
Page 1 of 3

CSE 6341, Programming Project 1
Due Monday, January 29, 11:59 pm (10 points)

The goal of this project is to implement a type checker for a very simple language. The checking
is based on material discussed in class but with a few modifications to the underlying context-
free grammar. Your implementation will use the supplied code for parsing and AST building
(AST = abstract syntax tree; this is a more compact version of the parse tree). Before starting,
make sure your Java version and Unix environment variables from Project 0 are set up correctly.

Step 1: Set up
Let’s say you have created /home/buckeye.8/6341 and have built project 0 in it
cd /home/buckeye.8/6341/proj
wget web.cse.ohio-state.edu/~rountev.1/6341/project/p1.tar.gz
tar -xvzf p1.tar.gz
cd p1
make
./plan t1

Step 2: Understand the AST
The context-free grammar for the targeted language is as follows:
<program> ::= <unitList>
<unitList> ::= <unit><unitList> | <unit>
<unit> ::= <decl> | <stmt>
<decl> ::= <varDecl> ; | <varDecl> = <expr> ;
<varDecl> ::= int ident | float ident
<stmt> ::= ident = <expr> ; | print <expr> ;
<expr> ::= intconst | floatconst | ident | <expr> + <expr> | (<expr>)

Terminal symbols are shown in blue. For example, intconst is a single terminal symbol
representing an integer constant. If you want to see the details of how the terminal symbols are
defined, look at p1/parser/Scanner.jflex (the definition of regular expression Ident and
everything after that). If you want to see the details of how the parser is defined, look at
p1/parser/Parser.cup (the definition of terminals INT, etc. and everything after that). You do
not need to understand any of these details to complete the project successfully.

Read the code in p1/ast to see how the AST nodes are defined. The root of the AST is a node
that is an instance of class Program. Each type of AST node corresponds to some Java class. For
example, class AssignStmt implements a <stmt> node for the following production: <stmt> ::=
ident = <expr> ; Field ident in class AssignStmt corresponds to terminal ident in the production.
Field expr in class AssignStmt corresponds to non-terminal <expr> in the production. Also see
p1/interpreter to see the entry point of the whole project.

It is essential to do this reading early and to ask any clarification questions as soon as
possible. In particular, if you do not have experience with object-oriented programming in
Java, please proactively reach out to me for clarifications when necessary.

Page 2 of 3

Step 3: Implement type checking
You need to implement a type checker to check for the following conditions:

1) Any variable appearing in an <expr> must have a declaration in some earlier <decl>. For
example, int x = 1; int y = x + w; is not allowed because w is not declared. As another
example, int x = x+1; is also not allowed (the x in x+1 is not declared).

2) Each variable can be declared only once. For example, int x; int y = 1; int x = y+1; is not
allowed.

3) In an assignment ident = <expr> ; the variable on the left-hand side of the assignment
must be already declared. For example, int x; y = x+1; is not allowed.

4) In an assignment ident = <expr> ; or a declaration with initialization <varDecl> = <expr> ;
the type of the variable on the left-hand side of = must be the same as the type of the
expression on the right-hand side. For example, int x; float y = 1.; x = 3.14 + y; is not
allowed; neither is int x = 3.14;

5) Both operands of + must be of the same type. For example, int x = 1; float y = 3.14; float
z = y + 1.1; int w = x + z; is not allowed because of x + z.

If the program violates any of these checks, call Interpreter.fatalError with exit code
EXIT_STATIC_CHECKING_ERROR. The test script will check this exit code, so please make sure
your implementation uses it. The text message associated with the error should be something
simple that describes which specific check was violated. Your code should call fatalError as soon
as it detects a violation. If the program contains several type errors, only the earliest one will be
detected and reported.

Suggestions for your implementation (but feel free to ignore these completely):

1) A natural way to implement the checking is to add to relevant classes in package ast a
method check that takes as input a reference (i.e., a Java pointer) to a global table.
The table maps identifiers to types. This is the “single global table” from the slides.
Alternatively, you can just make the reference to the table directly accessible as a public static
field of class Program.

2) To deal with checking violations, you can simply call fatalError directly from the location
where the violation was first detected. Alternatively, method check could throw some kind of
exception, class Interpreter can catch this exception, and then call fatalError as needed (see the
handling of parse errors inside Interpreter as an example of this style of coding).

3) To implement attribute ‘type’ for AST nodes for expressions, a simple approach could be to
add new fields in relevant classes from package ast to store the values of this attribute.

Page 3 of 3

Step 4: Testing
Write many test cases and test your checker with them. Submit at least 5 test cases with your
submission. The test cases you submit will not affect your score for the project. Put them in the
same location as the provided file t1 and name them t2, …

Step 5: Submission
After completing your project, do
cd p1
make clean
cd ..
tar -cvzf p1.tar.gz p1

Then submit p1.tar.gz in Carmen.

General rules (copied from the course syllabus)

Your submissions must be uploaded via Carmen by midnight on the due date. The projects must compile
and run on stdlinux. Some students prefer to implement the projects on a different machine, and then
port them to stdlinux. If you decide to use a different machine, it is entirely your responsibility to make
the code compile and run correctly on stdlinux before the deadline. In the past many students have tried
to port to stdlinux too close to the deadline, leading to last-minute problems and missed deadlines.

Projects should be done independently. General high-level discussion of projects with other students in
the class is allowed, but you must do all design, programming, testing, and debugging independently.
Projects that show excessive similarities will be taken as evidence of cheating and dealt with accordingly.
Code plagiarism tools may be used to detect cheating. See the syllabus under “Academic Integrity”.

The projects are due by 11:59 pm on the due day. You can submit up to 24 hours after the deadline; if
you do so, your score will be reduced by 10%. ONLY THE LAST SUBMITTED VERSION WILL BE
CONSIDERED. Triple-check carefully that you have submitted the correct version. If you submit the
wrong version of your code, and you get a low score (or zero score), I will NOT consider resubmissions
– the original low/zero score will be assigned WITHOUT DISCUSSION.

If you submit more than 24 hours after the deadline, the submission will not be accepted. NO
EXCEPTIONS TO THIS RULE WILL BE CONSIDERED. NO REQUESTS FOR RESUBMISSION WILL BE
CONSIDERED. MAKE SURE YOU SUBMIT THE CORRECT CODE VERSION.

Read the project description very carefully, several times, start-to-end. If you need any clarifications,
contact me immediately (do not wait until the last minute). Test extensively.

Accommodations for sickness and other special circumstances will be made based on university
guidelines. Please contact me ahead of time to arrange for such accommodations.

