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Types in Programming Languages
Organization of untyped values

– At the lowest level, everything is a sequence of bits
– Need higher-level view: categorize these bit sequences 

based on usage and behavior
Type = set of run-time values with uniform behavior
Type-related constraints to enforce correctness, e.g.

– Should not try to multiply two strings
– Should not use a character value as a condition of       

an if-statement
– Should not use an integer as a pointer
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Static Typing
Statically typed languages: expressions in the code 
have static types

– static type = promise about possible run-time values
– Types are either declared or inferred
– Examples: C, C++, Java, ML, Pascal, Modula-3

A statically typed language typically does some form 
of static type checking

– E.g., at compile time Java checks that the [] operator is 
applied to a value of type “array”
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Dynamic Typing
Dynamically-typed languages: entities in the code do 
not have static types

– Examples: Lisp, Scheme, CLOS, Smalltalk, Perl, Python
– Entities in the code do not have declared types, and the 

compiler does not try to infer/check types for them
Dynamic type checking

– Before an operation is performed at run time
– E.g., in Scheme: (+ 5 #t) fails at run time, when the 

evaluation expects to see two numeric values as 
operands of +
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Examples of Types
Integers
Arrays of integers
Pointers to integers
Records with fields int x and int y

e.g., “struct” in C
Objects of class C or a subclass of C

e.g., C++, Java, C#
Functions from any list to integers



Numeric Types [no need to remember this]

C does not specify the ranges of numeric types
– Integer types: char, short, int, long, long long

• Includes “unsigned” versions of these
– Floating-point types: float, double, long double

Java specifies the ranges of numeric types
– byte: 8-bit signed two's complement integer [-128,+127] 
– short: 16-bit signed two's complement integer [-

32768,+32,767]
– int: 32-bit signed two's complement integer  

  [-2147483648,+2147483647]
– long: 64-bit signed two's complement integer  

  [-9223372036854775808, +9223372036854775807] 
– float/double: single/double-precision 32-bit IEEE 754 

floating point
– char: single 16-bit Unicode character; minimum value of 

'\u0000' (or 0) and a maximum value of '\uffff' (or 65535)
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Enumeration Types [no need to remember this]

C: a set of named integer constant values
– Example from the C specification
enum hue { chartreuse, burgundy, claret=20, winedark };
/* the set of integer constant values is { 0, 1, 20, 21 } */

Java: a fixed set of named items (not integers)
enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY,  
THURSDAY, FRIDAY, SATURDAY }
– In reality, it is like a class: e.g., it can contain methods
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Types as Sets of Run-Time Values
32-bit integers: the set of numbers than can be represented in 32 
bits in signed two’s-complement representation

– “type int” = { -231, …, 231 - 1 }
Class type C: all instances of class C and its transitive subclasses

– instance of a class C: object created by new C
– “type C” (or “class type C”) = set of all instances of C or of 

any transitive subclass of C [not the same as “class C”, which is just a blueprint 
for creating objects]

Static type of an expression/variable: “at run time, 
the expression/variable values will be from this set” 

Subtypes are subsets: T2 is a subtype of T1 if T2’s set 
of values is a subset of T1’s set of values
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Monomorphism vs. Polymorphism
Greek: mono = single; poly = many; morph = form
Monomorphism

– Every value belongs to exactly one type
Polymorphism

– A value can belong to multiple types
Typical example: subtype polymorphism

– E.g., class X, class Y extends X, class Z extends Y 
– Class type X = all instances of X, Y, and Z
– Class type Y = all instances of Y and Z [subtype of type X]

– An instance of class Z belongs to all three class types
– Variable of static type X is really of type “reference to 

values of type X”, so it can refer to X, Y, or Z instances
• E.g., in Java, when we say X var;



More Polymorphism
Parametric polymorphism

– Use a type parameter T; define type based on T
– Typical example: generics in C++/Java – e.g. Map<K,V>
– ML and similar functional languages

Coercion: values of one type are silently converted
– e.g., addition: 3.0 + 4 : converts 4 to 4.0
– When the compiler sees a situation where the type of an 

expression is not appropriate:
• either an automatic coercion to another type is 

performed automatically
• or if not possible: compile-time error 
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Coercions
Widening

– coercing a value into a “larger” type
– e.g., int to float (numeric types)
– e.g., subtype to supertype (class types):

• class X; class Y extends X; Y var2; X var1 = var2;  
Narrowing

– coercing a value into a “smaller” type
– could lose information, e.g., float to int
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Widening Primitive Conversions in Java [no need to remember this]

Widening primitive conversions: 19 cases
– byte to short, int, long, float, or double 
– short to int, long, float, or double 
– char to int, long, float, or double 
– int to long, float, or double 
– long to float or double 
– float to double 

Does not lose information about the overall magnitude 
of a numeric value in the following cases, where the 
numeric value is preserved exactly:
– from an integral type to another integral type
– from byte, short, or char to a floating-point type
– from int to double
– from float to double



13

Widening Primitive Conversions in Java [no need to remember this]

[Java Lang Spec=JLS, Section 5.1.2]
A widening primitive conversion from int to float, or from long to float, 
or from long to double, may result in loss of precision, that is, the 
result may lose some of the least significant bits of the value. In this 
case, the resulting floating-point value will be a correctly rounded 
version of the integer value, using the round to nearest rounding policy 
[IEEE 754 standard for converting from an integer format to a floating-point format] 
JSL example:
int big = 1234567890;
float approx = big;
System.out.println(big - (int)approx);
Prints: -46
indicating that information was lost during the conversion from type int to type float 
because values of type float are not precise to nine significant digits. 
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Contexts for Widening Conversions
Assignment conversion: when the value of an 
expression is assigned to a variable
Method call conversion: applied to each argument 
value in a method or constructor invocation

– The type of the argument expression must be 
converted to the type of the corresponding formal 
parameter

Casting conversion: applied to the operand of a cast 
operator: (float) 5
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Contexts for Widening Conversions
Numeric promotion: converts operands of a numeric 
operator to a common type 
– Example: binary numeric promotion [no need to remember this]

– e.g. +, -, *, etc.
– If either operand is double, the other is converted to 

double
– Otherwise, if either operand is of type float, the other is 

converted to float
– Otherwise, if either operand is of type long, the other is 

converted to long 
– Otherwise, both are converted to type int
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Narrowing Conversions [no need to remember this]

Narrowing primitive conversions in Java: 22 cases; 
some examples below:

– long to byte, short, char, or int 
– float to byte, short, char, int, or long 
– double to byte, short, char, int, long, or float

One example: [JLS, Section 5.1.3]: A narrowing conversion of a signed 
integer to an integral type T simply discards all but the n lowest order 
bits, where n is the number of bits used to represent type T. In addition 
to a possible loss of information about the magnitude of the numeric 
value, this may cause the sign of the resulting value to differ from the 
sign of the input value. 



Type Systems



Type System and Type Checking
Based on the set of types, a type system can prove 
that programs are “good” without running them

A well-typed program will not “go wrong” at run time
Works only for some run-time errors, not all: 

E.g., cannot assure the absence of “division by zero” or 
“array index out of bounds” - they depend on particular 
values from a type

But can catch type-related errors such as “multiplication  
of two booleans” error

In reality, it is a simple form of abstract interpretation
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Simple Language (from the programming projects)

<expr> ::= const  | id  [only consider integer vars/consts; in the project also do float] 

                | <expr> + <expr> | <expr> - <expr>

             | <expr> * <expr> | <expr> / <expr>

                | ( <expr> )

<cond> ::= true  | false | <expr> < <expr>  [also <=, >, >=, ==, !=]

                | <cond> && <cond> | <cond> || <cond> 

             | ! <cond> | ( <cond> )
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Simple Abstract State
Abstract state: a map σa from vars to abstract values

A summarization of many possible concrete states

σa : Vars → { Int, Float } 

There is only one abstract state, defined by the 
declarations in the program 

State never changes: e.g., if we declare a variable to be 
of type int, it is of type int everywhere, in all executions

Compare this with the more refined abstract 
interpretation from earlier, where a variable can have 
different abstract values at different program points
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These are just AnyInt and AnyFloat from earlier



Abstract Evaluation
Abstract evaluation relation for arithmetic 
expressions: triples <ae, σa>  va 

 ae is a parse subtree derived from <expr>
 σa is the abstract state defined by declarations
 va is an abstract value∈{ Int, Float }
Meaning of <ae, σa>  va : the evaluation of ae from any 
concrete state σ, if it completes successfully, will produce a 
concrete value v abstracted by va

Example: <x+y+1, [x↦Int, y↦Int]>  Int 

Example: <x*y-1.2, [x↦Float, y↦Float]>  Float
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Evaluation for Arithmetic Expressions
Syntax: id | const | <expr> + <expr> | …

<id, σa>  σa(id)

va  = va1  +a  va2 
<ae1, σa>  va1  <ae2, σa>  va2

             <ae1+ae2, σa >  va 

Here we use abstract addition operator +a  working on abstract values

<const, σa>  Int
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if const.lexval is an integer constant; similarly for Float

static error if σa(id) is undefined; use of undeclared variable



Evaluation for Expressions
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+a Int Float

Int Int

Float Float

Same for arithmetic ops -, *, /

For boolean expressions: introduce abstract value Bool 

<=a Int Float

Int Bool

Float Bool

Same for comparison ops <, >, >=, ==, !=

For boolean ops &&, II, !: the context-free grammar already makes 
sure that their operands are of type Bool; no need for checking rules



Typed Expressions
As with other static checking: without evaluating an 
expression, can we guarantee that its evaluation will 
not produce a run-time error? (static a.k.a. compile-time analysis)

For our simple language
Type Int = set of all expressions that are guaranteed to 
evaluate to an integer value in the concrete operational 
semantics (no matter what the concrete state σ actually 
looks like at run time)
Similarly for Float
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Typing Relation
Typing relation for arithmetic expressions: binary 
relation, a simplified version of the evaluation relation
If <ae, σa>  T  we will write ae : T [here T is Int or Float]

Type checking is defined by inference rules for the 
typing relation 

If there is a derivation tree for ae : T, the expression is well-
typed and will produce a value of type T at run time
25

const : T if const.lexval is a constant of type T id : T if id is declared of type T

ae1 : T    ae2 : T

      ae1+ae2: T 

here T denotes the 
same type in all 
three expressions

ae1 : T    ae2 : T

 ae1<ae2: Bool 



Static Type Safety
If a program is well-typed, we can guarantee the 
absence of certain type-related errors

Static type safety: all bad behaviors of certain type-
related kinds are excluded - e.g., Java, but not C

Example: C is not type safe 
double pi = 3.14;  
double* ptr1 = &pi;
int* ptr2 = (int*) ptr1; 
int x = *ptr2;
This program will be type checked successfully – but typecasting 
“pointer to float” into “pointer to int” at run time will produce a 
garbage value in x
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Language Safety
Want more than static type safety – want language safety

Cannot “break” the abstractions of the language (type-
related and otherwise); e.g., no buffer overflows, 
segmentation faults, return address overriding, garbage 
values, etc.

Example: C is unsafe for many reasons, one of which is the 
lack of static type safety 

Other reasons: null pointers lead to segmentation faults  
(OS concept, not PL concept); buffer overflows lead to 
stack smashing or garbage values 
Interesting follow up: CSE 5474 (Software Security): dedicated lecture and lab on 
stack smashing and code injection; Course scope: common software 
vulnerabilities, memory exploits, vulnerability analysis (e.g., reverse engineering, 
fuzzing, and symbolic execution), defenses against common vulnerabilities 
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Language Safety
Example: Java is safe – combination of static type safety & 
run-time checks

Static type safety ensures that a well-typed program will 
not do type-related “bad” things
Run-time checks catch things that cannot be caught 
statically via types: e.g., null pointers, array index out of 
bounds, division by zero

Example: Lisp is safe – dynamic checks for type-related 
correctness (“operands of PLUS must be numbers”) and 
special “bad” values (e.g., “trying to get an element out of an 
empty list”)
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