Basic Visualization Techniques & ParaView

Han-Wei Shen
The Ohio State University
Visualizing Scientific Data

- Common Visualization Techniques
 - Mesh view
 - Outer surface with attributes
 - Slicing
 - Glyphing
 - Contouring
 - Volume rendering
Visualization Software

• We will explain how to generate the common visualizations using the ParaView visualization software
What is ParaView

• An open-source application for visualizing scientific data sets
• Supports a wide range of platforms, from laptop to supercomputers with 100,000 cores
• Built on top of VTK, the visualization toolkit, but with intuitive graphical user interface
• Modular design, can be controlled using scripting language such as python
• Can run on distributed memory parallel computers to process large data sets
ParaView Software Stack

ParaView Client | pvpython | ParaWeb | Catalyst | Custom App

UI (Qt Widgets, Python Wrappings)

ParaView Server

VTK

OpenGL | MPI | IceT | Etc.
ParaView Data Model

• ParaView can process the following types of spatial data

- Uniform Rectilinear
- Non-uniform Rectilinear
- Curvilinear
- Unstructured Grid
- Polygons
ParaView User Interface

- Menu Bar
- Toolbars
- Pipeline Browser
- Properties Panel
- Advanced Toggle
- 3D View
Mesh View

- Convert the faces of each cell in the data set into polygons
- Draw the face either in wireframe or surface (or both) mode using a preferred graphics library (such as OpenGL)
Mesh Surface with Colors

- Map the attribute values at the vertices of each cell to colors by a lookup table.
- Draw the faces in surface mode with the color attributes using a preferred graphics library (such as OpenGL).
- Colors are interpolated across the surface.
Data Slicing

- Intersecting the mesh with a slicing surface (slicer)
- The slicer can be represented as an implicit function \(f(x,y,z) = 0 \)
- A plane is typically used \((Ax + By + Cz + D = 0) \), but does not need to be
- Data attributes are sampled at the intersection points between the slicer and the mesh, and the resulting polygonal mesh is rendered
Glyphing

• Graphical objects shown at selected points (e.g. grid points) to display the data
 – Pros: Precise
 – Cons: extremely local, and can cause visual cluttering

• Example: arrows to depict vectors
Contouring

• Show all the points whose attribute values equal to a constant; \(f(x,y,z) = C \)
• Contouring on a 2D surface: curves
• Contouring in a 3D volume: surfaces
• Discrete algorithms are needed to extract the contours (e.g. Marching Cubes)
Volume Rendering

- A method to visualize the entire 3D data set by simulating light transport across the volume
- A 2D projection of 3D discrete samples
ParaView Video Demo