
CSE 681
Texture Mapping

Why Textures?
• How can we model this scene with polygons?

– Lots of detail means lots of polygons to render
– 100’s, 1000’s, Millions of polygons!
– Modeling is very difficult and cumbersome

Why Textures?
• Render a single polygon with a picture of a brick

wall mapped to it

The Quest for Visual Realism

Textures
• Phong lighting just won’t do

– Plastic, rubber, or metallic looking objects

• Add surface detail with real world patterns
and images
– We get details at a low cost

• Very useful in games … a billion dollar
industry
– Provides realism at a low cost
– Graphics hardware vendors work hard to optimize

Terminology
• Texture: An array of values

– 2D (most common), 1D, and 3D
– Color, alpha, depth, and even normals

• Texel: A single array element

• Texture Mapping: The process of
relating texture to geometry

Texture Sources

1. Pixel maps (bitmaps)
– Load from an image file: gif, jpg, tiff, ppm,

etc.

2. Procedural textures
– Program generated texel values

Texture Mapping
• How do we apply a texture onto an

object?
– Construct a mapping between the texture

and object
– Use the texture to lookup surface attributes

Texture Mapping

• Problems
– The texture and object are in two different spaces
– Where in the rendering pipeline do we specify this

mapping?
• Object or world space?
• Map onto untransformed surfaces

– Texture filtering: A point on the surface maps to a
location between texels in the texture

Texture Space
• A texture is defined in a normalized

space
– 2D textures: (s, t) ∈ [0 … 1, 0 … 1]

s

t

(0,0)

(1,1)

Texture Value Lookup/Filtering
• Normalized space is continuous but the texture is a

discrete array
– Texel values are located on a cartesian grid

 (0,0)

 (1,1)

 (0.25,0) (0.5,0) (0.75,0)

Index (s, t) may not land on a grid value

 (1,0)

A) Nearest neighbor
B) Linear Interpolation
C) Other filters

Raytracing a Textured Object
• Shoot ray

1. Map the intersection point of the visible surface to object space
2. Map to texture space
3. Filter the texture
4. Determine pixel color with retrieved texture information

Eye or World World to Object Object to Texture

Map 2D Textures To Objects

• Define mapping between object and texture spaces
– For example, a simple quad in object space is easy!

• Akin to wall papering or gift wrapping

s

t

(0,0)

(1,1)

(0,0)

(1,0)

(1,1)

(0,1)

Mapping 2D Textures To
Objects

2D Texture Mapping
Approaches

• Intermediate Mapping
– Map the texture onto a simple intermediate

surface
– Map the intermediate surface to the final object

• Intermediate objects
– Plane
– Sphere
– Cylinder
– Cube

Planar Mapping

Project to an axial plane,
e.g. drop z coord (s,t) = (x, y)

Spherical Mapping
Given a point (x,y,z), convert it to spherical
coordinate coordinates (theta,phi)

Cylindrical Mapping
Given a point (x,y,z), convert it to cylindrical
coordinates (r, theta, z) and use (theta,z) as the
2D texture coordinates

Intermediate Mapping

[Paul Bourke]

Solid Texturing
• Sculpt your object out of a 3D texture

– Texture is a block or texture volume of color values
(or other attributes)

– Immerse the object in the block
– Each point on the object is assigned the texture

attribute from the texture volume

Solid Texturing Effects
• Wood, marble, noisy/bumpy objects

Solid Texturing
• 3D Texture

– A 3D array of texel values
– Texture attributes: Color, ambient, diffuse,

specular, opacity
– Texture space (s, t, r)

s

t
r

3D texture

Texture Mapping

• Texture Mapping:
– Define your object in the texture volume
– Every object point (x, y, z) -> (s, t, r)

texture

Texture Mapping
• Raytracing a solid textured object
• For each pixel

– Lookup the texture attribute for each ray-
object intersection

texture

Texture Mapping
• Which space should we define our mapping
 (x, y, z) -> (s, t, r)?

– Object or World space coordinates?

• World Space
– Static scenes: OK
– Animated scenes: Object moves through texture

• Object space
– Texture is ‘fixed’ to object
– Inverse transform intersection

• Or trace inverse ray in object space

texture

Texture Mapping
• Texture coordinates defined in object

space
• (xw, yw, zw) -> (xo, yo, zo) -> (s, t, r)

Object Space World Space

texture M

M-1

Texture Generation

• Acquiring a 2D texture
– Scanned photograph
– Artistic drawing

• How do you acquire a 3D texture?-
– Procedural textures?

Space Filling Stripes

• Computational tool: Modulo divisor %

• Example: Stripes in the x-direction

rgb Stripes(x, y, z)
{
 jump = ((int)(x)) % 2
 if (jump == 0)
 return yellow
 else
 retiurn red
}

jump = ((int)(A + x/s.x) % 2
if (jump == 0)
 return yellow

0…..1…..0

0...s.x...2*s.x..3*s.x

Strips using the sine function
Color stripe(point p)
 if (sin(p.x) > 0) then
 return c0
 else
 return c1

29

//control the width
Color stripe(point p, width)
 if (sin(PI * p.x/width) > 0)
then
 return c0
 else
 return c1

1. You can change to p.y or p.z to calculate the strips
2. Question: how do you smoothly transition between c0
and c1?

Space Filling 2D
Checkerboard

rgb 2DCheckerboard(x, y, z)
{
 jump = ((int)(A + x/s.x) + (int)(A + y/s.y)) % 2
 if (jump == 0)
 return yellow
 else
 return red
}

s.x

s.y

2*s.y

2*s.x

0 1

1 0

Space Filling 3D
Checkerboard

rgb 3DCheckboard(x, y, z)
{
 jump = ((int)(A + x/s.x)+(int)(A + y/s.y))+(int)(A+z/

s.z))%2
 if (jump == 0)
 return yellow
 else
 return red
}

Cube of Smoothly Varying
Colors

• Computational tool: floor or ceil
 Let fract(x) = x - floor(x)
 (r, g, b) = (1 - |2*fract(x) - 1|, 1-|2*fract(y) - 1|,
 1-|2*fract(z) - 1|)

0….1…..0

Rings

• Concentric Circles
Let rings(r) = (int (r)) % 2, where r = sqrt(x2 + y2);

rings(r) = D + A * rings(r/M)
 where M - thickness

Wood Grain
rings(r) = rings (r/M + k*sin(θ/N))

rings(r) = rings (r/M + k*sin(θ/N + Bz))

Wobble:

Twist:

θ − Azimuth around the z-axis

θ
z

Wood Grain

To tilt the grain,
(x’,y’,z’) = T(x,y,z)
for some rotational transform T

Environment Mapping

Environment Mapping
• Also called reflection mapping
• First proposed by Blinn and Newell 1976
• A cheap way to create reflections on curved surfaces

– can be implemented using texture mapping
supported by graphics hardware

Basic Idea
• Assuming the environment is far away

and the object does not reflect itself –
the reflection at a point can be solely
decided by the reflection vector

n

e
r

reflective surface

environment map

eye

Basic Steps

• Create a 2D environment map
• For each pixel on a reflective object, compute the

normal
• Compute the reflection vector based on the eye

position and surface normal
• Use the reflection vector to compute an index

into the environment texture
• Use the corresponding texel to color the pixel

Finding the reflection vector

• r = e – 2 (n.e) n

e
n

r

e

r

r

e.n

Assuming e and n are all normalized

Blinn and Newell’s
• Blinn and Newell’s Method (the first EM

algorithm)
• Convert the reflection vector into spherical

coordinates (ρ,φ), which in turn will be normalized
to [0,1] and used as (u,v) texture coordinates

x

z

y

(rx,ry, rz)

(ρ = π/2, φ = 0)

ρ: latitude [0, π]
φ: longitude [0, 2π]

(ρ = 0, φ = 0)

ρ = arccos(-rz)
φ = atan2(ry, rx)

φ

ρ

ππ/2 3 π/2

π/2

π/4

3π/4

π

2π0

Issues

• Seams at φ = 0 when the triangle
vertices span over

• Distortion at the poles, and when the
triangle vertices span over

• Not really been used much in practice

Cubic Environment Mapping
• Introduced by Nate Green 1986 (also

known as environment cube map)
• Place the camera in the center of the

environment and project it to 6 sides of
a cube

Cubic Environment Mapping (2)
• Texture mapping process

– Given the reflection vector (x,y,z), first find the major
component and get the corresponding plane. (-3.2, 5.1, -8.4)
-> -z plane

– Then use the remaining two components to access the
texture from that plane.

• Normalize them to (0,1)
 (-3.2, 5.1) -> (-3.2/8.4)+1, 5.1/8.4+1)
• Then perform the texture lookup

• No distortion or seam problems, although when two
vertices of the same polygon pointing to different
planes need to be taken care of.

Environment Cube Map

• Rendering Examples

