
SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

An I m a g e S y n t h e s i z e r

Ken Perlin

Courant Institute of Mathematical Sciences
New York University

Abstract
We introduce the concept of a Pixel Stream Editor. This forms
the basis for an interactive synthesizer for designing highly
realistic Computer Generated Imagery. The designer works in an
interactive Very High Level programming environment which
provides a very fast concept/implement/view iteration cycle.

Naturalistic visual complexity is built up by composition of non-
linear functions, as opposed to the more conventional texture
mapping or growth model algorithms. Powerful primitives are
included for creating controlled stochastic effects. We introduce
the concept of "solid texture" to the field of CGI.

We have used this system to create very convincing
representations of clouds, fire, water, stars, marble, wood, rock,
soap films and crystal. The algorithms created with this paradigm
are generally extremely fast, highly realistic, and asynchronously
parailelizable at the pixel level.

CR CATEGORIES AND SUBJECT DESCRIPTORS: 1.3.5
[Computer Graphics]: Three-Dimensional Graphics and Realism

ADDITIONAL KEYWORDS AND PHRASES: pixel stream
editor, interactive, algorithm development, functional
composition, space function, stochastic modelling, solid texture,
fire, waves, turbulence

Intreduetion

This work arose out of some experiments into developing efficient
namraiistlc looking textures. Several years ago we developed a
simple way of creating well behaved stochastic functions. We
found that combinations of such functions yielded a remarkably
rich set of visual textures. We soon found it oambersome to
continually rewrite, re.compile, and rerun programs in order to try
out different function combinations.

This motivated the development of a Pixel Stream Editing
language (PSE). Cook [1] has proposed an expression parser for
this purpose. We have taken the same idea somewhat farther by
providing an entire high level programming language available at
the pixel level. Unlike [1], The PSE contains, general flow of
control structures, allowing arbitrarily asynchronous operations at
different pixels.

With the PSE we may interactively compose functions defined
over modelling space. By starting with the right choice of

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copyiag is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 A C M 0 - 8 9 7 9 1 - 1 6 6 - 0 / 8 5 / 0 0 7 / 0 2 8 7 $00 .75

primitive functions we can build up some rather convincing
naturalistic detail with surprisingly simple and efficient
algorithms.

We will first describe the PSE language and environment. Then
we will introduce the concept of solid texture, together with our
well behaved stochastic functions. Finally we will give some
examples of how these concepts work together in actual practice.

A Plxel Stream Editing Language

Consider any list of variable names. We will call any list of
corresponding values for these variables a "pixer ' . For example,
one possible pixel for the variable list [red green blue] is [0.5 0.3
0.7]. We will call any list of names together with a two
dimensional array of pixels an "image".

A Pixel Stream Editor (PSE) is simply a filter which converts
input images to output images by running the same program at
every pixel. We always read and write image pixels in some
canonical order. At any one pixel, all that the program "knows"
about each image are its variable names and their current values.

The PSE we have designed has a rather high level language. All
of the familiar programming constructs are supported, including
conditional and looping control structures, function procedure
definitions, and a full compliment of arithmetic and logical
operators and mathematical functions. Assignment and the
equality operator are denoted by " = " and "ffi •" , respectively, as
in the C programming language [2]. For any infix operator op,
a op = b denotes a = a op b.

Variables may be scalars, or else vectors of scalars and/or vectors
(recursively). Typing is implicit, determined by assignment.
Program blocks are indicated by indenting. All operators will
work on scalars or vectors. For example a + b is a scalar sum if a
and b are scalars, and a vector sum if a and b are vectors.

The following simple example will illustrate. Suppose the input
image contains the variable list [surface point normal], where
surface is a surface identifier, point is the location in space of the
surface visible at this pixel, and normal is the surface normal
direction at point. This image in particular would generally be the
output of some visible surface finding algorithm.

Let the output image consist of [color]. If we interpret color as a
[red green blue] vector, then the procedure :

if surface = = 1
color = [1 00] * max(O.l, dot(normal, [1 0 01))

else
color = [0 0 0.1]

will produce an image of a diffusely shaded red object lit from the
positive x direction against a dark blue background. The function
"'dot()" is simply a built in function returning the dot product of
two v~tors.

287

S I G G R A P H '85

Spotted Donut Bumpy Donut

Stucco Donut Disgusting Donut

Bozo's Dollut Wrinkled Donut

288

SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

Note that in the above example, "[1 0 0]" is used in one place to
denote the color red, and in another to denote a direction in
space. Such looseness and ambiguity was a deliberate design
decision in creating the language. In using the system we
obtained some of the most striking visual effects only by stepping
over (real or imagined) semantic distinctions.

We find that the PSE is most useful as a design tool when used as
interactively as possible. For this reason we have placed it in an
interactive design cycle :

1 .Edi t PSE program
2. Run it on a low resolution image
3. View the results on a color monitor

Design resolution is generally chosen to allow a design cycle time
of under one minute.

Space Functions and Solid Texture

A number of researchers have proposed procedural texture,
notably [3], [5], and [6]. As far as we know all prior work in this
direction has been with functions which vary over a two
dimensional domain.

Suppose we extend this to functions which vary over a three
dimensional domain. We call any function whose domain is the
entirety of (x,y,z) space a "space function".

Any space function may be thought of as representing a solid
material. If we evaluate this function at the visible slxtface points
of an object then we will obtain the surface texture that would
have occured had we "sculpted" the ob~.~'t out of the material.
We will call a texture so formed a '*solid texture".

This approach has several advantages over texture mapping :

1. Shape and texture become independent. The texture does
not need to be "f i t" onto the surface. If we change the
shape or carve a piece out of it, the appearance of the solid
material will accurately change.

2. As with all procedural textures, the database is extremely
small.

Although it is not immediately obvious, this paradigm is a
superset of conventional texture mapping techniques. Any stored
texture algorithm may be cast as a table lookup function
composed with a projection function from three dimensions to
two.

We will use solid texture repeatedly over the coune of this paper
to simalate a variety of materials.

NoluO

Irt order to get the most out of the PSE and the solid texture
approach we have provided some primitive stochastic functions
with which to bootstrap visual complexity. We now introduce the
most fundamental of these.

Noise() is a scalar valued function which takes a three dimensional
vector as its argument. It has the following properties :

Statistical invariance under rotation
(no matter how we rotate its domain,
it has the same statistical character)

A narrow bandpass limit in frequency
(its has no visible features larger or smaller
than within a certain narrow size range)

Statistical invariance under translation
(no matter how we translate its domain,
it has the same statistical character)

Noise() is a good texture modeling primitive since we may use it
in a straightforward manner to create surfaces with desired
stochastic characteristics at different visual scales, without losing
control over the effects of rotation, scaling, and translation. This
works well with the human vision system, which tends to analyze
incoming images in terms of levels of differently sized detail [4].

The author has developed a number of surprisingly different
implementations of the Noise() function. Some real tradeoffs are
involved between time, storage space, algorithmic complexity,
and adherence to the three defining statistical constraints.

Because of space limitations, we will describe only the simplest
such technique. Although generally adequate, this procedure only
approximately conforms to the bandwidth and rotational
invariance constraints.

1. Consider the set of all points in space whose x, y, and z
coordinates are all integer valued. We call this set the
integer lattice.

Associate with each point in the integer lattice a pseudo-
random value and x, y, and z gradient values. More
precisely, map each ordered sequence of three integers into
an uncorrelated ordered sequence of four real numbers:
[a,b,c,d] = H([x,y,z]), where [a,b,e,d] define a linear
equation with gradient [a,b,c] and value d at [x,y,z]. H 0 is
best implemented as a hash function.

2. If [x,y,z] is on the integer lattice, we define Noise([x,y,z]) ~-
d[~o,a]"

If [z,y,~] is not on the integer lattice we compute a smooth
(eg. cubic polynomial) interpolation between lattice equation
coefficients, applied first in x (along lattice edges), then in y
(within lattice z-faces), then in z. We then evaluate this
interpolated linear equation at [x,y,z].

We will now show some of the simpler uses of Noise(). We will
assume that "'point" and "normal" are vector valued input image
variables.

By evaluating Noise() at visible surface points of simulated objects
we may create a simple " random" surface texture (figure
Spotted.Donut) :

color -~ white * Noise(point)

The above texture has a band-limited character to it; there is no
detail outside of a certain range of size. This is equivalent to
saying that the texture's frequency spectrum falls off away from
some central peak frequency.

Through functional composition we may do many different things
with the value returned by the Noise() function. For example, we
might wish to map different ranges of values into different colors
(figure Bozo's.Donut) :

color -- Colorful(Noise(k * point))

In the above example we have scaled the texture by multiplying
the domain of Noise() by a constant k. An nice feature of the
functional composition approach is the ease with which such
modifications may be made.

Another convenient primitive is the vector valued differential of
the Noise() signal, defined by the instantaneous rate of change of
Noise() along the x, y, and z directions, respectively. We will call
this function DnoiseO.

289

@ S I G G R A P H '85

Water Crysl~!

Art Glass

290

SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

291

@ S I G G R A P H '85
IIII

DnoiseO provides a simple way of specifying normal perturbation
[7] (figure Bumpy.Donut) :

normal + = Dnoise(point)

By using functions of Noise() to control the amount of DnolseO
sPerturbation, we may simulate various types of surface (figure

tucco.Donut), and use these in turn to design other types of
surface (figure Disgusting.Donut).

AS another example, a 1/f signal over space can be simulated by
looping over octaves (powers of 2 in frequency) :

N~se(ooint * 2:)
21

In order to create 1/f texture we observe that the differential of a
function with a 1/f frequency spectrum is a vector valued function
with a fiat frequency specu'um (ie. gradients of 1/f functions are
similar at all scales). This means that we must create similar
normal perturbation in all octaves (figure Wrinkled.Donut) :

f = l
while f < pixel_freq

normal + = Dnoise(f * point)
f * = 2

Note that the calculation stops at the pixel level. In this way
unwanted higher frequencies are automatically clamped.

Unlike subdivision based [5] or Fourier space [14] fractal
simulations, the above algorithm proceeds independently at all
sample points. There is no need to create and modify special data
structures in order to provide spacial coherence, This results m a
considerable time savings. As with 'all of the algorithms we will
present, the calculation at different pixels can b e done in any
order, in parallel, or even on different machines.

Marble - An Example of • Solid Texture

We can use Noise() to create function turbulence() which gives a
reasonable visual appearars~ of turbulent flow (see Appendix).
We may then use turbulence() to simulate the appearance of
marble.

We observe that marble consists of heterogeneous layers. The
"marble" look derives from turbulent forces which create
deformations before these layers solidify.

The unperturbed layers alone can be modeled by a simple cole:-
filtered sine wave :

function boring_marble(point)
x = point[l]
return marble_color(sin(x))

where point[l] denotes the first (ie. x) component of the point
vector and raarble..color 0 has been defined as a spline function
mapping scalars to color vectors. To go from this to realistic
marble we need only perturb the layers :

function marble(point)
x = poim[1] + turbulence(point)
return marble_color(sin(x))

By invoking this procedure at visible surface]points we can create
quite realistic simulations of marble ob~cts (figure Marble,Vase).

Fire

We can create fire using turbulence() whenever we have a well
defined ~low.

292

For example, suppose we wish to simulate a solar corona. We
will assume that the following entities :

norm()
direction 0
frame

scalar length (ie. norm) of a vector
the (unit length) direction of a vector
global lime variable (ie. one frame dick)

have already been defined.

A corona is hottest near the emitting sphere and cools down with
radial distance from the sphere center. At any value of radius,
and hence of temperature, a particular spectral emission is visible.
Assume we have defined a function color..of_emission 0 which
models emission color as a function of radius.

Modeled as a smooth flow, the corona would be implemented by :

smooth_corona(point - center)

function smooth_corona(v)
radius = norm(v)
return color.of_emission(radius)

By addin~g turbulence to the radial flow we can turn this into a
realistic stmulation of a corona (figure Corona) :

function corona(v)
radius ffi norm(v)
dr = turbulence(v)
return color..of_corona(radius + dr)

To animate this we linearly couple the domain of turbulence to
time :

function moving_corona(v)
radius = norm(v)
dr = turbulence(v - frame * direction(v))
return color_of_corona(radius + dr)

Water

Suppose we wish to create the appearance of waves on a surface.
To simplify things we will use normal perturbation [7] instead of
actually modifying the surface position.

Max [8] approached this problem by using a collection of
superimposed linear wave fronts. Linear fronts have a notable
deficiency - they form a self.replicating pattern when viewed over
any reasonably large area.

To avoid this we use spherical wave fronts eminating from point
source centers [17]. More precisely, suppose at a given pixel a
particular surface point is visible. For any wave source center, we
will perturb the surface normal towards the center by a cydoidal
function of the center's distance from the surface point :

normal + = wave(point - center)

function wave(v)
return direction(v) * cycloid(norm(v))

We can create multiple centers, let's say distributed randomly
around the unit sphere, by using the direction of DnoiseO over
any co]leetion of widely spaced points. This works because (by
definition) the value of Dnoise 0 is tmcorrelated for any two
points which are spaced widely enough apart :

function makewaves(n)
for i in [1 .. n]

center[i] -- direction(Dnoise(i * [100 0 0]))
return center

SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

To make a wave model with 20 sources we would enter :

if begin_frame
center ~- makewaves(20)

for c in center
normal + = wave(point- c)

Note that the surface need not be planar. By making our wave
signal defined over 3-space we have ensured shape independence.
This means that we can run the above procedure on any shape.
The illustration "Water Crystal" was made using 20 sources
(figure Water.Crystal). A similar procedure was used to simulate
an "Art Glass" partition (figure Art.Glass).

Waves of greater realism are created by distributing the wave-
front spacing frequencies using a 1/f relatiouship of amplitude to
frequency. If we assign a random frequency f to each center, the
last line of tiw procedure then becomes :

normal + = wave((point - c) * f) / f

Using this refinement (again with 20 sources) we can realistically
simulate ocean surfaces (figure Ocean.Sunset).

Since each wave front moves outward linearly with time we may
animate these images by adding a linear function of time to the
argument passed to cycloidO :

function moving.wave(v, Dphase)
return direction(v) " cycloid(norm(v) - frame * Dphase)

where Dphase is the rate of phase change. For greatest realism
we make Dphase proportional to fJ/2 [9]. The wave images
pictured are actually stills from such animations.

Other Examples - Clouda and Bubbles

The two bubble images were designed by Carl Ludwig using the
PSE. The various elements were all created and assembled by
functional composition in the PSE.

For example, in the topmost bubble image the background clouds
were created by composing a color spline function with
turbulence(). The reflection and refraction from the bubble
surface were done by using simple vector valued functions to
modify an incoming direction vector in accordance with the
appropriate physical laws. These were composed with the cloud
function and added together.

In the center image, a function corresponding to the shape of an
illuminated window was composed with reflection and refraction
functions.

The appearance of variable bubble thickness was simulated by
multiplying turbulence() by each of a red, 8teen, and blue
frequency and using sin() of this to create constructive and
destructive interference fringes. In the PSE this looks like :

color *= 1 + sin([rfreq gfreq bfreq] * turbulenca(point))

Cempasl t ta |

We can use the PSE simply as a digital image compositor, in
which case it functions as a generalization of [10]. We can also
use it to combine and modify images in more unusual ways.

Suppose for example that we wish to synthesize some flame on
the PSE, knowing that later we will race;re some other animation
to be composited with our synthetic flame.

We may defer the aesthetic decision of how to color the flame
until after looking at this footage. We do this by computing the
flame in two passes. The first pass outputs only a scalar flame

value. The second and simpler pass maps this scalar quantity to
the appropriate color vector.

Note that this process involves no recalculation of the flame itelf.
The second pass through the PSE is being used only as a general
color splining filter, at a small fraction of the total computing
COSt.

In an actual commercial production .this ability to split
computation costs and defer post-production oeasions adds
enormously to throughput.

In more unusual cases we may use the scalar flame to modulate
the frequency distribution or height of water waves, or the
amount of rocklike character to give to a surface. In this context
our approach is similar to that of [1] and [10], the difference
being the extra flexibility we gain by the ability to specify
arbitrary asynchronous pixel operations.

Ceudderatlemt of Egttekacy

The efficiency of an implementation is a rather elusive thing.
This is because it consists of three fairly different considerations.
Most familiar is time efficiency. There is also space efficiency,
which often is inversely proportional to time efficiency (as m
"should we use a procedure or a lookup table?").

The third consideration, often overlooked, is flexibility. Many of
us are familiar with archaic and monolithic "dinosaur" programs
that nobody dare modify lest they fall apart altogether. Such
programs must be used "as is" or else scrapped and rewritten
from scratch.

The approach we offer here does not always produce the most
efficient algorithms. What it does offer is the opportunity to try
out new approaches qLuickly and painlessly. For COl in particular
this is of the utmost tmportance. We generally want to see what
the picture looks like before proceeding with optimization. Once
implemented, PSE algorithms lend themselves readily to
optimization by virtue of their simplicity and high degree of
modularity.

In addition, a number of effects are ideally suited to a functional
composition paradigm; generally when there is interplay between
a simple regular structure and a complex stochastic structure.
This is because we can use nonlinear functional composition to
model the stochastic part of the structure. This will result in both
good time efficiency and good space efficiency.

The flame model constimtas such a "best case" for our approach.
The final motion picture quality animation ran in about 10
minutes a frame, written entirely in an unoptimized interpreted
pseudo-code implementation of the design language on a Gould
SEL 3287 Minicomputer. This appears to be much faster than the
particle system approach of Reeves [11]. With optimization and
true compilation a speedup of a factor of 5 is indicated. The
marble vase, with twice as large an area of visible turbulence,
took about 20 minutes to compute.

In all cases, the low resolution interactive design loop took
between 15 seconds and 1 minute per iteration.

Now Wlutt?

We plan to make a number of improvements m the system. We
are developing an optmized compiler for the design language
which recognizes quantities that vary slowly over the linage
stream and computes quantities dependent these only as
necessary. We are also addin~g a general facility for direct
insertion of large data bases rote the image prtor "to pixel
streaming.

We are currently using the same paradigm of composition with
stochastic functions for motion and shape modelling.

We have applied our approach to modelling stochastic motion not
only for continuous turbulence models, but also for such things as
falling leaves, swaying trees, flocks of birds, and muscular

293

@ S I G G R A P H '85

294

SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

Corona

Occan Sunset

: \

295

@ S I G G R A P H '85
I I I

tippling. In general the paradigm is appropriate whenever a
reipflar, well defined macroscopic motion contains some stochastic
component.

To create interesting stochastic shapes, we have generalized on
the work of Bliun [151. Given any space filling scalar valued
function, we may consader the shape formed by any isosurface
(surface of constant value) of the function. It turns out that a very
rich class of shapes may be created in this manner (for example,
we can actually build the three dimensional structure of the flame
shown in figure Corona). We understand that Lance Williams of
NYIT [16] is pursuing a similar line of research.

Conclusions

We have shown a new approach to the design of realistic CGI
algorithms. We have introduced the concepts of the Pixel SUream
Editor and of solid texture. We have demonstrated a number of
effects which would have been considerably more difficult and
expensive, and in some cases impossible, to generate by
previously known techniques.

Appendix. Turbulence

A suitable procedure for the simulation of turbulence using the
Noise() signal is :

function turbulence(p)
t = 0
scale = 1
while (scale > pixelsize)

t + = abs(Noise(p / scale) * scale)
scale/= 2

return t

This is actually a simplified approximation to the magnitude of
the deformauon which results from swirling around the
isosurfaces of the Noise() domain along the instantaneous vector
field :

• -'~°l'*~°t"')2 (normal X Dnoise(point))

This formulation is part of a synthetic turbulence model
developed by the author [12]. We use the simplified turbulence()
procedure because it is fast and the pictures it produces look good
enough.

Even so it is interesting to examine, with only minimal comment,
the algorithmic structure of turbulence(). Note the expression

Noise(p / scale) * scale

inside the loop. This says that at each scale the amount of Noise()
added is proportional to its size. Thus we obtain a self-similar, or
1/f, pattern of perturbation. This will give a visual impression of
brownian motion. Also, while the deformation is continuous
everywhere, the absO at each iteration assures that its gradient
will have discontinuous boundaries at all scales. This will give a
visual impression of discontinuous flow, which will be interpreted
by the viewer as turbulent.

Acknowledgements

The management of MAGI very graciously allowed me the use of
its facilities for this research. Frank Crowgot me to publish. I d
also like to thank my Ph.D. advisor DavidLowe, the faculty of
the Courant Institute at NYU, and R/Greenberg Associates for
their continuing support.

Gene Miller at MAGI designed "Bozo's Donut" and made a
number of valuable suggestions for this paper.

Carl Ludwig made the bubbles and the lovely ocean sunset image.
He also codeveloped the wave algorithm, made countless good
suggestions for the system and for this paper, and performed the

all important service of being the first user of the system other
than the author.

Mike Ferraro originated the crucial concept of using functional
composition to create texture [13]. Much of this paper has its
roots in his powerful idea.

Lastly, this paper probably could not have been written were it
not for all I have learned over the years about images, algorithms
and true elegance of design from working with Josh Pines.

References

1. Cook, R., "Shade Trees," Computer Graphics, vol. 18, no.
3, July 1984.

2. Kernlghan B., Ritchie D., The C programming language ,
Prentice Hail, Englewood Cliffs, 1978.

3. Gardner, G., "Simulation of natural scenes using textured
quadric surfaces," Computer Graphics, vol. 18, no. 3, July
1984.

4. Marr, D., Vision, W. H. Freeman and Company, San
Francisco, 1982.

5. Fournier, A., Fussei, D., and Carpenter, L., "Computer
rendering of stochastic models," Comm. ACM 25, 6 (June
1982), 371-384.

6. Schacter, B., "Long-crested wave models,"
Computer Graphics and Image Processing, vol 12., 1980.

7. Blinn, I. , "Simulation of wrinkled surfaces,"
Computer Graphics, voi. 12, no. 3, July 1978.

8. Max, N., "Vectorized procedure models for natural terrain:
waves and islands in ~ e sunset," Computer Graphics, vol.
15, no. 3, August 1981.

9. Sverdrup, Johnson & Fleming, The Oceans, Prentice Hall,
Englewood Cliffs, 1942.

Ju. t 'orter, T., Dutt, T., "Compositing digital images,"
Computer Graphics, voL 18, no. 3, July 1984.

11. Reeves, W., "Particle systems, - A technique for modeling a
class of fuzzy objects," ACM Transactions on Graphics, vol.
2, no. 2, April 1983.

12. Perlin, K., Author's unpublished Ph.D. dissertation - work
in progress.

13. Mike Ferraro, personal communication.

14. Voss, R., Fractul Lunar Mist, Cover of SIGGRAPH '83
proceedings, July 1983.

15. Blinn, J., " A Generalization of Algebraic Surface Drawing."
ACM Transactions on Graphics, vol. 1, pp 235., 1982.

16. Lance Williams, personal communication.

17. Suggested by Carl Ludwig, personal communication.

296

