

 High-Performance Concurrency Control

Mechanisms for Main-Memory Databases

Per-Åke Larson1, Spyros Blanas2, Cristian Diaconu1,
Craig Freedman1, Jignesh M. Patel2, Mike Zwilling1

1Microsoft Corporation 2Univ. of Wisconsin-Madison

1

The problem

Most DBMSs designed for:

• Disk-resident data

• Few CPUs

$50K server in 2012:

• 1TB of RAM

• 40 CPUs

2

What concurrency control scheme
should be used for a high-performance

main-memory OLTP system?

What concurrency control scheme
should be used for a high-performance

main-memory OLTP system?

Contributions

1. Multi-version optimistic concurrency control
– Multi-version: readers don’t block writers

– Optimistic: no waiting on database locks

– Supports all SQL isolation levels

2. Efficient mechanisms for implementing
multi-version and single-version locking

3. Experimental evaluation: High performance
(millions of TX/sec) and full serializability
without workload-specific knowledge

3

Recent related work

• Concurrency control for shared-nothing DBMSs

– Open question: Performance in a shared-
everything main memory environment

• Make existing DBMS storage engine scale:

– Locking, page latching, B-tree index, logging, …

• Exploit specific workload property:

– Partitionable workload

– Deterministic stored procedures

4

Our approach:

Redesign DBMS storage engine,
make no assumption about workload

Our approach:

Redesign DBMS storage engine,
make no assumption about workload

Designing a main memory storage engine

Traditional disk-oriented engine

• Disk-friendly data structures
– Pages, B-tree index

• Absorbs high disk latency by
frequent context switching

• Thread spins for latches

• TX may yield for locks

• Critical sections are
thousands of instructions
long, and limit scalability

Our main memory prototype

• Latch-free hash table
stores individual records

• Minimizes context switching
– Usually 1, at most 2 per TX

• Eliminates latches

• TX never waits for locks

• No critical sections
– Many TXs finish in thousands

of instructions

5

Multi-version optimistic scheme

• TXs have two unique timestamps: BEGIN, END

• Read as of BEGIN timestamp

• Write as of END timestamp

6

1 2 3 4 5

Logical time

R W But not for
Serializable
But not for
Serializable

Sufficient for
Read Committed

Sufficient for
Read Committed

BEGIN END

Snapshot Isolation (SI)

R

Making SI serializable

• Read as of BEGIN timestamp

• Repeat Read as of END timestamp, verify no change

• Write as of END timestamp

7

R W
BEGIN END

1 2 3 4 5

Logical time

[Bornea et al, ICDE’11]

What needs to be repeated?

• Depends on the isolation level

• Read Committed or SI: No validation needed

– Versions were committed at BEGIN, will still be
committed at END

• Repeatable Read: Read versions again

– Ensure no versions have disappeared from the view

• Serializable: Repeat scans with same predicate

– Ensure no phantoms have appeared in the view

8

Transaction states

9

Committed Committed

Active Active Validating Validating

Aborted Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Committed Committed

Active Active Validating Validating

Read only
transaction

Terminated Terminated Terminated Terminated

Postprocessing

Transaction map

• Stores transaction state,
timestamps

• Globally visible

10

TXID STATE BEGIN END

5 ACTIV 2 N/A

TRANSACTION MAP

Determining version visibility

11

Visibility as of time T is determined by:
version timestamps and TX state

Visibility as of time T is determined by:
version timestamps and TX state

John John $100 $100 1 1 ∞ ∞

timestamp

8 bytes

, or transaction ID

TXID STATE BEGIN END

5 ACTIV 2 N/A TX5 TX5
TXID STATE BEGIN END

5 ACTIV 2 N/A 1 1 TX5 TX5

TRANSACTION MAP

Example: Update to $150

12

John John $100 $100 1 1 ∞ ∞
TXID STATE BEGIN END

TRANSACTION MAP

John John $150 $150 TX5 TX5 ∞ ∞

Active Active Validating Validating

Get Begin
Timestamp

Get End
Timestamp

Active Active Validating Validating

Committed Committed Committed Committed

5 N/A N/A N/A 5 N/A 2 N/A 5 ACTIV 2 N/A 5 ACTIV 2 N/A 5 ACTIV 2 4 5 VALID 2 4 5 COM 2 4 5 COM 2 4

TX5 TX5 TX5 TX5

4 4

TX5 TX5

4 4

4 4 4 4

Log updates, wait for I/O

Terminated Terminated Terminated Terminated

Postprocessing

John John $150 $150 TX5 TX5 ∞ ∞

WW conflicts

13

John John $100 $100 1 1 ∞ ∞

TX5 updates
$100 to $150

TX2 updates
$100 to $75

TX5 TX5 TX2 TX2

CAS CAS

∞ ∞ TX5 TX5 TX5 TX5

TX2 chooses
to abort

TX2 chooses
to abort

8 bytes

TX5 TX5 TX5 TX5

First writer wins First writer wins

WR conflicts

TX5 State Visible?

ACTIVE

VALIDATING

COMMITTED

ABORTED

14

John John $150 $150 TX5 TX5 ∞ ∞
Q: When is version visible?

No, version is uncommitted

Maybe, check TX5 END timestamp

No, version is garbage

? Speculate YES now, confirm at end

A: Depends on TX state

Commit dependencies

• Impose constraint on serialization order:
 Commit B only if A has committed.

• Implementation: register-and-signal

– Transform multiple waits on every record access
to a single wait at end of TX

– Dependency wait time “added” to log latency

• Most common: no wait needed, dependency has cleared

• But: Cascading aborts now possible

 15

Commit dependencies

16

Committed Committed

Active Active Validating Validating

Aborted Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

Terminated Terminated

Postprocessing
Release dependents

Wait for
 dependencies
to clear, then

Multi-version optimistic summary

• TXs never wait during the ACTIVE phase

• No deadlock detection is needed

• Lower isolation level = less work

– Read Committed and SI: No validation at all

17

Multi-version locking

• Provides lock-like semantics:
 Once a version is read by T, it will
 remain visible to T until commit.

• No centralized lock table
– Record lock embedded in version’s END timestamp

• Same context switching overhead: At most 2 per TX

But:

• Deadlock detection necessary

• More write traffic, even readers write to memory

18

Implementation details

• Independent transaction kernel in C++

• Base data structure: latch-free hash table

– Perfect sizing, perfect hashing

– Load factor when idle: 1

19

Single-version two-phase locking

• Traditional 2PL, optimized for main memory

• No central lock manager

• Lock is pre-allocated in hash table bucket

– Protects hash bucket, prevents phantoms

– Multiple-reader, single-writer lock

– For our experiments, also serves as a record lock

20

Experimental setup

• 2-socket × 6-core Xeon X5650 with 48GB RAM

• TXs don’t wait for the log (lazy commit)

– Log records are populated and written to disk

• All transactions run under Serializable

21

MV/O Multi-version optimistic

MV/L Multi-version locking

1V Single-version two-phase locking

Scalability
No contention (10M row table)

22

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 6 12 18 24

Th
ro

u
gh

p
u

t
(t

x/
se

c)

M
ill

io
n

s

Threads

80% R=10
20% R=10, W=2
80% R=10
20% R=10, W=2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 6 12 18 24

Th
ro

u
gh

p
u

t
(t

x/
se

c)

M
ill

io
n

s

Threads

1V MV/L MV/O

Scalability
No contention (10M row table)

23

All methods scale All methods scale

80% R=10
20% R=10, W=2
80% R=10
20% R=10, W=2

Similar results for TATP Similar results for TATP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 6 12 18 24

Th
ro

u
gh

p
u

t
(t

x/
se

c)

M
ill

io
n

s

Threads

1V MV/L MV/O

Scalability
Extreme contention (1000 row table)

24

80% R=10
20% R=10, W=2
80% R=10
20% R=10, W=2

5×

1V throughput limited
by lock thrashing

1V throughput limited
by lock thrashing

Effect of long readers
(10M row table)

25

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12 14 16 18 20 22 24

U
p

d
at

e
 t

h
ro

u
gh

p
u

t
(t

x/
se

c)

M
ill

io
n

s

Active long read TXs All active TXs
short updaters
All active TXs

short updaters
All active TXs
long readers
All active TXs
long readers

6 TXs long readers
18 TXs short updaters

6 TXs long readers
18 TXs short updaters

R=1,000,000
R=10, W=2
R=1,000,000
R=10, W=2

26

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12 14 16 18 20 22 24

U
p

d
at

e
 t

h
ro

u
gh

p
u

t
(t

x/
se

c)

M
ill

io
n

s

Active long read TXs

1V MV/L MV/OR=1,000,000
R=10, W=2
R=1,000,000
R=10, W=2

Even if 1 long reader, MV/O 2.3× faster Even if 1 long reader, MV/O 2.3× faster

2.3× 2.3×

If all TXs do updates, 1V 1.9× faster If all TXs do updates, 1V 1.9× faster

25×

Effect of long readers
(10M row table)

26

All active TXs
short updaters
All active TXs

short updaters
All active TXs
long readers
All active TXs
long readers

Conclusions

• Single-version 2PL is fragile

– Great for update-heavy workloads, little contention

– But: problematic for hotspots, long read TXs

• Multi-version optimistic scheme is robust

– Readers don’t block writers, no waiting on locks

• Locking semantics can be offered efficiently

• High performance and full serializability
without workload-specific knowledge

27

