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Abstract 

Tracking and visualizing local features from a time-varying volu- 
metric data allows the user to focus on selected regions of interest, 
both in space and time, which can lead to a better understanding of 
the underlying dynamics. In this paper, we present an efficient algo- 
rithm to track time-varying isosurfaces and interval volumes using 
isosurfacing in higher dimensions. Instead of extracting the data 
features such as isosurfaces or interval volumes separately from 
multiple time steps and computing the spatial correspondence be- 
tween those features. our algorithm extracts the correspondence di- 
rectly from the higher dimensional geometry and thus can more ef- 
ficiently follow the user selected local features in time. In addition, 
by analyzing the resulting higher dimensional geometry, it becomes 
easier to detect important topological events and the corresponding 
critical time steps for the selected features. With our algorithm, the 
user can interact with the underlying time-varying data more easily. 
The computation cost for performing time-varying volume tracking 
is also minimized. 

CR Categories: 1.3.6 [Computing Methodologies]: COMPUTER 
GRAPHICS-Methodology and Techniques 

Keywords: tracking, isosurface, interval volume, higher dimen- 
sional isosurfacing 

1 introduction 

One major factor that contributes to the rapid growth of data size 
in the recent yean is the increasingly widespread ability to perform 
very large scale time-varying simulations. To understand the com- 
plex dynamic phenomena from a time-varying data set, the visual- 
ization tool must compute, animate, and track salient features at an 
interactive speed. For scalar fields, isosurfaces and interval volumes 
are commonly used for characterizing features that can be described 
by the underlying data values. An isosurface represents points of a 
constant value, which can be used to reveal the geometric structure 
of objects represented by the data. In practice, the measurement de- 
vices or numerical simulations may involve certain degree of errors 
in the sampled or simulated data sets. Displaying interval volumes 
can tolerate the errors and provides more meaningful visualization 
results. 
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When analyzing time-varying data sets, a straightforward anima- 
tion of isosurfaces or interval volumes may not be always effective, 
since each image can contain a large number of small components, 
each of which may experience complex evolutions over time. Com- 
puting the complete isosurfaces or interval volumes in a long time 
sequence is not only time-consuming, but also confusing when vi- 
sualizing all the evolving components simultaneously. To study the 
temporal characteristics of time-varying data, having the ability to 
isolate local features of interest and track their evolution in time 
can be more visually effective and computationally efficient. In 
this paper, we present an algorithm IO track the evolution of iso- 
surfaces and interval volumes from time-varying data using higher 
dimensional isosurfacing. Our algorithm can efficiently track the 
user-selected lwal features, defined as connected isosurface or in- 
terval volume components, by performing local propagation and in- 
teractive slicing of isosurfaces or interval volumes in R4. By using 
higher dimensional isosurfacing, we can easily establish the feature 
correspondence in adjacent time steps. The resulting higher dimen- 
sional geometry also allows us to detect critical points, which can be 
used to identify the topological changes such as amalgamation, bi- 
furcation, creation and dissipation experienced by the time-varying 
features. The critical time steps indicating when those events occur 
can also be found. 

The organization of the paper is as follows. We first review the 
related work, and then describe the algorithm to track time-varying 
isosurfaces and interval volumes in section 3 and 4 respectively. 
In both sections, we will present our algorithm to extract overlap- 
ping components, the approach to identify critical time steps and 
the corresponding evolutionary events, and how we verify the cor- 
respondence between features. Test results are presented in section 
5 and conclusion and future work are Dresented in section 6. 

2 Related Work 

Researchers have proposed various techniques to track time- 
varying features. Banks and Singer [Bank and Singer 19951 used 
a predictor-corrector method to reconstruct and track vortex tubes 
from turbulent time-dependent flows. Samtaney et al.[Samtaney 
et al. 19941 tracked 3D features using object centroids and second 
order moments. Reinders er al.[Reinders et al. 20011 calculated a 
set of attributes, such as center point position. volume, mass, best 
fitting ellipsoid for all the features in all the frames and used these 
data to track features through a predicationlverification scheme. 
There is also a rich literature in computer vision on motion tracking 
[Ballard 1982; Aggarwal and Nandhakumar 1988; Shi and Tomasi 
1994; Carlbom et al. 19921. The main difference between tracking 
2D objects from videos and tracking features from simulation data 
is that features or regions of interest in scientific visualization ap- 
plications are often manifested as 3D objects which tend to evolve 
and interact, while those 2D objects in computer vision interact less 
frequently. 

Previous work most related to this paper is the volume tracking 
algorithms proposed by Silver and Wang [Silver 1995; Silver and 
Wang 1996; Silver and Wang 1997; Silver and Wang 19981. Their 
algorithms are based on the observations that when the underlying 
temporal resolution is high enough, corresponding features in adja- 
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Figure I:  The evolutionary events that a feature may experience. 

cent time steps usually overlap. Given that, features manifested as 
interval volumes are first identified and stored in appropriate data 
structures. Then, correspondences between features in consecu- 
tive time steps are identified using a two-stage process including 
an overlap and a best matching test. In the overlap test, spatially 
overlapped features from consecutive time steps are identified and 
the number of intersecting nodes is also computed. Octree and 
linked list data structures are used to accelerate this process. The 
best matching test involves inspecting the ratio of difference versus 
maximum volumes among all combinations of overlapped features, 
and identifying how the feature changes its topological structures. 
Based on how the topological structure of a lccal feature evolves 
over time, one of the following events can occur: (see Figure 1) 

m Continuation: an object continues to the next time step, with 
possible shape deformation and change of position, orienta- 
tion, etc. 

a Creation: a new object starts to appear. 

Dissipation: an object disappears. 

Bifurcation: an object splits into several objects. 

a Amalgamation: several objects merge into a single one 

Inspired by Silver and Wang's work [Silver 1995; Silver and 
Wang 1996; Silver and Wang 1997; Silver and Wang 19981, in this 
paper we present a volume tracking algorithm based on higher di- 
mensional isosurfacing. Our goal is to allow interactive tracking 
of local features. A local feature is defined in this paper as a con- 
nected component that belongs to an isosurface or interval volume. 
When a scientist is presented with a rendering of an isosurface or 
an interval volume at a particular time step, he or she can select 
a connected component of interest, and then follows its evolution 
over time. Instead of computing the whole isosurfaces or interval 
volumes in the subsequent time steps, our algorithm generates on 
the Ay only the overlapping components to reduce the computation 
cost. In the following, we describe our algorithm in detail. 

3 lsosurface Tracking 

Our algorithm is based on higher dimensional isosurfacing. Com- 
puting isosurfaces or interval volumes in R4 allows us to easily track 
overlapped local features. With the resulting geometry in R4, we 
can also detect the topological events such as amalgamation, hifur- 
cation, creation and dissipation. In the following, we first describe 
the algorithm to track time-varying isosurfaces. 

Figure 2 The four different types of 3-cells when two isocontonrs 
in R2 intersect. 

3.1 Extracting Overlapping Time-varying Isosur- 
faces 

To track isosurfaces in a time-vaying field, instead of first comput- 
ing a complete set of isosurfaces in the time sequence and then iden- 
tify the component that overlaps with the user selected local feature, 
better efficiency can be achieved if we only compute the overlapped 
components from adjacent time steps. To do so, we will extract iso- 
surfaces in @. Previously, researchers have proposed algorithms to 
extnact isosurfaces in @ from time-varying data [Bhaniramka et al. 
2000; Weigle and Banks 1998; Weigle and Banks 19961. Smoother 
surface animations can he produced since the isosurface in R4 can 
be sliced at higher temporal resolutions. In our algorithm, we use 
isosurfacing in @ to detect the overlapping isosurfaces based on the 
observation that if two isosurface components from the consecutive 
time steps overlap with each other in the spatial domain, they will 
belong to the same connected isosurface component in R'. This can 
be shown as follows. 

Suppose an isosurface component Oi in R3 at time f overlaps 
with another isosurface component O j  in R3 at time f + 1. Each 
isosurface component goes through a list of 3-cells(cells in R'). We 
can build 4-cells(cells in R4) out of the 3-cells at time f and f + 1. 
Each 4-cell is made up of two 3-cells that have the same spatial 
location but one from 1 and the other from f + 1 . There are two 
cases on how these two isosurface components in R3 overlap. 

1. Oi and O j  have surface intersection 

0 2. Oi and 0 .  have no surface intersection, but one is com- 
1 

pletely inside of the other. 

For the first case, each 4-cell in the time-varying field can be 
classified into one of the following four categories: (For 2D case, 
see Figure 2) 

I .  The cell passes through Oi at t but not O j  at f + I 
2. The cell passes through O j  at f + I but not Oi at f 

3. The cell passes through Oi at f and O j  at f + 1 

4. The cell passes through neither 0; at f nor O j  at f + 1 

Note that the different categories are mutually exclusive and all 
four categories comprise the entire 4-cells in the time-varying field. 
Type I ,  2 and 3 4-cells are isosurface cells in R4, since they contains 
isosurface in R3, while type 4 4-cells are not isosurface cells in R4. 
Any type 3 4-cell can propagate to any type I ,  2 and 3 4-cell; any 
type 1 4-cell can propagate to any type 1 and 3 4-cell, and any type 
2 4-cell can propagate to any type 2 and 3 4-cell. Type 1 and type 
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are tracked, the fact that these two components in R3 do not belong 
to the same isosurface component in R4 guarantees that the inner 
component at time f will he tracked to the inner component at time 
I + 1 and the outer component at time f to the outer one at time f + 1. 

Based on our analysis, given a user selected isosurface compo- 
nent Oi in R3 at time 1 ,  we can rapidly compute the overlapping iso- 
surface component(s) at time f + 1 by first extracting the connected 
isosurface component in R4 that intersects with Oi, and then slicing 
it to et the isosurface component(s) at time f + 1. The isosurface 
in R can be computed by propagation from any 4-cell that inter- 
sects with 0:. When the underlying mesh is a Cartesian grid, the 
4-cell is a hypercube. If the mesh is a tetrahedral grid, then the cell 
is a 4-simplex. Previously, researchers have used cell propagations 
to compute isosurfaces in R3 [Bajaj et al. 19961, we can perform 
cell propagation in @ in a similar manner. Note when propagating 
4-cells. for a large time varying data set, it may he impractical to 
get the full isosurface component in R4, since it is very likely that 
the component will span many time steps and it will incur serious 
memory overhead to generate it. In our implementation, we only 
propagate to generate the necessary part of isosurface components 
which lie between time f and time f + 1. 

During the propagation, the 4-cells that contain the isosurface 
need to be triangulated. Previously, Weigle and Banks [Wei- 
gle and Banks 19961 proposed a recursive contour meshing algo- 
rithm, which extracts isosurfaces in R4 by first breaking the 4- 
cell, or hypercube into 4-simplicies, and then looping through the 
faces of the simplices to construct the isosurfaces. Bhaniramka 
et al.[Bhaniramka et al. 20001 devised an algorithm that can gen- 
erate triangulation tables for arbitrary N dimensional cells. Both 
algorithms can be used to compute isosurfaces in R4. Since the 
algorithm by Bhaniramka e l  aLproduces a smaller number of tetra- 
hedra, we choose their method in our algorithm and create the tr-  
angulation table for 4-cells at a preprocessing stage. Once the ta- 
ble is generated, isosurfaces in RJ can be generated at run time by 
a method similar to the Marching Cubes algorithm [Lorensen and 
Cline 19871. The resulting isosurface is a collection of tetrahedra 
embedded in R4. To extract the overlapping isosurface components 
in the spatial domain, we can just slice the connected isosurface 
component in R4 at the desired time step. 

3.2 

8 

Detecting Topological Event and Critical Time 
Step 

By resorting to isosurfaces in @, the correspondence between iso- 
surface components in R3 in consecutive time steps can he estah- 
lished. In addition to tracking the evolution of features visually by 
slicing the component in R4 along the time axis and displaying the 
resulting objects, it is possible to detect the critical time steps au- 
tomatically when the features of interest undergo a change in their 
topological configuration. This can he done by analyzing the gener- 
ated geometry in p. In the following. we describe the detection of 
the critical time steps as well as the identification of the topological 
events for time-varying isosurfaces. 

An isosurface component in R4 is a tetrahedral mesh embedded 
in 4-space. Each vertex of the tetrahedral mesh has coordinates 
(x,y.r,t). To compute the isosutiace component in R3 at a partic- 
ular time step T,  we can slice the tetrahedra in @ based on the 1 
coordinates at the tetrahedra vertices. This is equivalent to treating 
the mesh in R4 as a normal mesh in R3, with the time values as the 
scalar values defined over the tetrahedron vertices. Hereafter we 
call this T-mesh. The isosutface of f = T from the T-mesh then cor- 
responds to the isosurface component in R3 at time T, which can be 
easily extracted using the marching tetrahedra algorithm. 

Based on the above idea, tracking an isosutiace component in 
time is equivalent to computing the isosurfaces using different 
threshold values T from the T-mesh. The critical points of this mesh, 

0, 

Figure 3: The four different types of 3-cells when one isosutiace is 
contained within the other. 

2 4-cells can propagate to each other only if there exists a type 3 
4-cell. Therefore, if Oi at f has surface intersection with O j  at f + 1 
in space, that is, there exists a type 3 4-cell, then there will be a 
connected component in R4 that passes through Oi at f and O j  at 
f + I .  In other words, Oi and Oj belong to the same connected 
component in R4.  

In the second case, Oi has no surface intersection with O j ,  but 
the volumes inside the surfaces overlap. Without loss of generality, 
we assume Oj lies within O j .  The 4-cells connecting them can 
be classified into the following four categories: (For 2D case, see 
Figure 3)  

1. The cell passes through Oi at f but not O j  at f + 1. 

2. The cell passes through O j  at f -t 1 but not 0; at f. 

3. The two corresponding 3-cells lie outside of Oi but inside 
of oj.  
4. The two corresponding 3-cells lie either inside Oi or out- 
side O j .  

Similar to the above analysis, these four categories of 4-ceIls are 
mutually exclusive and all 4 categories comprise the entire 4-cells 
in the field. It can be seen that type I and 2 4-cells are isosurface 
cells in p, since they contain isosurfaces in R3. For each type 3 
4-cell. the signs of its comers at t are different to those at t+l and 
thus the isosurface in R4 will cut through the 4-ceII, which implies 
type 3 4-cells are also isosurface cells in R4. Type 4 4-cells have 
the same sign for every comer and thus are not isosurface cells in 
p. Type 3 4-cells can propagate to type 1 and 2 4-cells while type 
I and 2 4-cells can propagate to each other by going through some 
type 3 4-cells. An isosurface component in R4 that passes through 
Oi at I and Oj at f + 1 lies exactly within all 4-cells of type 1.2 and 
3. 

It is worth mentioning that here we assume that the scalar values 
inside the isosurfaces in R3 at the consecutive time steps are con- 
sistent relative to the isovalue, i.e., all of them are either smaller 
or greater than the isovalue. It may happen that the scalar fields 
get reversed, that is, at one time step, the scalar values inside the 
isosurface are smaller than the isovalue but at the other time step 
they are greater than the isovalue. This happens when the scalar 
field changes too quickly, or when two concentric isosurface com- 
ponents are tracked. In both cases, the isosurface in R4 will not pass 
through the region between these two isosurfaces in R3, and it will 
have two disjoint components. Specifically, when the scalar field 
changes too quickly, the isosurface component at time f will dis- 
appear and then another isosurface component at time f + 1 stans 
to appear. In the case that two concentric isosurface components 
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i.e., local minima, IOCdl maxima, and saddle points with time v d -  
ues as the scalar values, indicate when and where the topology of 
the isosurface will change if the isosurface is animated across those 
time steps. Previously, critical points have been studied in many ap- 
plications [Kreveldet al. 1997; Tarasov and Vyalyi 1998; Carretal. 
2003; Pascucci and Cole-McLaughlin 2002; Gerstner and Pajarola 
20001. When analyzing the topology of T-mesh, a local minima 
corresponds to the creation of an isosurface component in R3 while 
a local maxima corresponds to the dissipation of a component in 
R? Saddle points may correspond to either the amalgamation or 
the bifurcation of components in R 3 .  Continuation occurs at regu- 
lar vertices of the mesh. The time values associated with the critical 
points indicate when those topological events happen. Here we call 
them critical time steps. 

To detect the critical time steps and learn how the isosurface 
component changes its topology, we can find the critical points from 
the T-mesh. Since the tetrahedral mesh in R4 contains only linear 
elements, all critical points are located at the vertices of the mesh. 
For each vertex v i ,  an efficient way to identify whether it is a critical 
point is as follows [Ferstner and Pajarola 20001; 

Find the set S which consists of all the adjacent vertices of v i .  

Mark each vertex in S. If the scalar value at the vertex is 
greater than the value of vi. mark it as positive. Otherwise 
mark it as negative. 

For each edge connecting vertices of S, if two end vertices 
have the same sign, keep the edge. Otherwise delete the edge. 

Count the number of the remaining connected components of 
the adjacent vertices. 

If the component number is 1, then vi is a local minima or 
maxima. If the component number is greater than 2, vi is a 
saddle point that corresponds to topological events. 

Saddle points with component number greater than 2 occur at 
vertices where topological bifurcation or amalgamation happens. If 
only one component out of all components has time values less than 
the time at vi, the saddle point corresponds to bifurcation. And if 
only one component has time values greater than the time at vi.  then 
the saddle point corresponds to amalgamation. 

3.3 Verification 

Correspondences between isosurface components from adjacent 
time steps can he easily found by using isosurfacing in higher di- 
mensions. The idea behind is that if components overlap with each 
other, they must belong to the same isosurface component in higher 
dimension. One issue needs to be addressed is that this higher di- 
mensional isosurfacing approach does not discriminate the degree 
of overlap between components. However, somelimes users might 
want to set a threshold so that only components that have a signif- 
icant overlap are concluded as having correspondence. In this sec- 
tion, we describe how we take this user-defined overlap threshold 
into account. 

Two isosurface components in consecutive time steps correspond 
to each other if they can be generated by slicing the same isosur- 
face component in R? However, in some cases when the overlap 
between the two components is too small, the user may not want to 
consider them as corresponding objects. That is, component Oi and 
Oi correspond to each other if and only i f  

e 1. They are generated by slicing the same isosurface compo- 
nent in R4. 

2. V(overlap(Oi, O j ) )  lMin(V(Oi), V(Oj)) > Threshold 

where Threshold is a user-supplied parameter, V() returns the vol- 
ume of the component, and V(overlap(Oi, Oj ) )  gives the volume of 
the overlap between two components. 

We measure the volume of an isosurface component in R3 based 
on the number of 3D cells lying inside the surface. The in- 
sideloutside decision can be precomputed based on the sign of the 
voxel compared to isovalue, except when embedded isosurface ex- 
ists, in which case the decision should he reversed. The issue of 
which sign corresponds to which side can be solved based on the 
following heuristic: 

e The volume of two random picked isosurface components in 
R3 are very likely to he different, but the volume outside of 
them will he the same. 

For any cell inside the isosurface, its eight vertices should have 
an identical sign, i.e., they are either all greater, or all smaller than 
the isovalue. Furthermore, the signs are consistent for all the inside 
cells. Therefore, the volume of an isosurface component can he 
computed by first finding an inside cell, and then using the cell as 
a seed to flood the entire volume inside the isosurface. Cells on the 
boundary of surface also contribute to the volume and should be 
processed properly. A good approximation of their contribution to 
the whole volume would be the ratio of comers that lie inside the 
surface to the total eight comers. 

The volume of the overlapped region for two isosurface com- 
ponents in R3 at two consecutive time steps is the number of 3D 
cells that lie in both components. This can he easily calculated by 
counting the number of cells that belong to both components. This 
volume is used to test whether the degree of overlap between the 
isosurface components satisfies the user’s threshold. If the thresh- 
old is satisfied, the correspondence holds; otherwise there will be 
no correspondence. 

4 Interval Volume Tracking 

Features are often manifested as points within a range of data val- 
ues, which can be represented as an interval volume [Guo 19951. 
An interval volume is a generalization of isosurface and represents 
a three-dimensional subvolume for which the associated scalar val- 
ues lie within a user-specified closed interval. When there are er- 
rors caused by measurements or numerical simulations, or the target 
object contains structural ambiguity, displaying interval volumes 
can provide more meaningful visualization results [Fujishiro et al. 
19961. 

To track interval volumes in a time-varying data set, we can gen- 
eralize the idea of isosurface tracking described above. That is, 
given a user selected interval volume component Vi at time t ,  we 
can extract an interval volume in R4 that intersects with Vi, and 
then slice the interval volume in @ along the time dimension to get 
the interval volume componem(s) at time t + 1 that overlap with Vi. 
We can also detect topological events and critical time steps by an- 
alyzing the criticality of the resulting geometry and verify whether 
the overlap is significant. 

4.1 Extracting Overlapping Time-Varying Interval 

To extract interval volumes that overlap with a user selected com- 
ponent vi at time I ,  we will first extract an interval volume in R4 
that intersects with Vi, which will be then sliced along the time di- 
mension to get the interval volume component(s) at time t + I that 
overlap with Vi. Previously, researchers have proposed algorithms 
to extract interval volumes in R’. Fujishiro et al.[Fujishiro et al. 

Volumes 
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19961 extended the Marching Cubes algorithm and used a solid fit- 
ting algorithm to tetrahedralize the interval volume. The algorithm 
proposed by Nielson er d.[Nielson and Sung 19971 performed the 
tetrahedralization by decomposing each volume cell to five tetrahe- 
dra and then using an eflicient lookup table to compute the interval 
volume within each tettahedron. Bhaniramka et al.[Bhaniramka 
et al. 20001 extracted the interval volume by creating two scalar 
fields from the original data and then constructed an isosurface in 
R'. The projection of the isosurface in R' to the spatial domain 
is the interval volume. All the above algorithms are for comput- 
ing interval volumes in 3-space. In the following, we present an 
algorithm to compute interval volumes in 4-space. 

4.1.1 Computing Interval Volumes in R4 

Our method is based on five dimensional isosurfacing. Given a 
four dimensional scalar field f(x,y,z,t), the interval volume I[a,b] 
consists of all the points that satisfy a 5 f (x,y, z, t) 5 b. To compute 
the interval volume, we first artificially create a five dimensional 
scalar field g(x,y,z,r, w )  with the w dimension equal to two. We let 

also assume the five dimensional scalar field varies hnearly along 
the w dimension. that is. 

g(x.y ,  Z,  f ,  0) = f (x ,y , z ,  t )  -0,and E(*, xz, f ,  I) = f ( x ,  Y! z J )  - b. We 

g(*,y,z,r,w) = (1 -w)g(x,y.z,t,O)+wg(x,y,z,t, 1) 

whnewisbetweenOand 1. Theinterv;llvolumea~f(x,y,z,I) <b 
can be extracted by first computing the zero isosurface from the SD 
scalar field g, and then projecting the resulting isosurface along the 
w axis to 4-space. The correctness of this algorithm is shown as 
follows. 

The zero isosurface of the five dimensional field g contains the 
5D points (x,y,z,t,w) that satisfy g(x,y,z,t,w) = 0. Hereafter we 
call those points zero isosurface points. For the zero isosurface 
points that have w=0, if we project them orthographically along 
the w direction, i.e., project from (x,y,c,t,O) to (x,y,&t), we know 
that the projected point (x,y,z,t) will satisfy f(x,y,z,t) = a since 
g(x,y,z,t,O) = 0 = f(x,y,i,t) - a. Similarly, for the zero isosurface 
points that have w = 1, i.e., (x,y,z,t,l), we have g(x,y,z,f, 1) = 0. 
Since g ( x , y , z , t ,  I )  = f(x,y,z,t) - b, if we project those points 
along the w axis, we know the projected point (x,y,z,t) will sat- 
isfy f(x,y,z,r) = b. Finally, for those zero isosurface points 
that have w € ( O , I ) ,  sinceg(x,y,z, t ,w)=(l-w)g(x,y,z,f ,O)+ 
wg(x,y,z,t,I), if we project those points to 4-space, it can be 
seen that a < f(x,y,z,f) < b will be satisfied. Therefore, if we 
project the zero isosudace points (x,y,z,t,w) to four dimensions 
along the w axis, we will get all the points (x,y,z,t) that satisfy 
a 5 f(x,y,z, t)  5 b, i.e., the interval volume [ [a ,  b] in R4. 

Given a time-varying field, remember that the goal of computing 
the interval volume in @ is to enable the tracking of an interval 
volume in R3 from time step f to time step I + 1. Therefore, the 
construction of the five dimensional scalar field g(x, ,z,t,w) need 
not be performed globally. Only the volume cells in R that will be 
encountered during propagation need to be constructed. Hence, the 
space and computation overhead is manageable. To compute the 
zero isosurface in RS, we can use the triangulation table generated 
with the algorithm by Bhaniramka et al.[Bhaniramka et al. 20001. 
Constructing isosurfaces in Rs requires a five dimensional tnangu- 
lation table. In the next section, we discuss some practical issues 
related to the generation of the table. 

4.1.2 

Similar to the Marching Cubes lookup table, the 5D triangulation 
table provides the edge intersection and connectivity information 
to guide the triangulation process. Each entry in the table contains 

s 

Triangulation Table for isosurfacing in RS 

Figure 4: Only 3 sign combinations are possible when extracting 
interval volumes in R ~ .  

the geometry configuration consisting of four-simplices to repre- 
sent the isosurface in the 5D hypercube. A 5D hypercube is com- 
posed of two 4D hypercubes defined in xyzt spatio-temporal dimen- 
sions, which are connected by 16 edges lying in the w direction. 
We used the algorithm propvsed by Bhaniramka ef nl.[Bhaniranlka 
et al. 20001 to generate the table. We also augment the table to in- 
clude the propagation directions based on the case's geometry con- 
figuration. Since a 5D bypercube contains 32 venices, the size of 
the table can be quite large. Therefore, care should be taken when 
using the table at run time. 

An N dimensional hypercube contains 2N verlices. Without per- 
forming case reduction as done in the Marching Cubes algorithm, 
the number of cases for triangulation table will be 22N. For in- 
stance, in the 3D triangulation table there are 28 = 256 cases. For 
a 5-cell. the number of vertices will be 32. Therefore, a 5D iso- 
surface lookup table will contain 232=4G entries. The 256 cases in 
the 3D marching cubes can be reduced to 15 after applying com- 
plementary and rotational symmetry. However, in four dimensions, 
funher efforts must be taken to ensure a consistent triangulation on 
the surfaces of adjacent 4-cells. This problem will become even 
more complex when the dimension grows to five, which makes it 
very difficult to apply complementary and rotational symmetry. 

When the 5D triangulation table is used to compute interval vol- 
umes in ??, not all the four billion cases are possible. In the process 
ofcomputing the interval volumea 5 f ( x , y , z , t )  5 h, thescalarfield 
at w = 0 is generated by subtracting the 4D field by a, and the scalar 
field at w 1 is generated by subtracting the 4D field by b. Since 
b > a, for each of the I6 edges in the 5D hypercube lying in the w 
dimension, the scalar value at w = 0 is always greater than the scalar 
value at w = 1. This implies that the edges of the 5D hypercube ly- 
ing in the w direction can not have a minus-plus sign combination. 
otherwise the scalar value at w = 0 will be smaller than the scdar  
value at w = 1. Hence, there are only 3 possible sign combinations, 
rather than 4, for each edge of the 5D hypercube in thew direction. 
For this reason, the 5D triangulation table used for interval volume 
generation can only contain 316 i; 43M, rather than IG case. The 
case in R2 is illustrated in Figure 4. 

Although the SD triangulation table i s  reduced from 4G cases to 
43M, its size is still too large to be processed in core. However, 
given a data set, we find aut that some cases occur mare frequently, 
and some othei cases never happen. The reduction from 4G cases 
to 43M and the uneven possibility of the occurrence of each case 
make it feasible and effective to store the 5D triangulation table 
into a hash table which is small enough to fit into main memory. 
With a properly designed hash function, the hash table will cache 
almost all 5D triangulation cases that can happen for a data set. In 
this way, the extraction of 4D interval volumes can be achieved in 
an efficient manner. 
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4.2 Detecting Topological Event and Critical Time 
Step 

We can detect topological events and critical time steps for interval 
volume components by analyzing the resulting geometry. When 
extracting interval volumes in R4, isosurfaces in RS are generated. 
Each vertex of the isosurface contains (x, y, z, t, w) coordinates. 
After projecting the isosurfaces to R4, we get a mesh consisting 
of four-simplices that represents an interval volume embedded in 
p. The interval volume at a particular time step I = r can be ob- 
tained by slicing the four-simplex mesh and using the time value of 
each vertex as the scalar value. This is similar to the method used to 
compute isosurfaces in R3 from the T-mesh described in section 3.2, 
except that this T-mesh consists of 4-simplices rather than tetrahe- 
dra. To detect critical points in the interval volume, we can use the 
same method as the one in section 3.2 to extract the local minima, 
local maxima, and saddle points to identify the evolutionary events 
of the interval volumes in R 3 .  

4.3 Verification 

A verification approach similar to that of isosurface component can 
he applied to tracking of interval volumes. The only difference 
would he the volume calculation. The volume enclosed by an iso- 
surface is the whole region inside the isosurface: while the volume 
of an interval volume is the region lying between the top isosurface 
and the bottom one. An interval volume in R3 can be generated by 
projecting an isosurface in R4 along the w direction. Notice that 
this isosurface in goes through a 4-cell if and only if the interval 
volume in R3 goes through the projection of.the 4-cell along the w 
direction, which is a 3-cell. So the number of 3-cells passed by an 
interval volume in R3 is equal to the number of 4-cells passed by 
the corresponding isosurface in R4. Hence, the volume of the inter- 
val volume in R3 can he easily calculated by counting the number 
of 4-cells on the isosurface in R4. After all the necessary volumes 
are calculated, we can test whether the degree of overlap between 
the interval volume components satisfies the user’s threshold. If it 
is satisfied, the correspondence holds; otherwise there will he no 
correspondence. 

5 Results and Discussion 

We have tested our tracking algorithm using a 128*128*128 vortic- 
ity magnitude data set with 100 time steps. All results were com- 
puted on a Pentinum IV l.4GHZ PC with 768 Mhytes memory. In 
this section, we demonstrate the results of our algorithm for track- 
ing both isosurfaces and interval volumes. 

Figure 5 shows an example of tracking an isosurface that consists 
of multiple components. The time-varying isosurface is extracted 
with an isovalue 6.0. The resulting isosurfaces in R4 are used to 
guide the coloring of the connected components, which allows us 
to distinguish different local features when following their evolu- 
tions over time. The color of each component is inherited from i ts  

parent in the previous time step. When a component is created, a 
new color is generated. When two or more components merge into 
a component, the current component would get the color of the pre- 
vious dominant component. The dominance could be determined 
by properties such as volume, mass or local extrema1 value. In OUT 
result. we use volume as the criterion to determine the dominance, 
i.e., the current component would follow the color of the previous 
largest component when amalgamation happens. 

Figure 6 shows the tracking of a local isosurface component. 
Snapshots from six time steps are shown. The isovalue of these 
components is 6.55. When one or a few components are selected, 
only the components from the subsequent time steps that overlap 
with the selected features are extracted using the four-dimensional 

Time step(t) I 9 1 10 I 17 I 18 I 24 I 27 
Trackingtime I 0.07 I 0.08 I 0.071 1 0.06 I 0.04 1 0.01 
4Disocont- I 1 I I I 1 1 ouringtime 1 0.02 1 0.02 1 0.02 1 0.01 1 0.01 1 a; 1 

Num of 
tetrahedra 20873 21566 16980 15502 5195 

Num of tri- 
anglesatt 4340 4452 3936 3564 1256 
Num of tri- 

anglesaltcl 4452 4524 3564 3272 628 32 

Table 1: The time to track the isosurface component illustrated in 
Figure 6(in seconds). 

Table 2: The critical time steps and evolutionary events of the ex- 
ample in Figure 6 .  

isosurfacing algorithm. In Figure 6, the component bifurcates into 
two at t=IO. These two components continue to t=17. The smaller 
component disappears at t=18 while the larger one continues to 
t=27 and disappears at t=28. The tracking time and the 4D iso- 
surfacing time are shown in Table 1. The tracking time includes 
extracting the connected isosurface components in R4 across the 
adjacent time steps, calculating the volumes of the components and 
their overlaps, and slicing the isosurfaces in hack 10 three di- 
mensions. Several factors influence the performance of OUT tracking 
algorithm. Among them, the sizes of the generated geometries in 
both R3 and from the adjacent time steps dominate. This shows 
that the complexity of our tracking algorithm is dependent on the 
feature size rather than the size of the data. The sizes of these ge- 
ometries are also show in Table l .  Table 2 shows the critical time 
steps and the corresponding topological events for the isosurface 
components tracked in Figure 6. 

Our algorithm can also track all interval volume components as 
well as individual interval volume component effectively. Figure 7 
shows the tracking of two interval volume components. Snapshots 
from five time steps are shown. The interval volume was gener- 
ated with isovalues between 5.3 and 7.0. We rendered the interval 
volume by drawing the faces of every tetrahedron. These two com- 
ponents first merge at t=29 and then split at t=3 I .  All the timing and 
the sizes of geometries are shown in Table 3. Critical time steps 
and the evolutionary events are listed in Table 4. 

Besides visualization, it i s  useful to know other properties such 
as the volume and mass of the features and how they change over 
time. This information can be used by scientists to gain further 
insight into the features. In our algorithm, the volumes of the com- 
ponents are computed in the verification process. Other properties 
can he computed similarly. As an example, the variations of the 
volume as a function of time far the case of isosurface component 
tracking in Figure 6 is illustrated in Figure 8. 

The overlapping threshold plays an important role in identify- 
ing the correspondence between features from adjacent time steps. 
An appropriate value should depend on the drifting speed of the 
features as well as the data sampling rate. If the threshold is set 
too high, many features would be identified as creatioddissipation 
instead of continuationlamalgamationbifurcation since no corre- 
spondence could he established. If the threshold is too low, features 
that overlap little would also be identified as continuation. In our 
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t=3 

. 

t=12 

t=6 

t=15 

t=9 

t=18 

Figure 5:  6 out 100 time steps are shown. All isosurface components are tracked and the evolutionary information determines the coloring of 
the components. 

t=9 t=IO t=17 t=18 t=24 t=27 

Figure 6 An isosurface component is tracked. Bifurcation happens at t=10 and dissipation at t=l8 and 28. 

Figure 7: Two interval volume component are tracked. These two components merge at t=29 and then split at t=31 

test, we set the overlap threshold to 35% which leads to good event 6 Conclusion and Future Work 

In this paper we present a novel volume tracking technique based 
on higher dimensional isosurfacing. Local features defined as con- 
nected isosurface or interval volume components are tracked in an 
efficient manner. This is achieved by f i s t  extracting the connected 

classification. 
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Time step(t) I 27 1 28 I 29 I 30 1 31 
Tracking time 1 0.20 I 0.26 I 0.271 I 0.29 1 0.29 

5Disocont- I I I I I 1 ouringtime 1 0.09 1 0.13 1 0.14 1 0.15 1 0.15 1 
Num of 4- 
simplices 102160 142393 160689 174276 172887 

Num of tetra- 
hedra at t 25059 25070 29507 34132 35702 

Num of tetra- 
hedraatt+l 25070 29507 34132 35702 34577 

Table 3: The time to track interval volume components illustrated 
in Figure 7(in seconds). 

Table 4: The critical time steps and evolutionary events of the ex- 
ample in Figure 7. 

components in higher dimension that intersects with the selected 
local components and slicing them to obtain the overlapping com- 
ponents at the next time step. The computing cost of performing 
higher dimensional isosurfacing is minimal, since an output sensi- 
tive propagation method is used. We can classify the type of evo- 
lUtiOndry events experienced by the time-varying features and iden- 
tify the critical time steps by analyzing the generated geometry in 
higher dimension. 

All current work is based on the assumption that the sampling 
frequency is high enough so that features that have correspondence 
will overlap with each other in the spatial domain. However, in 
practice under-sampled data sets can exist. Our future research will 
investigate tracking techniques when the data is not well sampled. 
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