
Page 1 of 2

CSE 6341, Programming Project 4
Due Friday, March 29, 11:59 pm (20 points)

The goal of this project is to implement the abstract interpretation described in class.
Arithmetic expressions will be evaluated to one of the abstract values from set { NegInt,
ZeroInt, PosInt, AnyInt, NegFloat, ZeroFloat, PosFloat, AnyFloat}. Boolean expressions will be
completely ignored; we will not look inside them and will not try to evaluate/check them or any
of their subexpressions (i.e., in this project we will not use the techniques from slides 26-33 in
the lecture notes).

Modify your code from Project 3 to implement this abstracted semantics. As part of this
abstract interpretation, report checking errors if (1) the second operand of division is ZeroInt,
ZeroFloat, AnyInt, or AnyFloat; (2) an unintialized variable is being used. The implementation
should follow the description in slides 1-23 and should use the “more conservative” version
described there. Examples were provided in the slides to illustrate the desired behavior.

Set up
Copy your implementation from Project 3 into .../proj/p4 and do make clean

Restriction
As with Project 3, the following restriction will be imposed on all input programs: no two
variables have the same name. This also applies to variables that are in different blocks. You do
not have to check that this restriction is satisfied by the input program: just assume that it is
and implement your interpreter under this assumption.

Details
The abstract semantics was described in class (slides 1-23). A few additional details:

1) Do not print the program. Comment out astRoot.print in main. Comment out any other
printing of the AST. Do not print the abstract program state. Do not print any testing/debugging
messages you used for yourself when developing the code.

2) The are only two cases when you should print something:

— Printing - case 1: at a print statement of the form print <expr>; evaluate abstractly the
expression to one of the 8 abstract values described above. Then print that abstract
value (e.g., the string NegFloat) using System.out.println(…). Such printing is useful for
testing, debugging, and grading. Do not print another format: e.g., print NegFloat, not
NEG_FLOAT, Neg_Float, Neg Float, negfloat, neg_float, …

— Printing - case 2: if there is a static checking error, print an error message and exit with
the correct exit code

3) readint and readfloat expressions evaluate to AnyInt and AnyFloat, respectively. You do not
need to look in UNIX stdin since we are creating a static analysis that represents all possible

Page 2 of 2

executions for all possible valid program inputs, not for any particular program input. In this
static analysis, we do assume that the execution will always find correct values in the input
stream. Thus, your Project 4 code will never exit with error code EXIT_FAILED_STDIN_READ.

4) Static error “division by zero” should exit with error code EXIT_DIV_BY_ZERO_ERROR. Static
error “use of unintialized variable” should exit with error EXIT_UNINITIALIZED_VAR_ERROR.

Testing
Write many test cases and test your checker with them. Submit at least 5 test cases with your
submission. The test cases you submit will not affect your score for the project. Put them in the
same location as the provided file t1 and name them t2, …

Submission
After completing your project, do
cd p4
make clean
cd ..
tar -cvzf p4.tar.gz p4

Then submit p4.tar.gz in Carmen.

General rules (copied from the course syllabus)
Your submissions must be uploaded via Carmen by midnight on the due date. The projects must compile
and run on stdlinux. Some students prefer to implement the projects on a different machine, and then
port them to stdlinux. If you decide to use a different machine, it is entirely your responsibility to make
the code compile and run correctly on stdlinux before the deadline. In the past many students have tried
to port to stdlinux too close to the deadline, leading to last-minute problems and missed deadlines.

Projects should be done independently. General high-level discussion of projects with other students in
the class is allowed, but you must do all design, programming, testing, and debugging independently.
Projects that show excessive similarities will be taken as evidence of cheating and dealt with accordingly.
Code plagiarism tools may be used to detect cheating. See the syllabus under “Academic Integrity”.

The projects are due by 11:59 pm on the due day. You can submit up to 24 hours after the deadline; if
you do so, your score will be reduced by 10%. ONLY THE LAST SUBMITTED VERSION WILL BE
CONSIDERED. Triple-check carefully that you have submitted the correct version. If you submit the
wrong version of your code, and you get a low score (or zero score), I will NOT consider resubmissions
– the original low/zero score will be assigned WITHOUT DISCUSSION.

If you submit more than 24 hours after the deadline, the submission will not be accepted. NO
EXCEPTIONS TO THIS RULE WILL BE CONSIDERED. NO REQUESTS FOR RESUBMISSION WILL BE
CONSIDERED. MAKE SURE YOU SUBMIT THE CORRECT CODE VERSION.

Read the project description very carefully, several times, start-to-end. If you need any clarifications,
contact me immediately (do not wait until the last minute). Test extensively.

Accommodations for sickness and other special circumstances will be made based on university
guidelines. Please contact me ahead of time to arrange for such accommodations.

