CSE 6341, Written Assignment 4

Due Friday, March 22, 11:59 pm (8 points)

Your submissions should be uploaded via Carmen. Create your answers using a text editor and upload the file (e.g., plain text, Word, PDF). Alternatively, you can write your answers by hand and take a photo (or scan), but please ensure that (1) your handwriting is clear and legible, and (2) your photo or scan has high resolution, to allow the grader to read and understand your submission.

Q1 (2 points): Consider the abstract interpretation defined in slides 1-19. Show the derivation tree for <if $(x>0) x=-3^{*} y$ else $x=z^{*} 8, \sigma_{a}>\rightarrow \sigma^{\prime}{ }_{a}$ where $\sigma_{a}=[x \mapsto N e g, y \mapsto P o s, z \mapsto P o s]$

First determine and show the new abstract state $\sigma^{\prime}{ }_{a}$. Then show the entire derivation tree for this triple. Every level of the tree should correspond to one of the inference rules (slides 1-19).

Q2 (3 points): Consider the abstract interpretation defined in slides 1-19. Suppose we wanted to "abstractly execute" the following loop, with initial abstract state $\sigma_{a}=[x \mapsto P o s]$:
while (...) \{ $x=-x ;\}$
The loop condition is not relevant for this question.

Show the abstract state $\sigma_{a 1}$ after 1 iteration of the loop. Show the abstract state $\sigma_{a 2}$ after 2 iterations of the loop. Show the abstract state σ_{az} after 3 iterations of the loop. You do not need to show the derivation trees, just show the abstract states.

As discussed, the final abstract state $\sigma^{\prime}{ }_{a}$ is the merge of the infinite number of intermediate states $\sigma_{a}, \sigma_{a 1}, \sigma_{a 2}$, etc. This merge can be computed by a finite sequence of merge steps. For the example above, show the four merged states $\sigma^{\prime}{ }_{a 0}, \sigma^{\prime}{ }_{a 1}, \sigma^{\prime}{ }_{a 2}, \sigma^{\prime}{ }_{a 3}$ defined on slide 19.

Q3 (3 points): Consider the following context-free grammar
<program> ::= <assignList>
<assignList> ::= <assign> | <assign> ; <assignList>2
<assign> ::= id = intconst | id = floatconst | id ${ }_{1}=$ id $_{2}$
In some languages, instead of asking programmers to declare the types of variables, the compiler attempts to infer types from the code. For example, assignment $\mathbf{x}=5$ implies that \mathbf{x} is of type int, while assignment $\mathbf{y}=\mathbf{3 . 1 4}$ implies that \mathbf{y} is of type float. Further, for $\mathbf{x}=\mathbf{5} ; \mathbf{z}=\mathbf{x}$ the compiler can conclude that both \mathbf{x} and \mathbf{z} are of type int. Inference is not always possible: for example, $\mathbf{x}=5$; $\mathbf{x}=\mathbf{3 . 1 4}$ does not allow a unique type to be associated with \mathbf{x}.

One way to achieve this type inferencing is to construct and analyze a directed graph $\mathrm{G}=(\mathrm{N}, \mathrm{E})$ as follows. The set of nodes N is the union of three disjoint sets: $N=$ IDS U INTC U FLC. IDS contains a graph node for each id.lexval that appears in the program. For example, for program $\mathbf{x = 5} ; \mathbf{z = x}$; $\mathbf{x}=6$ we have IDS $=\{x, z\}$. INTC contains a graph node for each intconst.lexval that appears in the program. For the same example program, we have INTC $=\{5,6\}$. Set FLC is defined similarly for floatconst.lexval.

The set E of graph edges is defined as follows. For every id = intconst in the program, E contains an edge from the node for id to the node for intconst (and similarly for id = floatconst). For every $\mathrm{id}_{1}=\mathrm{id} d_{2}$ there is an edge from the node for id_{1} to the node for id_{2}. For example, for program $\mathbf{x}=\mathbf{5} ; \mathbf{z = x} \mathbf{x} \mathbf{x = 6}$ we have $\mathrm{E}=\{\mathrm{x} \rightarrow 5, \mathrm{z} \rightarrow \mathrm{x}, \mathrm{x} \rightarrow 6\}$.

Part 1. Show graph G for the following program: $\mathbf{a}=\mathbf{8} \mathbf{;} \mathbf{b}=\mathbf{a} \mathbf{c} \mathbf{c}=\mathbf{b} ; \mathbf{c}=\mathbf{3 . 1 4} \mathbf{;} \mathbf{d}=\mathbf{c} ; \mathbf{b}=\mathbf{d}$
Part 2. Suppose you are given G for some program. Your goal is to determine, for each node in IDS, one element of set \{int, float, not-typable \}. For example, if you analyze the graph for $\mathbf{x}=5$; $\mathbf{z = x} \mathbf{x = 6 ;} \mathbf{z = 2 . 3}, \mathrm{x}$ would be determined to be int and z would be determined to be not-typable. Describe at a high level how to compute this information for all nodes $n \in$ IDS for any given G. You do not need to show detailed algorithms. Hint: You solution can use graph properties such as "there exists a path in G from node ... to node ...".

Explain how your approach would work on the program from Part 1. Show the analysis output for that program.

