Integer Overflow

|
“Understanding Integer Overflow in C/C++”

W. Dietz, P. Li, J. Regehr, V. Adve

International Conference on Software Engineering
(ICSE), 2012

Integer Overflows Can Create Problems

These errors are also a source
of serious vulnerabilities, such as integer overflow errors in

OpenSSH | 1] and Firefox [2], both of which allow attackers
to execute arbitrary code. In their 2011 report MITRE places

integer overflows in the “Top 25 Most Dangerous Software
Errors™ [3].

Ranges for Values

Examples from usr/include/limits.h

/* Minimum and maximum values a ‘signed short int' can hold. */
define SHRT_ MIN (-32768)

define SHRT_MAX 32767

/* Maximum value an ‘unsigned short int' can hold. (Minimum is 0.) */
define USHRT_MAX 65535

/* Minimum and maximum values a ‘signed int' can hold. */

define INT_MIN (-INT_MAX-1)

define INT_MAX 2147483647

/* Maximum value an ‘unsigned int' can hold. (Minimum is 0.) */
define UINT_MAX 4294967295U

Examples
Table 1
EXAMPLES OF C/C++4 INTEGER OPERATIONS AND THEIR RESULTS
Expression Result
UINT_MAX+1 0
LONG_MAX+1 undefined
INT_MAX+1 undefined
SHRT_MAX+1 SHRT_MAX+1 if INT_MAX >SHRT_MAX.
otherwise undefined
char ¢ = CHAR_MAX; c++ | varies!
~INT_MIN undefined?
(char) INT_MAX commonly -1
1<<<-1 undefined
10 1
1<<31 commonly INT_MIN in ANSI C and
C++98: undefined in C99 and C++112%7
1< <32 undefined?
1/0 undefined
INT_MINY-1 undefined in C11.

otherwise undefined in practice

'The question is: Does ¢ get “promoted” to int before being incre-

mented? If so, the behavior is well-defined. We found disagreement

between compiler vendors™ implementations of this construct.

> Assuming that the int type uses a two’s complement representation
4 3 Assuming that the int type is 32 bits long

Well-Defined Behaviors

Some kinds of unsigned integer arithmetic uses well-
defined and portable wraparound behavior, with two’s
complement semantics [6]. Thus, as Table I indicates,
UINT_MAX+1 must evaluate to zero in every conforming
C and C++ implementation. nOf course, even well-defined
semantics can lead to logic errors, for example if a developer
naively assumes that = + 1 1s larger than z.

Many unsigned integer overflows in C and C++ are well-
defined, but non-portable. For example 0U-1 is well-defined
and evaluates to UINT_MAX, but the actual value of that
constant 1s implementation defined: it can be relied upon, but
only within the context of a particular compiler and platform.
Similarly, the int type in C99 is not required to hold values
in excess of 32,767, nor does it have to be based on a two’s
complement representation.

Undefined Behaviors

Some kinds of integer overflow are undefined, and these

kinds of behavior are especially problematic. According to
the C99 standard, undefined behavior 1s

“behavior, upon use of a non-portable or erroneous
program construct or of erroneous data, for which
this International Standard imposes no require-

ments.”

In Internet parlance:’

“When the compiler encounters [a given undefined
construct] 1t 1s legal for it to make demons fly out

of your nose.”

-
Undefined Behaviors: Silent Breakage

A C or C++ compiler may exploit
undefined behavior in optimizations that silently break a
program. For example, a routine refactoring of Google’s
Native Client software accidentally caused 1<<32 to be
evaluated in a security check.* The compiler—at this point
under no particular obligation—simply turned the safety
check into a nop. Four reviewers failed to notice the resulting

vulnerability.

Undefined Behaviors: Silent Breakage

when programs have undefined operations, optimizing compilers may
silently break them in non-obvious and not necessarily consistent ways

| int foo {(imt x) {
2 return (|x+1|) > x;

3}

int main (wvoid) {

& printf ("%d\n", ((INT_MAX+1|) > INT_MAX);
7 printf ("¥dd\n", foo (INT_MAX));

8 return 0;

o }

Recent versions of GCC, LLVM, and Intel’s C compiler.
invoked at the -02 optimization level, all print a 0 for the
first value (line 6) and a 1 for the second (line 7). In other
words, each of these compilers considers INT_MAX+1 to
be both larger than INT_MAX and also not larger, at the
same optimization level, depending on incidental structural
features of the code.

Undefined Behaviors: Time Bombs

Undefined behavior also leads to time
bombs: code that works under today’s compilers, but breaks
unpredictably in the future as optimization technology 1m-
proves. The Internet i1s rife with stories about problems
caused by GCC’s ever-increasing power to exploit signed
overflows. For example, in 2005 a principal PostgreSQL
developer was annoyed that his code was broken by a recent

version of GCC:’

It seems that gcc 1s up to some creative reinterpre-
tation of basic C semantics again; specifically, you

can no longer trust that traditional C semantics of
integer overflow hold ...

This highlights a fundamental and pervasive misunderstand-
ing: the compiler was not “reinterpreting”’ the semantics but
rather was beginning to take advantage of leeway explicitly

9 provided by the C standard.
EEGEGEEEERERERERES

Undefined Behaviors: lllusion of Predictability

Some compilers, at some
optimization levels, have predictable behavior for some
undefined operations. For example, C and C++ compil-
ers typically give two’s complement semantics to signed
overflow when aggressive optimizations are disabled. It 1s,
however, unwise to rely on this behavior, because 1t 1s not
portable across compilers or indeed across different versions
of the same compiler.

10

Undefined Behaviors: Changing Standards

Some kinds of overflow
have changed meaning across different versions of the
standards. For example, 1<<31 is implementation-defined
in ANSI C and C++98, while being explicitly undefined
by C99 and C11 (assuming 32-bit ints). Our experience is
that awareness of this particular rule among C and C4++
programmers 1s low.

A second kind of non-standardization occurs with con-
structs such as INT_MINY-1 which is—by our reading—well
defined in ANSI C, C99, C++498, and C++11. However, we
are not aware of a C or C++ compiler that reliably returns
the correct result, zero, for this expression. The problem
1s that on architectures including x86 and x86-64, correctly
handling this case requires an explicit check in front of every
% operation. The C standards committee has recognized the

problem and C11 explicitly makes this case undefined.
D EEEGGEGEERERRERERS

11

Interesting Experiment in the Paper

To find the time bombs, we altered [OC’s overflow handler
to return a random value from any integer operation whose
behavior i1s undefined by the C or C++ standard. This creates

a high probability that the application will break in an
observable way 1f its execution actually depends on the

results of an undefined operation. Perhaps amusingly, when
operating in this mode, 10C 1s still a standards-conforming

C or C++ compiler—the standard places no requirements
on what happens to a program following the execution of

an operation with undefined behavior.

12

Interesting Experiment in the Paper

SPEC CINT i1s an ideal testbed for this experiment be-
cause it has an unambiguous success criterion: for a given
test input, a benchmark’s output must match the expected
output. The results appear in Table IV. In summary, the
strict shift rules in C99 and C++11 are routinely violated
in SPEC 2006. A compiler that manages to exploit these
behaviors would be a conforming implementation of C or
C++, but nevertheless would create SPEC executables that
do not work.

Benchmark ANSI C/ C++498 | C99 /7 C4++11
400.perlbench v v
401.bzip2 v X
403.gcc X X
445 gobmk v v
464.h264ref v X
433.milc X X
482 sphix3 v X
435.gromacs v v
436.cactusADM v X

13
D EEEGGEGEERERRERERS

	Integer Overflow
	Integer Overflows Can Create Problems
	Ranges for Values
	Examples
	Well-Defined Behaviors
	Undefined Behaviors
	Undefined Behaviors: Silent Breakage
	Undefined Behaviors: Silent Breakage
	Undefined Behaviors: Time Bombs
	Undefined Behaviors: Illusion of Predictability
	Undefined Behaviors: Changing Standards
	Interesting Experiment in the Paper
	Interesting Experiment in the Paper

