B, B out A, and B in A.
The silhouette context of the volumes A, B, and A in B is rendered as
well.

Scientific visualization has moved from the exploration of single
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scalar data sets to multi-variate, time-varying, and comparative data
[10, 11]. In the realm of time-varying data, animation is a common
way of exploring a time series data. While animation is adequate for
expressing time evolution, it requires effort from the user to analyze
space-time-value relationships. For example, if the user wants to see
the relationship between time step A and B, she has to fast-forward
and reverse the animation, or jump between animation frames. Even
then, the relationships between value and space in time are not entirely
clear, due to the loss of positional information. The same is true for
comparative visualization, where we compare several different views
of the data at the same time.

An alternative method to explore multi-field, time-varying, and
comparative data is to combine all data into one volume [1]. High
dimensional projection [21, 22] for time series data allows the user to
combine multiple time steps into a single volume. Unfortunately, the
user is limited to how many time steps can effectively be visualized at
the same time because of color composition techniques used. We use
the basic primary colors, i.e., red, blue, and green, for three fields, then
the volume intersections from high dimensional projection appear as
cyan, magenta, yellow, or white, depending on the region. Using more
sophisticated color schemes, it might be possible to expand beyond
three fields. However, the hues that humans can distinguish are rather
limited. Furthermore, the user cannot use the transfer function to vi-
sualize values at the same time as volume intersections, because color
is reserved to indicate intersection regions.

The number of time steps that can be visualized at once is limited
due to space filling and occlusion, and it might not be possible to even
see volume intersection areas. An alternative technique for combin-
ing multiple field data into one volume uses a different conceptual
framework [4]. They are able to solve some of the occlusion prob-
lems by adding on volume inclusion and exclusion operations. These
are based upon the alpha channel where both operations determine the
output opacity of a point. They do not consider all possible set opera-
tions that could be performed between volumes. Other set operations
could be added on as special cases, but that would be an non-integrated
solution.

Both methods mentioned above combine volumes with alpha com-
position using the transfer function from the field data. These do not
allow the user to have exact control of the final appearance of a data
point. Since a point in space is the result of the combination of col-
ors of several transfer functions, it cannot be directly mapped to one
value in one transfer function. Additionally, both methods only show
the final visualization of multiple data fields, but not the intermediate
results that lead to the final image. For example, the user may wish
to see the intersection of multiple fields in space, thereby excluding
the data that are not included in the intersection. If the user generates
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a complex composition involving all available data, she may be pre-
sented with an image that is completely blank. The user does not have
any contextual information on what went wrong in her visualization,
especially if she does not know what the original data look like.

To solve these problems, we propose a flexible multi-variate, time-
varying, and comparative visualization scheme that is able to handle
an arbitrary number of variables and time steps. We achieve this by al-
lowing the user to specify a volume shader expression combining data
volumes with operations. In our operators, we use an expanded series
of set operations that take into account all regions between multiple
volumes, allowing the user to locate specific data regions and solv-
ing occlusion problems. The set operations are implemented with a
general framework that can handle an arbitrary number of data fields,
which is also efficient and easy to understand. While constructive vol-
ume geometry (CVG) [5] describes a set algebra for boolean opera-
tions, we provide a mathematical framework that makes it simple to
implement with the state-of-the-art hardware volume rendering tech-
niques. In addition, we can perform numerical and statistical opera-
tions in the same framework. With multiple data fields and complex
volume shader expressions, the user needs to see the individual parts
of the data, the suboperations of the final result, and how her result was
generated. In response, we convert the volume shader expression into
a tree graph, called the volume tree. In a volume tree, operations and
volumes are nodes in the tree, and edges are inputs and outputs. This
is realized through the visualization of the suboperations, levels, and
nodes of the volume tree along with the final result. Leveraging this
visualization, the user is able to make an better informed visualization
and gain a greater understanding of the data.

2 RELATED WORK

There are different techniques that combine several volumes together
into one volume. We have previously mentioned Woodring et al., Chen
and Tucker’s, and Cai and Saka’s techniques for combining volumes
together, and their problems that we address in this paper [4, 5, 21, 22].
It might be possible to render multi-field data with higher dimensional
projections, slicing, and transfer functions [1, 10, 13, 20], however, we
completely avoid going to higher dimensions by working in a shading
framework.

Shading languages are ubiquitous today, and many implementations
of shading languages exist, which can be attributed to Hanrahan and
Lawson [9, 18]. More recently McCormick et al. [16] have devel-
oped a procedural volume shading language that generates and com-
piles code for the CPU and GPU for visualization. Porter and Duff
[17] presented a unified technique and novel mathematics for image
composition. Our set operations are inspired by their ideas. We also
attempt to extract interesting features for the user, from our operations
which have been worked on in the past [13, 14].

Our paper uses ideas of selection sets of multiple volumes and the
combination of selection sets. Bruckner and Gröller [2] provide a sys-
tem for volume illustration of selection sets. We expand upon their
method utilizing multi-field data, and also generalizing and simpli-
fying the method of volume combinations without using intersection
transfer functions. Doleisch et al. [7] provide methods for feature set
selection in visualization.

The volume tree is derived from the shader expression that de-
scribes how volumes are joined together to form a comparative vi-
sualization. For user interaction and construction of the volume tree,
we utilize visualization and image spreadsheets [12, 15]. In the con-
text rendering of the volume tree, we utilize non-photorealism where
we use line drawing techniques [3, 6, 8, 19] to create silhouettes, and
express the existence of volume data without explicitly rendering the
entire volume.

3 OVERVIEW OF OUR APPROACH

Our fundamental principle for comparative visualization is that the
data fields should be rendered together within the same space for user
comparison. The visualization can extract the comparative informa-
tion and present how data differ at a point in space, without asking the

user to compare the data manually. In this paper, we present a compar-
ative visualization technique where per-point operations are performed
on the data. Assuming that each data field lies in the same coordinate
system, the renderer applies a user defined volume shader expression.

The volume shader is an expression composed of operations and
data fields. Such an example is given in Equation 1, where o is the
output volume derived from a user expression consisting of operations
op and input data volumes v. Note that a Backus-Naur Form (BNF)
can be derived for our volume shader expression. For brevity, we do
not express a BNF in this paper, but we refer the reader to shading lan-
guage and expression literature [9, 18] for the detail of using BNFs.
The final rendering result o is a volume that represents the application
of the volume shader at every point in space. The user has complete
flexibility in terms of what they want to visualize, provided that a suf-
ficient toolbox of operations for data comparison is given.

o = op1(op2(op3(v1,v2, ...), ...),opn(...), ...) (1)

In the context of multi-field, time-varying, and comparative visual-
ization, we specify two kinds of operations on the data, set operations

and numerical or statistical operations. The set operators give the ca-
pability of a “visual database search” of the data. It allows the user
to visualize examples such as, given a pressure p and a temperature t,
showing all points where p0 < p < p1 and t0 < t < t1. This gives the
user a way to isolate data to a specific area of interest. Furthermore, it
helps us cope with space filling and occlusion issues. Traditional tech-
niques of rendering two volumes intersecting in space make it difficult
for us to observe the intersections, because they are often occluded by
the non-intersecting portions. Using set operations, the user can make
a query like “just show me the intersecting data in space”. The user
can also extract specific regions from data by defining a volume mask,
where the set operations cull the data accordingly.

Other methods have used the appearance of a volume after the ap-
plication of the transfer function to composite volumes together. A
point in a composite volume may be the combination of colors from
two or more transfer functions. The user loses control over the appear-
ance of the data. Moreover, she also loses the ability to see what value
a point has, because the final color may be different than the transfer
function mapping. We provide value-based set operations that output
data volumes rather than color volumes, in addition to appearance-
based set operations. Thus, the user can control the visual appearance
of a data point, since the data will be mapped by one transfer function,
rather than the color combination result of several transfer functions.

Numerical or statistical operations can be used in the volume shader
expression to generate a new data field based on the volume inputs.
Rather than preprocessing and storing all analyses as a separate data
field, the user can perform numerical operations on the fly and make
data-to-data comparisons. There might not be the time or the fore-
thought to create all numerical or statistical tests on data. It seems
natural to include numerical operations, and they allow the user to ex-
tract more information as needed.

With long shader expressions and operator nesting, it can be a
daunting task to understand the results. This difficulty arises due to
the reason that the user does not see how the final visualization is cre-
ated from the individual parts. We ease the understanding by providing
more information about the volume shader. This is done through the
visualization of the suboperations and input data along with the final
result. We convert the volume shader to a volume tree. Figure 2 is a
example of a volume tree that is derived from a volume shader expres-
sion and a linked visualization spreadsheet [12], which is described in
section 6.1. The volume tree consists of operations and volumes as
nodes, and inputs and outputs as edges. By the visualization of tree
levels and nodes along with the visualization spreadsheet, the user see
how the sources change progressively through the volume tree to the
final result. Observing each operation in context with the final result,
the user gains insight that may not be entirely clear or present in the
result. This volume tree representation also gives the user the oppor-
tunity to fine tune the results. By adjusting each suboperation of the
volume shader, the user can generate a more precise visualization. It
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even allows the user to locate errors in her visualization if she has
made a mistake at some stage of the volume shader.

Fig. 2. An example of a volume tree and visualization spreadsheet dis-
played for the user. Leaf nodes are input data fields and internal nodes
are operations. Edges indicate input and outputs. The user constructs
the volume shader by selecting two or more data sets and choosing the
operation to apply.

In addition to the visualization spreadsheet, we provide two meth-
ods of rendering the volume tree context: level-of-detail and anima-
tion. For the level-of-detail method, we render selected suboperations
and input at a lower detail level along with the final result. Lower de-
tail levels can be realized through transparency, shells, and line draw-
ing [3, 6, 8], so that the final result is not completely occluded. The
animation method allows the user to move through the levels of the
volume tree so that she can see how the data evolves in the same space.

4 SET OPERATORS

A set operator is a binary operator that takes two data fields as inputs,
and it outputs a field resulting from performing per point set tests.
We give the user set operations to extract the interesting portions of
the data. Our set operators and tests are inspired by the Porter and
Duff compositing operators [17]. Recall that with their compositing
operators, given two input images, it simply states how two images
can be composited together in a mechanical, unified way. Although
the graphics community knew how to perform compositing before
their operators came out, it was largely ad-hoc and turn-key solutions.
Porter and Duff unified image compositing and made it very simple to
specify arbitrary composition. High dimensional projection [21, 22]
does not allow for an arbitrary combination of operators, only one op-
eration is applied for all data. The multi-volume rendering in [4] only
considers inclusion and exclusion and not in a straightforward manner.
CVG [5] provides boolean algebra, but does not specify implementa-
tion mathematics. In response to these, we provide a unified, mathe-
matical method for any arbitrary combinations of data. The method
also conforms to using hardware volume rendering techniques.

In our set operators, we avoid using N-dimensional transfer func-
tions [13] for the data. Considering the case of two fields, we wish to
show the intersection of data between two interval volumes. This is
quite simple to do with a 2D transfer function. Once we progress to
four fields or more, it becomes difficult for the user to define the trans-
fer function, besides trying to implement it in graphics hardware. In
our method, we do not actually have to consider the transfer function
to perform set operations. This allows us, in certain cases, to ignore
the transfer function until rasterization. This also allows us to draw
a distinction between two types of set operations: appearance-based
set operations and value-based set operations. The former applies the
transfer function and combines data together based upon their color
volumes. The latter performs volume set operations in data space and
applies the transfer function later.

4.1 Appearance-Based Set Operator

In [17], we have Equation 2 that specifies the output color at a point
cO, given two pre-multiplied alpha input colors cA and cB. The type

operation FA FB

clear 0 0
A 1 0
B 0 1

A over B 1 1−wA

B over A 1−wB 1
A in B wB 0
B in A 0 wA

A out B 1−wA 0
B out A 0 1−wB

A atop B wB 1−wA

B atop A 1−wB wA

A xor B 1−wB 1−wA

Table 1. Lookup table for FA and FB to determine set operations

of compositing operation performed is determined by a lookup table
which determines the values of FA and FB from the alpha values of cA

and cB. The compositing equation is simple to implement given the
lookup table, and it covers all composition possibilities.

cO = cAFA +cBFB (2)

For our volume composition, the appearance-based set operator is
the same as Equation 2. It operates on two color volumes, where
the transfer function is applied to data volumes. cA and cB are pre-
multiplied alpha color points in the color volumes A and B. cO is an
output color at a point in the resulting volume of the set operator. In
addition, we have a lookup table for the set operations that we wish to
perform, for FA and FB in Table 1. Examples of applying appearance-
based set operators on two volumes can be seen in Figures 3, 4, 5, and
6. We use a hurricane simulation data set. Set A is a data range defined
on the pressure field from the hurricane simulation, while set B a set
defined on the precipitation field.

Fig. 3. Two volume sets with A on the left and B on the right.

Note that instead of FA and FB being determined by the alpha values
of cA and cB, as in [17], we introduce two new scalar values, wA and
wB. Here, w is the weight scalar in the range of [0, 1] for a point. A
weight is defined for each point in each volume A or B. It indicates the
membership for a point in the input volume sets which participate in
the set operation [2]. A w of zero means that a point does not belong
to the set of its volume, while any value greater than zero means that
a point does belong to the set of its volume. A weight of less than
one allows the user to determine the blending factor between color
volumes. With fractional set weights, the user can specify that only
50% of a volume, for example, blends with any other volume at most,
independent of the transfer function.

Every volume has a set defined within it. The weighting function
needs to be specified for every volume, which maps data points to
weights. Methods outlined in the reference material [2, 7] can be used
to generate the weighting function. The weighting function can also
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Fig. 4. A out B on the left, and B out A on the right.

Fig. 5. A in B on the left, and B in A on the right.

be used to define the volume sets based on spatial regions, rather than
on values. The reason that we do not use the alpha value of cA and cB

for FA and FB determination is to allow the user to specify the input
sets independently of the transfer function. The input volume set de-
termination for a set operator should be orthogonal to the appearance
of volume. Using the alpha channel as the determinant for F values,
we assume that the data selection being operated on is the same as
the the points that have opacity greater than zero. With the weighting
function, the user can utilize it to determine what portion of a data
field is part of an operational set independent of the transfer function.
For example, the user is able to completely define the appearance of a
data field, but then is able to select a portion of it to be operated on.
Therefore, she can even select points that are transparent as part of a
volume set by using the weighting function.

An appearance-based set operator works on color volumes. When
applying a transfer function to a volume and transforming it to a color
volume, a weight function is also applied to the volume. In our color
volumes, a color volume vector at a point in space is a 5-tuple of
(r,g,b,a,w). The output weight wO for a color point from the input
colors is Equation 3, where clamp is a function that clamps scalars to
[0, 1]. In practice, however, an output weight is not necessarily stored
as intermediate data. This is because at run time, the source weights in
the volume shader are looked up and intermediate weights are stored
as local variables during point processing. They are then discarded
after the final color is produced.

wO = clamp(FA +FB) (3)

4.2 Value-Based Set Operator

The second type of set operator is value-based. The value-based set
operators can be used in two additional scenarios. When the user per-
forms a numerical operation on data, she wants to work in the original
data space, rather than the color space. Second, if the user wishes to
make a precise specification of the appearance of data points in the
final result, she wants to use value-based set operations. Appearance-

Fig. 6. A atop B on the left, and A xor B on the right.

based operations can blend colors together, and therefore, the one-to-
one mapping of color to value is lost. Using value-based set opera-
tions, we are able to disambiguate this problem, since the color at a
point in space is determined by exactly one transfer function. This
is the same argument as using pre-classification interpolation versus
post-classification interpolation. A transfer function may not be lin-
early defined, therefore when blending colors, the final color may not
be an accurate representation of the value. If we generate data volumes
by value interpolation and blending, then apply the transfer function
later, we can have a more accurate representation of the value. We
introduce two types of value-based set operators we have developed.

The first type of value-based set operator performs value blending,
as shown in Equation 4. Here, the constraint is that the two input data
fields have to be of the same type for value blending. In Equation 4, dO

is the output data point resulting from the two input data points dA and
dB. We use the same Table 1 as in appearance-based set operations, to
determine the values of FA and FB from the function we apply for the
set operation.

dO = (dAFA +dBFB)/(FA +FB) (4)

Instead of performing a linear combination of colors, we perform
a linear combination of values to generate an output point. There is
also a re-normalization step in Equation 4. This is to ensure that the
value of dO is not scaled out of the range of the original data. If the
fractions sum to zero, then the output data is a not-a-number (NAN)
value, which indicates that it has no value. Furthermore, we use Equa-
tion 3 to determine the output weight of the data point. This follows
that points in a data volume become 2-tuples of (d,w), where d is the
data and w is the weight. Though, likewise as in the appearance-based
set operator, a calculated weight is not explicitly stored. It is only used
and calculated at run time, and then discarded at rasterization. More-
over, the user needs to select the transfer function that is eventually
applied to the data during rasterization, or to be used when the data is
passed through an appearance-based set operation. The transfer func-
tion can come from either input field, because both fields are of the
same type. Also, since one transfer function is used, we avoid some of
the problems of value ambiguity due to color blending. Although, it is
not completely resolved since values are linear combinations of data
fields.

In our second value-based set operator, instead of value blending,
we output the value that is the input value with the maximum fraction
F , as shown in Equation 5. Like previous value-based set operators, if
both fractions sum to zero, then the output value is a NAN value.

dO = i f FA > FB then dA else dB (5)

This value-based set operator provides two benefits. First, the out-
put volume can have mixed data types, since we do not attempt to
perform value blending and we choose the input value that has the
maximum F value. In that way, the user can perform an operation, for
example, where she finds the intersection of tensor values with scalar
values, without applying the transfer function and appearance-based
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set operations. Second, it allows the user to specify the appearance
of a data point in the final result completely and exactly. Since the
output is a binary decision of which value is the output value from
the two inputs, the selected data value’s transfer function can be used
for the appearance during rasterization. We keep track of this as ev-
ery output data point will have an index reference i that maps to its
transfer function. The output data field has output data points that are
2-tuples of (d, i), where d is the data and i is the transfer function in-
dex. During transfer function application, i is used to locate the correct
transfer function to apply to the data value. It is also used to look up
its weighting function.

4.3 Normal Calculation

One final note to mention is the calculation of normals for correct
lighting. We postpone gradient calculation until the final operation
or rendering takes place. The gradient is based upon visible points,
and not the original data. For example, if a volume is carved out by
another volume from a set operation and the normals used are from
the original data, then the lighting will not appear correct. We could
use the reversed normals from the other volume. However, that only
considers the bordering points between the two volumes, and further
interior points still have the incorrect gradients. A more general solu-
tion for solving this problem is to calculate the gradient in alpha space
after the transfer function is applied. To calculate the normal, we apply
the volume shader expression to the neighborhood of points to obtain
samples. After applying the transfer function for the sample points
and obtaining the alpha values, we calculate the gradient on the alpha
space and normalize it for the lighting normal. An image showing the
correct lighting after a volume A is carved out by a volume B with A
out B can be seen in Figure 7.

Fig. 7. Correct lighting after a set operation carves away a volume.
The volume before operation is shown on the left. The volume after
operation, having being carved away, is shown on the right.

5 NUMERICAL OR STATISTICAL OPERATORS

For completeness in our model, numerical or statistical operators are
included for use in time-varying and comparative scenarios, where the
user is comparing volumes of the same data type. With numerical op-
erators, the user can perform a series of computations in her volume
shader expression, along with set operators to isolate regions of the
data. Numerical operators give the user the capability of additional
analyses without any particular forethought of preprocessing the data
and storing it as a separate data field. As long as a numerical or sta-
tistical operation is applied per point for the input data, it can then be
implemented as an operation for a volume shader. Unlike set opera-
tors, the user needs to specify a transfer and weighting function on the
operator, since it creates a new data field. A set operator derives the
appearance and weight from the inputs, while a numerical operation
cannot.

Any type of numerical operation that can be used in analysis of
a series of data points in space can be implemented as a numerical
operator. For scalar data, a max operator finds the maximum of a data
point over a series of input data fields. This is useful in time series

data if we want to find the point of maximum gain over time. This is
also useful in the analysis of comparative data sets. In this case, the
user can find areas of extreme deviations from the rest of the data. For
vector data, a dot product operator would allow the user to find areas of
directional differences. In time-varying vector flow field data, it would
show where flow changes direction over time. In a comparative flow
scenario, it would show how different models have different flows. For
geometry tensor data, we could use a unary operator that transforms
the tensor into a more easily-visualized form, such as primary and
secondary curvature scalars without preprocessing.

6 USER INTERACTION AND CONTEXTUAL RENDERING

The primary method that we use to show the context of the visualiza-
tion is by converting the volume shader expression into a volume tree.
Operators and input data fields form nodes and input and output con-
nections between operators form edges. The visualization result is the
root of the tree, and all input fields are leaves of the tree. One opera-
tional step forward in forming the final result is indicated by one level
of the tree. Every subtree forms a suboperation that is part of the final
result. We define the context of the volume tree as the suboperations
that form the final result. Our goal is to allow the user to construct the
volume shader and navigate through the context of volume tree.

6.1 Graphical Representation

The user can directly specify a volume shader through a shader expres-
sion. While adequate in functionality, there is a disconnect from the
expression and the visualization of the data. To ease the construction
of the volume shader for the user, we provide a visualization spread-
sheet [12] and volume tree interface, seen in Figure 2. This allows the
user to browse all of the available data fields and the results of every
step of the volume shader operation. It also gives the user the ability
to construct the volume shader in a bottom-up fashion and gives her
an interface to adjust the volume shader expression.

The user starts by importing all of her data that she wishes to use
into the spreadsheet, which appears in one row, the bottom row, of
the spreadsheet. We also display each data set as a volume tree graph
node, all at the same vertical level spread out horizontally, mirroring
the spreadsheet layout. The user can manipulate the transfer function
or weighting functions for a data set by selecting a cell or node. By
selecting one or more cells or nodes, the user can direct the system
to operate on them. The resulting operation is displayed in a new
spreadsheet cell showing the user the results of the operation. The
operation also creates a new node in the volume tree, connecting the
source data nodes by edges to the new node.

The new graph node attempts to place itself in an appropriate man-
ner by positioning itself one vertical level above the highest source
node. Its horizontal position is the horizontal average of the source
nodes. If that position is already occupied, it places itself in the near-
est free horizontal position to its desired destination. The new corre-
sponding spreadsheet cell attempts to automatically position itself to
mimic the layout of the volume tree graph. The spreadsheet coordi-
nates can be seen as grid structuring of the volume tree graph. When
a new node is created, the graph space is transformed to spreadsheet
coordinates and the new cell is placed there. Likewise, if that spread-
sheet cell is occupied, the new cell places itself in the closest column
to its desired destination. The user is allowed to reposition nodes or
cells, but we do not adjust current node or cell positions when placing
new nodes and cells. If we repositioned them, the user would get lost
or confused, because we have broken from their current mental image
of her progress in the visualization.

We also provide a linked view of the volume tree to the visualization
spreadsheet by highlighting linked cells or nodes when the user hovers
over one. The rotation and translation of the cells are linked as well.
The volume shader is run for the current cell the user is interacting
with so she has real time updates. When the user stops interacting
with that cell, the spreadsheet runs the volume shader for all the other
cells to update them. By selecting a node or cell, the user can also
change the operation, the weighting function, or the transfer function
to apply to that data. This allows the user to fine tune the visualization.
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It also provides a method for the user to keep the same volume shader
but change the source data cells and nodes. Additionally, the user
can select nodes, levels, or branches of the volume tree and order the
system to render that data as contextual information in the root node.

Now we have a framework to be able to explore the volume shader.
The next section we focus on how to render or display volume tree
contextual information with the final result of the volume shader. We
provide two ways of visualizing the volume tree nodes. The first is a
level-of-detail method that shows the suboperations rendered in con-
junction with the final result. The suboperations are rendered with less
information or detail, so that they do not completely occlude the final
result. In the second method, we animate through different portions
of the volume tree to show how input data are filtered through the vol-
ume shader for the purpose of data highlighting. We also show how to
explore the parameter space of the volume shader.

6.2 Level-of-Detail

As mentioned previously, the level-of-detail context rendering method
displays suboperations in the volume tree in conjunction with the fi-
nal result at a lower detail. We have several different notions of lower
detail that we will further explain later in this section. The lower de-
tail is provided to give a hint of the space and value of the subopera-
tional results, without completely occluding the final result. If the user
wishes to focus entirely on one suboperation because more informa-
tion is needed, she can select that suboperation in the volume tree as
the final result of the visualization, and terminate the rest of the visual-
ization past that point. Which level-of-detail to use for a suboperation
is determined by the distance from the root node in the volume tree.
A suboperation has a lower detail that it is displayed at the further that
it is from the final result node in the volume tree. Therefore, things
that have more relevance to the final result are shown at a higher detail
than suboperations that are further down the tree.

We present three methods for rendering a lower level-of-detail. The
first is modulation of the opacity based on the distance from the root.
With modulation of the opacity, the suboperations further away from
the final result in the volume tree are much more transparent, that is
seen as an example in Figure 8. The second method is to use volume
shells by using a 3D edge detector to extract the shell. These are also
opacity modulated by their volume tree distances. Finally, we can ren-
der line depictions of volumes, using silhouettes and feature lines, as
in Figure 1. These are also opacity modulated by their distances. By
using an exponential opacity modulation function, we can automat-
ically limit the suboperation distance from the root to reduce visual
clutter. Rendering too many levels of the volume tree at once would
be difficult for the user to extract relevant information. By isolating
the suboperation context rendering to one branch of the volume tree,
we can emphasize the filtering and evolution from the perspective of
an individual data field.

Fig. 8. The end result of an volume shader, A in B, is shown on the left.
The context of the shader down one branch, how volume B is changed,
is shown at a lower opacity on the right. This is also an example of two
frames of context animation; from not showing the context to showing
the context.

There is also a need for rendering priority order when displaying
suboperation data points that coincide at the same 3D location. We
can determine a priority order of what to display at a point in space by
using a breadth-first-search from the root. The first suboperation of the
volume tree that has an opacity greater than zero is the displayed point
in space. The reasoning for this is that when rendering several levels
of the volume tree together, it is assumed that there is going to be color
depth blending. If we do not perform 3D blending between subopera-
tions that intersect in the same space, then opacity does not accumulate
as fast as it normally would in depth blending. Furthermore, if there is
only one type of color blending due to depth blending, then the color
at a point is closer to its original color in the transfer function and
eliminates some value ambiguity.

6.3 Contextual Animation

The level-of-detail rendering cannot show all contexts at once, because
the screen space is limited and the depth complexity of a volume tree
is arbitrary. To solve this problem, we propose additional methods to
browse the context of a volume tree. We provide animation through the
volume tree. This allows the user to see all the contextual information
or the evolution of the data, depending on the types of animation we
use.

The first method of animation that we use is changing the root node
or final rendering of the volume tree. This is done by walking the tree
to a suboperation and displaying that as the final rendering result. The
volume tree walk can be to a child, parent, or sibling of an operation.
The path that is taken by walking the tree describes the context of the
volume tree in different ways. By walking up or down one branch of
the volume tree, the user can see how one data field evolves opera-
tionally into the result. Such an example can be seen in Figure 8. On
the other hand, by walking from sibling to sibling, the user can see all
the inputs that go to one suboperation of the volume tree.

When moving from one node to the next, the change in subopera-
tion rendering is alpha blended over time so that the target subopera-
tion fades into view, while the old suboperation fades out of view. The
animation can be combined with the level-of-detail context rendering.
Walking the rendering focus to a new suboperation would cause more
information to be displayed for that node. All suboperations that are
now closer to the new root from the walk have higher level detail as
well. The suboperations now further away from the new root would
have less information displayed.

If there is a very deep or wide volume tree and many nodes are
displayed, it may be difficult to see individual results. Our second
way of animating the volume tree is to fluctuate the opacity of the
levels in the tree for the level-of-detail context rendering. This allows
the visualization to remove occluding data and the user is able to see
individual suboperations better. The fluctuation of the volume tree
levels peels away the context information, showing just the final results
of the visualization.

We can also animate the data by providing positional or transfer
function animation to different regions of the data. The color anima-
tion or motion acts as a filter to human perception. In this scenario,
whatever is animated stands out in comparison to the static data, and
this can be important when many different volumes are shown at once.
When we have several levels rendered together, it may be difficult for
the user to tell which suboperation corresponds to a particular spatial
region in the visualization. The user can select the volume tree sub-
operation that she is interested in. The selected data then move in a
periodic fashion or color cycle. This lets the user know exactly what
portion of the volume tree she is viewing by highlighting the data with
animation.

Additionally, we provide animation to the parameters of the volume
tree operators. Through animation, the user can explore the parame-
ter space of her visualization. She can see how changing the various
parameters affect the final result, without the manual change of param-
eters by herself. Figure 9 is an example where the operator is changed
during the animation to show several different operation possibilities
and the results.
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Fig. 9. The operation between two data fields is changed over time.
From left to right, top to bottom, it shows B atop A, A atop B, A xor B,
and B out A.

7 VOLUME SHADER IMPLEMENTATION

Our method of multi-field visualization allows itself to be easily imple-
mented in modern graphics hardware. By using 3D texture slicing to
implement our volume renderer, the volume shader is translated into
a fragment shading program using GLSL. When the source data are
sliced using rendering quadrilaterals, the volume shader is automati-
cally applied per point. The volume shader is a parallel data program
that can be applied to the source data start to finish per fragment with-
out any intermediate storage. For data or programs that cannot fit into
graphics hardware, a CPU implementation can be written that applies
the volume shader program per voxel position from the source data.

In our hardware implementation, the data fields are uploaded to the
graphics hardware in the form of 3D textures. We interleave the fields
in the RGBA channels, so that one data field is stored in a channel.
That means up to four fields can be stored in one texture. One tex-
ture unit is used to store the transfer function and weighting functions
in a packed 1D texture. Most graphics hardware have a minimum of
four texture units, therefore, we can upload 12 (4 fields ∗ 3 textures)
data fields simultaneously to the graphics hardware. On a Pentium 4
2.0GHz and an nVidia GeForce 6600 GT graphics card, we achieve
over 10 fps without lighting turned on. When we turn on real-time
normal calculation for lighting or NPR calculations, which need the
gradient and use a 3D edge detector, the speed drops significantly.
Times tend to be under 1 frame per second, ranging from 1 to 5 sec-
onds per frame. Multiple texture lookups significantly slow down the
fragment processing speed. Positional and color table animations can
be done in real time on hardware, because the animation parameters
are a small uniform or transfer function upload to the fragment shader.

We have provided many different examples of data sets that our
technique can be used with throughout the paper. Figures 1 and 8
are examples of a time-varying computational fluid dynamic simula-
tion of a vortex data set. These figures show how the data interacts in
space over time. Figures 4, 5, 6, 7, and 10 are from a time-varying,
multi-variate hurricane simulation. Our examples use the multi-variate
fields of the data to locate interesting portions of the data set that ex-
ist between fields. Figure 11 is multi-variate, time-varying supernova
simulation from the Tera-scale Supernova Initiative. We use three dif-
ferent fields and time steps to locate values in space over field over

time. We also use a non-variate data set in Figure 9. The UNC brain
data set is visualized in comparison with a distance field. The distance
field is used to cull away data from the brain. While we do not have
examples using comparative data sets, one can easily imagine using
our technique to compare data from different simulation runs or mea-
surements.

Fig. 10. Multi-field hurricane data set visualizing (A xor B)xor(C xor D)
on the left. (B in A)xor(D in C) can be seen on the right. Each data field
has its own transfer function and there is no color blending. Value and
field can be determined from the color.

Fig. 11. Tera-scale Supernova Initiative data set visualizing
C atop(A in B) on the left. C atop(B out A) can be seen on the right. Each
data field has its own transfer function and there is no color blending.
Value and field can be determined from the color.

8 CONCLUSION

We have presented a method for the comparison of different data fields.
These data fields can be from time-varying, multi-field or compara-
tive data sets. The method of comparison is through the expression
of a volume shader that composes data fields together with opera-
tions. The operations can be either set or numerical, and they allow
the user to easily express comparisons between her data that she wants
to see. Our implementation of the set operations allows us to easily
implement volume shaders of arbitrary complexity. With a distinction
between appearance-based and value-based set operations, we can be
more sensitive to color mapping and value preservation. By converting
the volume shader to a volume tree, the user can see how her data com-
bines together to form the final result. This is accomplished through
the visualization of the volume tree in conjunction with a visualization
spreadsheet. By observing how data are changed through the tree, the
user can have a greater understanding of the data, and she can make
more informed decisions on how to configure her visualization.

For future work, we would like to explore additional methods of
feature extraction and presentation. There are some feature lines of
interest that can be presented, such as intersection lines. Other anima-
tion techniques could be introduced to expose the context. There may
be additional ways to render the context, such as finding operations



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

to apply in the contextual space. Additionally, we need to complete
a user study to investigate how many levels of context the user can
effectively visualize at one time, and what methods are best to show
context in different scenarios. Finally, we may be able to analyze the
data and generate automatic volume shaders that make best guesses to
describe data which the user could be looking for.
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