Reduce Items and Attributes

Han-Wei Shen
Five Major Strategies for Big Data

• Derive new (and more compact) data (Tamara Chapter 3)
• Change a view over time (Chapter 11)
• Facet data into multiple views (Chapter 12)
• Reduce items and attributes (Chapter 13)
• Focus+Context viewing (Chapter 14)
Filtering

• Eliminate or select some items and/or attributes to make visual exploration more effective

• Challenges:
 – Without information losses
 – Support effective dynamic queries – tightly coupled with visual encoding and interaction
 – Do it efficiently
Filter Items

• Example: FilmFinder
 – Use sliders to control what items (films) to show in a scatter plot
 – The marks automatically adapt to the number of items shown (enlarged and labeled)
 – Detail information pops out with mouse over
Scented Widget

• Augment the selection widget with concise visual information about the data
Attribute Filtering

- To show the same number of items, but fewer attributes
- Can be combined with item filtering
- Can also benefit from attribute ordering (or clustering) based on their similarity, and then only show the unique ones
Aggregation

• A group of elements is represented by a new derived elements, e.g., average values
 – Elements are merged with aggregation, as opposed to be filtered/eliminated
• Basic aggregation: average, minimum, maximum, count, and sum
• Challenge: avoid eliminating interesting information
Example: Histogram

- Bin the data into different ranges, or different categorical types, and then count the number of items in each bin.
Example: Boxplots

- Compute five basic quantities: median (50% point), first quartile (25% point), third quartile (75% point), and two extremes (minimum and maximum).
Example: Vaseplots

• Augment boxplots with width to depict data density
Example: Solarplots

- Different rings indicate histograms of different aggregation levels, inner most being the coarsest
Example: Hierarchical Parallel Coordinates Plots

- Cluster the data items into different number of groups, and show the groups (mean, min, max) instead of the raw data items in PCP
- Inspect the clusters/data at different levels
Attribute Aggregation: Dimensionality Reduction

• Use a fewer derived attributes to represent the original data attributes
 – Dimensions: number of attributes

• Goal:
 – preserve the meaningful structure in the data even with the new dimensions
 – This often means preserve the distance between the raw data points

• Common techniques
 – Multidimensional Scaling (MDS)
 – Principle Component Analysis (PCA)
Example: Document Collection

• Transform a document into a bag of words, and count the frequency of each words
 – (vis, tool, filter, aggregate, channel, ...)
 (75, 10, 25, 34, 50,)
 – This is called a feature vector

• The dimensionality of the feature vector is typically very high, so need to be reduced

• Apply dimensionality reduction so that each document can be represented as a visualizable mark (a point for example)
Example: Document Collection
Display Dimensionality Reduction Results

- Two dimensions (e.g. output from Multidimensional Scaling, MDS) can be displayed as a scatter plot
- More than two dimensions can use scatterplot matrix (SPLOM)
- Need to allow the user to inspect the original high dimensional data by selecting the low dimensional derived attributes