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CSE 6341, Written Assignment 5 
Due Wednesday, April 10, 11:59 pm (8 points) 
 
Your submissions should be uploaded via Carmen. Create your answers using a text editor and 
upload the file (e.g., plain text, Word, PDF). Alternatively, you can write your answers by hand 
and take a photo (or scan), but please ensure that (1) your handwriting is clear and legible, and 
(2) your photo or scan has high resolution, to allow the grader to read and understand your 
submission.  
 
Q1 (2 points): Consider the abstracted semantics discussed in class, restricted to program that 
use only unsigned integer values (similar to the “unsigned int” type in C, but with infinite 
precision). Unsigned integers can have values greater than or equal to zero. Therefore, the set 
of abstract values is restricted to { Zero, Pos, AnyInt }.  
 
Suppose we add to the language an operator “<<” (left shift). Many languages (e.g., C/C++ and 
Java) have such operators. Given two unsigned-int values v and w, the value of v << w is equal 
to v*(2w). Show the abstracted semantics of the left shift operator working on two abstract 
values. Your definition should try to capture the most precise information that can be inferred 
from the operands. For example, saying that the result in all cases is AnyInt is correct but not 
accurate enough.  
 
Q2 (4 points): Consider the following three-address code: 
x=1 
y=1 
z=0 
L1: if (x>y) goto L2 
t1=z+x 
z=t1 
goto L3 
L2: t2=z+y 
z=t2 
L3: t3=y+1 
y=t3 
if (y<100) goto L1 
t4=x+1  
x=t4 
if (x<100) goto L1 
 
This program contains 15 three-address instructions. Note that labels L1, L2, and L3 are not 
instructions.  
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Part 1. Among these 15 instructions, identify the ones that are leaders of basic blocks. 
 
Part 2. Show the control-flow graph for this program. Label the basic blocks B1, … and show 
which three-address instructions are in each basic block.  
 
Part 3. Show the dominator tree for this control-flow graph. There is no need to show the 
three-address instructions again. 
 
Q3 (2 points): Consider the following fragment of Java code: 
class Test {  
  public static void main(String[] a) { 
    int N = 5000; 
    int res = 0; 
    for (int i = 0; i < N; i++) 
      for (int j = 0; j < N; j++) { 
        res += (i+j); 
        res -= 17*(res/17); 
      }  
    System.out.println(res); 
  } 
}    
 
Part 1. Execute “java Test.java” to compile and run this program. Write an equivalent program 
for the language from Project 3 and execute it on your Project 3 interpreter. Make sure the 
printed values are the same. As an additional test case, change N to be 10000 in both programs 
and again make sure that your program (executed by your interpreter) prints the same value as 
the Java program. Include your program in the homework solution. 
 
Part 2. Perform experiments with N=10000, 15000, 20000, 25000. For each value of N, run the 
Java program using “time java Test.java” and record the running time (just record “real” time, 
in seconds). For each value of N, run your interpreter on your program using “time ./plan t” and 
record the running time, similarly to above. 
 
Run each experiment 3 times. For each configuration, take the median of the 3 values. Record 
these results in a 4 x 2 table, where each row corresponds to a value of N and shows the two 
running times – one for the Java program and one for your program. (Note that this comparison 
is more-or-less fair, since in both scenarios we include parsing+execution time.)  
 


