
Page 1 of 3

CSE 6341, Programming Project 3
Due Thursday, March 7, 11:59 pm (30 points)

The goal of this project is to build an interpreter for the language from Project 2 (with some
minor changes to the language, as defined below). The semantics to be implemented was
discussed when we considered the definition of operational semantics. Your implementation
will use the code for AST building from Project 2, with minor changes to Interpreter.java.
Assume that the input program successfully passes the typechecking defined in Project 2; you
do not need to perform this typechecking in your implementation of Project 3.

Set up
cd /home/buckeye.8/6341/proj; mkdir p3; cd p3
wget web.cse.ohio-state.edu/~rountev.1/6341/project/p2.tar.gz
tar -xvzf p2.tar.gz --strip-components=1
make
./plan t1

Edit Interpreter.java to add the following new exit codes:
public static final int EXIT_UNINITIALIZED_VAR_ERROR = 3;
public static final int EXIT_DIV_BY_ZERO_ERROR = 4;
public static final int EXIT_FAILED_STDIN_READ = 5;

Restriction
To simplify the project, the following restriction will be imposed on all input programs: no two
variables have the same name. This also applies to variables that are in different blocks: so,
code such as int z = ...; { … { int z = …; } } is never going to be part of a valid input program.

You do not have to check whether this restriction is satisfied by the input program: just assume
that it is and implement your interpreter under this assumption.

Details
The semantics was described in class. A few additional details:

1) Do not print the program. Comment out astRoot.print in main. Comment out any other
printing of the AST. Do not print the program state. Do not print any testing/debugging
messages you used for yourself when developing the code.

2) The are only two cases when you should print something:

— Printing - case 1: at a print statement of the form print <expr>; evaluate the expression
to a number and then print that number using System.out.println(…).

— Printing - case 2: if there is a run-time error, print an error message and exit with the
correct exit code

3) You must catch run-time errors for “use of unintialized variable” and “division by zero” and
then exit the interpreter with the corresponding error codes listed above.

Page 2 of 3

4) readint and readfloat expressions should read from UNIX stdin and produce a value of the
corresponding type. If this reading cannot be performed successfully, the interpreter should
exit with error code EXIT_FAILED_STDIN_READ.

Implement this functionality using a Scanner object from java.util. At the very beginning of
program execution create a single object Scanner s = new Scanner(System.in)and then
call s.hasNextLong()and s.nextLong() (and similarly for hasNextDouble()and
nextDouble())whenever you need to evaluate a readint or readfloat expression. Create only
one such object and use it for every evaluation of reading and readfloat.

When executing the interpreter from the command line, you can put the input data in some file
data_file and then do ./plan code_file < data_file

5) Type INT in our language should be implemented by a Java long type. Type FLOAT in our
language should be implemented by a Java double type. If you need to represent both
possibilities with a single Java type, you can use java.lang.Number, which is a common
superclass of java.lang.Long and java.lang.Double (and those themselves are wrappers
around primitive types long and double, respectively).

6) Since each variable declaration uses a unique name (due to the restriction described above),
you can implement the state 𝛔𝛔 with one map from variable names to values. There is no need
to use a tree of maps. At the beginning of execution, the map is empty.

7) The evaluation of Boolean operators && and || should use short-circuit semantics.

8) Unlike the semantics described in class, here we will impose an order of evaluation for
arithmetic operators +,-,*,/ and comparison operators <, <=, >, >=, ==, !=. The first operand of
such an operator must be evaluated first. This restriction makes the semantics for Project 3
deterministic. Without this restriction, non-determinism exists because of reading and
readfloat expressions, which have side effects (e.g., consider x + readint x). The language
discussed in class does not have side effects for expressions; thus, all evaluation orders produce
the same result.

9) A natural implementation approach is to add to each expression class a method evaluate
that takes as input a reference to the state, evaluates the expression, and returns the resulting
value. Similarly, for each statement class you can use a method execute that takes as input a
reference to the state, executes the statement, and as a result changes the state.

Testing
Write many test cases and test your interpreter with them. Submit at least 5 test cases with
your submission. The test cases you submit will not affect your score for the project. Put them
in the same location as the provided file t1 and name them t2, …

Page 3 of 3

Submission
After completing your project, do
cd p3; make clean; cd ..
tar -cvzf p3.tar.gz p3

Then submit p3.tar.gz in Carmen.

General rules (copied from the course syllabus)

Your submissions must be uploaded via Carmen by midnight on the due date. The projects must compile
and run on stdlinux. Some students prefer to implement the projects on a different machine, and then
port them to stdlinux. If you decide to use a different machine, it is entirely your responsibility to make
the code compile and run correctly on stdlinux before the deadline. In the past many students have tried
to port to stdlinux too close to the deadline, leading to last-minute problems and missed deadlines.

Projects should be done independently. General high-level discussion of projects with other students in
the class is allowed, but you must do all design, programming, testing, and debugging independently.
Projects that show excessive similarities will be taken as evidence of cheating and dealt with accordingly.
Code plagiarism tools may be used to detect cheating. See the syllabus under “Academic Integrity”.

The projects are due by 11:59 pm on the due day. You can submit up to 24 hours after the deadline; if
you do so, your score will be reduced by 10%. ONLY THE LAST SUBMITTED VERSION WILL BE
CONSIDERED. Triple-check carefully that you have submitted the correct version. If you submit the
wrong version of your code, and you get a low score (or zero score), I will NOT consider resubmissions
– the original low/zero score will be assigned WITHOUT DISCUSSION.

If you submit more than 24 hours after the deadline, the submission will not be accepted. NO
EXCEPTIONS TO THIS RULE WILL BE CONSIDERED. NO REQUESTS FOR RESUBMISSION WILL BE
CONSIDERED. MAKE SURE YOU SUBMIT THE CORRECT CODE VERSION.

Read the project description very carefully, several times, start-to-end. If you need any clarifications,
contact me immediately (do not wait until the last minute). Test extensively.

Accommodations for sickness and other special circumstances will be made based on university
guidelines. Please contact me ahead of time to arrange for such accommodations.

