Footprint Evaluation for Volume Rendering

A Feed-forward Approach - a.k.a. Splatting

(We 'used' to be called Ohio Splatting University (OSU))

Process for volume rendering

- Reconstruct the continuous volume function
- Shade the continuous function
- Project this continuous function into image space
- Resample the function to get the image

Feed Backward vs. Feed Forward

- Feed Backward: Image space algorithm (Ray casting)
- Feed Forward: Object space method (Splatting)

Splatting (feed-forward)

Feed Backward vs. Feed Forward

Feed Forward: Splatting

Backward: ray casting

Fill the holes

We need to fill the pixel values between the volume projection samples

That is, to fit a continuous function through the discrete Samples

We can use convolution to do this
Convolution

Convolution:

\[g(x,y) = \sum_{i} \sum_{j} f(i,j) h(x-i, y-j) \]

The output is a weighted average of inputs.

Convolution (2)

Another way of thinking convolution is to deposit each function value to its neighbor pixels.

Volume Rendering and Convolution

- Feed Backward (ray casting) views convolution as generating outputs as a weighted average of inputs.
- Feed Forward (splatting) views convolution as generating outputs as inputs distributing energy to outputs.

3D Kernel for Splatting

Need to know the 3D extent of each voxel, and then project the extent to the image plane.

Footprint function

\[g(x,y,z) = \sum_{i} \sum_{j} \sum_{k} f(i,j,k) h(x-i, y-j, z-k) \]

Effect \([i,j,k] \rightarrow (x,y,z)\] = \(f(i,j,k) \times h(x-i, y-j, z-k)\)

Effect \([i,j,k] \rightarrow (x,y)\] = \(\int_{z}^{\infty} f(i,j,k) \times h(x-i, y-j, z-k) \, dz\)

Footprint Function (2)

Effect \([i,j,k] \rightarrow (x,y)\] = \(f(i,j,k) \int_{z}^{\infty} h(x-i, y-j, z-k) \, dz\)

This footprint function defines how much voxel \((i,j,k)\) will deposit its value to pixel \((i+x, j+y)\) = \(f(i,j,k) \times \text{footprint}(x,y)\).
Footprint Function (3)

Pixel \((i+x,j+y)\) receives \(f(i,j,k) \times \text{footprint}(x,y)\) value deposits

The final value of pixel \((i+x,j+y)\) will be a total sum of the contributions from its surrounding voxel projections.

Footprint Function (4)

\[
\text{footprint}(x,y) = \int h(x,y,z) \, dz
\]

- Evaluating \(\text{footprint}(x,y)\) on the fly is too time-consuming - involves integration of the kernel function \(h(x,y,z)\).
- We can build the footprint table at preprocessing time.
- The kernel function can be any (depends on the renderer).

Footprint Extent

Approximate the 3D kernel \((h(x,y,z))\) extent by a sphere.

Footprint Table

A popular kernel is a three-dimensional Gaussian.
As 1D integration of 3D Gaussian is still a 2D Gaussian - we can just skip the Z integration and evaluate the Gaussian function on 2D image space after voxel projection.

View-dependent footprint

It is possible to transform a sphere kernel into an ellipsoid.

- The projection of an ellipsoid is an ellipse.
- We need to transform the generic footprint table to the ellipse.

View-dependent footprint (2)

\[T^{-1}(x) = x'\]
Footprint Value Lookup

- For rectilinear meshes, the footprint of each sample is identical except for an image-space offset.
- The renderer only needs to calculate footprint function once for each view.
- Weight is calculated by table lookup at the footprint function value at each pixel that lies within the footprint’s extend.

Visibility

- Splatting uses the compositing operator to perform visibility
- Either front to back or back to front compositing (different formula)
- The problem for simply composite sample’s footprint onto the accumulation buffer sample by sample

Effects of No. of entries of the table

- Time versus space tradeoff
- If a lot of entries, nearest neighbor works fine
- If coarse, interpolate from nearest samples.
- For smaller table size, interpolation gives much better results.
- Images (figure 2 in the paper).

Results (1)

- The choice of kernel can affect the quality of the image.
- Examples of cone, gaussian, sync, and bilinear function.

Effects of Kernel function
Conclusion

- Different from “existing” algorithms (ray casting)
- More efficient (sometimes)
- Easy to make parallel