
Types in Programming Languages

2

Types in Programming Languages
Organization of untyped values

– At the lowest level, everything is a sequence of bits
– Need higher-level view: categorize these bit sequences

based on usage and behavior
Type = set of run-time values with uniform behavior
Type-related constraints to enforce correctness, e.g.

– Should not try to multiply two strings
– Should not use a character value as a condition of

an if-statement
– Should not use an integer as a pointer

3

Static Typing
Statically typed languages: expressions in the code
have static types

– static type = promise about possible run-time values
– Types are either declared or inferred
– Examples: C, C++, Java, ML, Pascal, Modula-3

A statically typed language typically does some form
of static type checking

– E.g., at compile time Java checks that the [] operator is
applied to a value of type “array”

4

Dynamic Typing
Dynamically-typed languages: entities in the code do
not have static types

– Examples: Lisp, Scheme, CLOS, Smalltalk, Perl, Python
– Entities in the code do not have declared types, and the

compiler does not try to infer/check types for them
Dynamic type checking

– Before an operation is performed at run time
– E.g., in Scheme: (+ 5 #t) fails at run time, when the

evaluation expects to see two numeric values as
operands of +

5

Examples of Types
Integers
Arrays of integers
Pointers to integers
Records with fields int x and int y

e.g., “struct” in C
Objects of class C or a subclass of C

e.g., C++, Java, C#
Functions from any list to integers

Numeric Types [no need to remember this]

C does not specify the ranges of numeric types
– Integer types: char, short, int, long, long long

• Includes “unsigned” versions of these
– Floating-point types: float, double, long double

Java specifies the ranges of numeric types
– byte: 8-bit signed two's complement integer [-128,+127]
– short: 16-bit signed two's complement integer [-

32768,+32,767]
– int: 32-bit signed two's complement integer

 [-2147483648,+2147483647]
– long: 64-bit signed two's complement integer

 [-9223372036854775808, +9223372036854775807]
– float/double: single/double-precision 32-bit IEEE 754

floating point
– char: single 16-bit Unicode character; minimum value of

'\u0000' (or 0) and a maximum value of '\uffff' (or 65535)
6

Enumeration Types [no need to remember this]

C: a set of named integer constant values
– Example from the C specification
enum hue { chartreuse, burgundy, claret=20, winedark };
/* the set of integer constant values is { 0, 1, 20, 21 } */

Java: a fixed set of named items (not integers)
enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY }
– In reality, it is like a class: e.g., it can contain methods

7

8

Types as Sets of Run-Time Values
32-bit integers: the set of numbers than can be represented in 32
bits in signed two’s-complement representation

– “type int” = { -231, …, 231 - 1 }
Class type C: all instances of class C and its transitive subclasses

– instance of a class C: object created by new C
– “type C” (or “class type C”) = set of all instances of C or of

any transitive subclass of C [not the same as “class C”, which is just a blueprint
for creating objects]

Static type of an expression/variable: “at run time,
the expression/variable values will be from this set”

Subtypes are subsets: T2 is a subtype of T1 if T2’s set
of values is a subset of T1’s set of values

9

Monomorphism vs. Polymorphism
Greek: mono = single; poly = many; morph = form
Monomorphism

– Every value belongs to exactly one type
Polymorphism

– A value can belong to multiple types
Typical example: subtype polymorphism

– E.g., class X, class Y extends X, class Z extends Y
– Class type X = all instances of X, Y, and Z
– Class type Y = all instances of Y and Z [subtype of type X]

– An instance of class Z belongs to all three class types
– Variable of static type X is really of type “reference to

values of type X”, so it can refer to X, Y, or Z instances
• E.g., in Java, when we say X var;

More Polymorphism
Parametric polymorphism

– Use a type parameter T; define type based on T
– Typical example: generics in C++/Java – e.g. Map<K,V>
– ML and similar functional languages

Coercion: values of one type are silently converted
– e.g., addition: 3.0 + 4 : converts 4 to 4.0
– When the compiler sees a situation where the type of an

expression is not appropriate:
• either an automatic coercion to another type is

performed automatically
• or if not possible: compile-time error

10

11

Coercions
Widening

– coercing a value into a “larger” type
– e.g., int to float (numeric types)
– e.g., subtype to supertype (class types):

• class X; class Y extends X; Y var2; X var1 = var2;
Narrowing

– coercing a value into a “smaller” type
– could lose information, e.g., float to int

12

Widening Primitive Conversions in Java [no need to remember this]

Widening primitive conversions: 19 cases
– byte to short, int, long, float, or double
– short to int, long, float, or double
– char to int, long, float, or double
– int to long, float, or double
– long to float or double
– float to double

Does not lose information about the overall magnitude
of a numeric value in the following cases, where the
numeric value is preserved exactly:
– from an integral type to another integral type
– from byte, short, or char to a floating-point type
– from int to double
– from float to double

13

Widening Primitive Conversions in Java [no need to remember this]

[Java Lang Spec=JLS, Section 5.1.2]
A widening primitive conversion from int to float, or from long to float,
or from long to double, may result in loss of precision, that is, the
result may lose some of the least significant bits of the value. In this
case, the resulting floating-point value will be a correctly rounded
version of the integer value, using the round to nearest rounding policy
[IEEE 754 standard for converting from an integer format to a floating-point format]
JSL example:
int big = 1234567890;
float approx = big;
System.out.println(big - (int)approx);
Prints: -46
indicating that information was lost during the conversion from type int to type float
because values of type float are not precise to nine significant digits.

14

Contexts for Widening Conversions
Assignment conversion: when the value of an
expression is assigned to a variable
Method call conversion: applied to each argument
value in a method or constructor invocation

– The type of the argument expression must be
converted to the type of the corresponding formal
parameter

Casting conversion: applied to the operand of a cast
operator: (float) 5

15

Contexts for Widening Conversions
Numeric promotion: converts operands of a numeric
operator to a common type
– Example: binary numeric promotion [no need to remember this]

– e.g. +, -, *, etc.
– If either operand is double, the other is converted to

double
– Otherwise, if either operand is of type float, the other is

converted to float
– Otherwise, if either operand is of type long, the other is

converted to long
– Otherwise, both are converted to type int

16

Narrowing Conversions [no need to remember this]

Narrowing primitive conversions in Java: 22 cases;
some examples below:

– long to byte, short, char, or int
– float to byte, short, char, int, or long
– double to byte, short, char, int, long, or float

One example: [JLS, Section 5.1.3]: A narrowing conversion of a signed
integer to an integral type T simply discards all but the n lowest order
bits, where n is the number of bits used to represent type T. In addition
to a possible loss of information about the magnitude of the numeric
value, this may cause the sign of the resulting value to differ from the
sign of the input value.

Type Systems

Type System and Type Checking
Based on the set of types, a type system can prove
that programs are “good” without running them

A well-typed program will not “go wrong” at run time
Works only for some run-time errors, not all:

E.g., cannot assure the absence of “division by zero” or
“array index out of bounds” - they depend on particular
values from a type

But can catch type-related errors such as “multiplication
of two booleans” error

In reality, it is a simple form of abstract interpretation

18

Simple Language (from the programming projects)

<expr> ::= const | id [only consider integer vars/consts; in the project also do float]

 | <expr> + <expr> | <expr> - <expr>

 | <expr> * <expr> | <expr> / <expr>

 | (<expr>)

<cond> ::= true | false | <expr> < <expr> [also <=, >, >=, ==, !=]

 | <cond> && <cond> | <cond> || <cond>

 | ! <cond> | (<cond>)

19

Simple Abstract State
Abstract state: a map σa from vars to abstract values

A summarization of many possible concrete states

σa : Vars → { Int, Float }

There is only one abstract state, defined by the
declarations in the program

State never changes: e.g., if we declare a variable to be
of type int, it is of type int everywhere, in all executions

Compare this with the more refined abstract
interpretation from earlier, where a variable can have
different abstract values at different program points

20

These are just AnyInt and AnyFloat from earlier

Abstract Evaluation
Abstract evaluation relation for arithmetic
expressions: triples <ae, σa>  va

 ae is a parse subtree derived from <expr>
 σa is the abstract state defined by declarations
 va is an abstract value∈{ Int, Float }
Meaning of <ae, σa>  va : the evaluation of ae from any
concrete state σ, if it completes successfully, will produce a
concrete value v abstracted by va

Example: <x+y+1, [x↦Int, y↦Int]>  Int

Example: <x*y-1.2, [x↦Float, y↦Float]>  Float
21

Evaluation for Arithmetic Expressions
Syntax: id | const | <expr> + <expr> | …

<id, σa>  σa(id)

va = va1 +a va2
<ae1, σa>  va1 <ae2, σa>  va2

 <ae1+ae2, σa >  va

Here we use abstract addition operator +a working on abstract values

<const, σa>  Int

22

if const.lexval is an integer constant; similarly for Float

static error if σa(id) is undefined; use of undeclared variable

Evaluation for Expressions

23

+a Int Float

Int Int

Float Float

Same for arithmetic ops -, *, /

For boolean expressions: introduce abstract value Bool

<=a Int Float

Int Bool

Float Bool

Same for comparison ops <, >, >=, ==, !=

For boolean ops &&, II, !: the context-free grammar already makes
sure that their operands are of type Bool; no need for checking rules

Typed Expressions
As with other static checking: without evaluating an
expression, can we guarantee that its evaluation will
not produce a run-time error? (static a.k.a. compile-time analysis)

For our simple language
Type Int = set of all expressions that are guaranteed to
evaluate to an integer value in the concrete operational
semantics (no matter what the concrete state σ actually
looks like at run time)
Similarly for Float

24

Typing Relation
Typing relation for arithmetic expressions: binary
relation, a simplified version of the evaluation relation
If <ae, σa>  T we will write ae : T [here T is Int or Float]

Type checking is defined by inference rules for the
typing relation

If there is a derivation tree for ae : T, the expression is well-
typed and will produce a value of type T at run time
25

const : T if const.lexval is a constant of type T id : T if id is declared of type T

ae1 : T ae2 : T

 ae1+ae2: T

here T denotes the
same type in all
three expressions

ae1 : T ae2 : T

 ae1<ae2: Bool

Static Type Safety
If a program is well-typed, we can guarantee the
absence of certain type-related errors

Static type safety: all bad behaviors of certain type-
related kinds are excluded - e.g., Java, but not C

Example: C is not type safe
double pi = 3.14;
double* ptr1 = π
int* ptr2 = (int*) ptr1;
int x = *ptr2;
This program will be type checked successfully – but typecasting
“pointer to float” into “pointer to int” at run time will produce a
garbage value in x

26

Language Safety
Want more than static type safety – want language safety

Cannot “break” the abstractions of the language (type-
related and otherwise); e.g., no buffer overflows,
segmentation faults, return address overriding, garbage
values, etc.

Example: C is unsafe for many reasons, one of which is the
lack of static type safety

Other reasons: null pointers lead to segmentation faults
(OS concept, not PL concept); buffer overflows lead to
stack smashing or garbage values
Interesting follow up: CSE 5474 (Software Security): dedicated lecture and lab on
stack smashing and code injection; Course scope: common software
vulnerabilities, memory exploits, vulnerability analysis (e.g., reverse engineering,
fuzzing, and symbolic execution), defenses against common vulnerabilities

27

Language Safety
Example: Java is safe – combination of static type safety &
run-time checks

Static type safety ensures that a well-typed program will
not do type-related “bad” things
Run-time checks catch things that cannot be caught
statically via types: e.g., null pointers, array index out of
bounds, division by zero

Example: Lisp is safe – dynamic checks for type-related
correctness (“operands of PLUS must be numbers”) and
special “bad” values (e.g., “trying to get an element out of an
empty list”)

28

	Types in Programming Languages
	Types in Programming Languages
	Static Typing
	Dynamic Typing
	Examples of Types
	Numeric Types [no need to remember this]
	Enumeration Types [no need to remember this]
	Types as Sets of Run-Time Values
	Monomorphism vs. Polymorphism
	More Polymorphism
	Coercions
	Widening Primitive Conversions in Java [no need to remember this]
	Widening Primitive Conversions in Java [no need to remember this]
	Contexts for Widening Conversions
	Contexts for Widening Conversions
	Narrowing Conversions [no need to remember this]
	Type Systems
	Type System and Type Checking
	Simple Language (from the programming projects)
	Simple Abstract State
	Abstract Evaluation
	Evaluation for Arithmetic Expressions
	Evaluation for Expressions
	Typed Expressions
	Typing Relation
	Static Type Safety
	Language Safety
	Language Safety

