Operational Semantics

Slonneger and Kurtz Ch 8.4, 8.6 (only big-step semantics)

 Nielson and Nielson, Ch 2.1
Uses of Operational Semantics

Correctness: does this program have a run-time error?
Equivalence: given two programs, are they always semantically equivalent? Essential question for the correctness of compiler optimizations
Conditions for equivalence: given two programs, under what restrictions/conditions are they semantically equivalent? Needed to define compiler analyses that prove these conditions before optimizations can be applied Correctness of code generation: given any program and a translation algorithm to create low-level code (e.g., assembly code or Java bytecode), is the low-level program semantically equivalent to the original program? That is, can we prove the correctness of the translation algorithm?

Background: Inductive Definitions

Inductive definition:

Example: a set X defined as follows:
$0 \in X$
if $n \in X$, then $n+2 \in X$
X is the smallest set with these properties
All even natural numbers $\{0,2,4, \ldots\}$. Note that $\{0,1,2,3, \ldots\}$ also satisfies the first two rules, but is not the smallest such set

Example: a set L defined as follows:
intconst $\in L$ [for every intconst token]
ident $\in L$ [for every ident token]
if $e_{1} \in L$ and $e_{2} \in L$, then $e_{1}+e_{2} \in L\left[e_{1}, e_{2}\right.$ are token sequences $]$
L is the smallest set with these properties
Language for <expr> ::= intconst | ident | <expr> + <expr>

Background: Inference Rules

The same thing, written as inference rules [from formal logic]

The boxes are for readability only; not part of the inference rule Over the bar: zero or more premises Below the bar: conclusion

If the premises are true, we can derive the conclusion
[For example: If we know that $n \in X$, we can conclude that $n+2 \in X$]
If there are no premises: the rule is an axiom
[For example: we know that $0 \in X$ "by itself"]
The second example:

$$
\frac{e_{1} \in L \quad e_{2} \in L}{e_{1}+e_{2} \in L}
$$

Simple Language (realect totere orgagmmingep poects)

<program> ::= <stmtList>
<stmtList> ::= <stmt> ; <stmtList> | <stmt>
<stmt> ::= int id = <expr> [for brevity, only consider integer vars/consts]
| id = <expr>
| if (<cond>) <stmt>
| if (<cond>) <stmt> else <stmt>
while (<cond>) <stmt>
| \{ <stmtList> \}
skip

Simple Language (reated to the programming projects)

<expr> ::= const | id [for brevity, only consider integer vars/consts]
| <expr> + <expr> | <expr> - <expr>
| <expr> * <expr> | <expr> / <expr>
| (<expr>)
<cond> ::= true | false |<expr><<expr> [also<=,>,>=, ==,!=]
| <cond> \&\& <cond> | <cond> || <cond>
| ! <cond> | (<cond>)

Memory State (we will just say "State")

State: a map $\boldsymbol{\sigma}$ from variable names to values

An abstraction of the contents of the physical memory
Example: program with two variables \mathbf{x} and \mathbf{y} $\sigma(\mathbf{x})=9$ and $\sigma(\mathbf{y})=5$
Sometimes will denote with $[\mathrm{x} \mapsto 9, \mathrm{y} \mapsto 5$] \mapsto means "maps to"

$\sigma:$ Vars \rightarrow Z

Vars is the set of all variable names in the program
\mathbf{Z} is the set of integers: $\{0,-1,1,-2,2, \ldots\}$
Note: we will ignore issues of finite-precision arithmetic. In all standard hardware and languages, the built-in types are limited:
e.g. Java int is $-2,147,483,648\left(-2^{31}\right)$ to $2,147,483,647\left(2^{31}-1\right)$
[Interesting paper on the web page under Resources: "Understanding Integer Overflow in C/C++"]

Evaluation for Arithmetic Expressions

Evaluation relation (3-way relation) for expressions: set of triples (ae, σ, v) but we will write $<a e, \sigma>\rightarrow v$ ae is a parse subtree derived from <expr> σ is a state v is a value from Z
Meaning of $\langle\mathrm{ae}, \sigma\rangle \rightarrow v$: the evaluation of ae from state σ completes successfully and produces the value v

Example: <x+y-1, $[x \mapsto 5, y \mapsto 4]>\rightarrow 8$
Example: $<x /(y-1),[x \mapsto 5, y \mapsto 1]>\rightarrow$... \quad No triple exists

Evaluation for Arithmetic Expressions

Syntax: id | const | <expr> + <expr> | ...
$<$ const, $\sigma>\rightarrow$ const const is a parse tree node; const $\in Z$
<id, $\sigma>\rightarrow \sigma$ (id) axiom, applicable only if the id has a value in σ

$$
\frac{\left\langle\mathrm{ae}_{1}, \sigma\right\rangle \rightarrow v_{1}\left\langle\mathrm{ae}_{2}, \sigma\right\rangle \rightarrow v_{2}}{\left\langle\mathrm{ae}_{1}+\mathrm{ae}_{2}, \sigma>\rightarrow v\right.}
$$

Last one is an example of an inference rule with a condition ($v=v_{1}+v_{2}$); the rule is applicable only when the condition is satisfied

Nothing in the rule for $\mathrm{ae}_{1}+\mathrm{ae}_{2}$ tells us in which order the operands of + will be evaluated. In fact, their evaluation could be interleaved - do a bit of work for ae_{1} then do a bit of work for ae ${ }_{2}$ then go again to ae_{1} etc. (or even evaluate them in parallel)

Example

$x+2^{*} y-z$ evaluated in state $\sigma=[x \mapsto 9, y \mapsto 5, z \mapsto 1]$

$$
\frac{\left\langle x, \sigma>\rightarrow 9 \quad \frac{\langle y, \sigma>\rightarrow 5 \quad<2, \sigma>\rightarrow 2}{\left\langle 2^{*} y, \sigma>\rightarrow 10\right.}\right.}{\frac{\left\langle x+2^{*} y, \sigma>\rightarrow 19\right.}{<x+2^{*} y-z, \sigma>\rightarrow 18}}
$$

Evaluation for Arithmetic Expressions

Syntax: ... | <expr> / <expr> | ...

$$
\frac{<\mathrm{ae}_{1}, \sigma>\rightarrow v_{1}<\mathrm{ae}_{2}, \sigma>\rightarrow v_{2}}{<\mathrm{ae}_{1} / \mathrm{ae}_{2}, \sigma>\rightarrow v}
$$

Interpreter for this Language

The inference rules implicitly define a math function eval(code,state)

$$
\begin{aligned}
& \text { eval(}(\text { const, } \sigma)=\text { const.lexval } \\
& \text { eval(} \mathrm{id}, \sigma)=\sigma(\mathrm{id.lexval)} \\
& \operatorname{eval}\left(\mathrm{ae}_{1}+\mathrm{ae}_{2}, \sigma\right)=\operatorname{eval}\left(\mathrm{ae}_{1}, \sigma\right)+\operatorname{eval}\left(\mathrm{ae}_{2}, \sigma\right)
\end{aligned}
$$

An interpreter (e.g., in Project 3) is an implementation of this function

Note: Project 3 has reading of input values from stdin; this means that expression could have side effects on stdin and evaluation cannot be modeled by such a simple function: e.g., consider print $\mathbf{x}+$ readin \mathbf{x}; [stain is part of the state]

Evaluation for Boolean Expressions

<cond> ::= true | false | <expr> \llexpr> [also<, >, >e, ==, !=]
| <cond> \&\& <cond> | <cond> || <cond>
| ! <cond> | (<cond>)
<be, $\sigma>\rightarrow v$
be is a parse subtree derived from <cond>
σ is a state
v is a value from \{ true, false \}

Evaluation for Boolean Expressions

Syntax: true | false| <expr>==<expr> | !<cons> | <cons> \&\& <con> | ... <true, $\sigma>\rightarrow$ true <false, $\sigma>\rightarrow$ false
$<\mathrm{ae}_{1}, \sigma>\rightarrow v_{1}<\mathrm{ae}_{2}, \sigma>\rightarrow v_{2}$
$v_{1}=v_{2}$
$<\mathrm{ae}_{1}==\mathrm{ae}_{2}, \sigma>\rightarrow$ true [similar rule for $v_{1} \neq v_{2}$, evaluates to false]
Also, similar rules for < , <= , >, >=, !=

<be, $\sigma>\rightarrow$ true
<!be, $\sigma>\rightarrow$ false

<be, $\sigma>\rightarrow$ false
<!be, $\sigma>\rightarrow$ true

$<\mathrm{be}_{1}, \sigma>\rightarrow$ true $<\mathrm{be}_{2}, \sigma>\rightarrow$ true $<\mathrm{be}_{1} \& \& \mathrm{be}_{2}, \sigma>\rightarrow$ true
and three more similar rules, for true/false, false/true, false/false

Also, similar rules for <be> || <be>

Short-Circuit Evaluation

$\left\langle\mathrm{be}_{1}, \sigma\right\rangle \rightarrow$ true $\left\langle\mathrm{be}_{2}, \sigma\right\rangle \rightarrow$ true
$<\mathrm{be}_{1} \& \& \mathrm{be}_{2}, \sigma>\rightarrow$ true
$\left\langle b \mathrm{e}_{1}, \sigma\right\rangle \rightarrow$ true $\left\langle\mathrm{be}_{2}, \sigma\right\rangle \rightarrow$ false
$<\mathrm{be}_{1} \& \& \mathrm{be}_{2}, \sigma>\rightarrow$ false
$<\mathrm{be}_{1}, \sigma>\rightarrow$ false
$<\mathrm{be}_{1} \& \& \mathrm{be}_{2}, \sigma>\rightarrow$ false
How about the rules for <be> || <be>?

Execution of Statements

Expression: produces a value; does not change the memory
σ (the evaluation does not have side effects on the memory)
Note: in imperative languages, some expressions can have side effects (e.g. in $\mathrm{C}: \mathbf{x + +}$ or $f($) if function \mathbf{f} changes some existing var)

Statement: does not produce a value; changes the memory σ; so, we evaluate an expression but we execute a statement

Syntax: <stmt> ::= skip | id = <expr> | ...
Semantics: $\langle s, \sigma\rangle \rightarrow \sigma^{\prime}$
Starting from initial state σ, the execution of s completes successfully, and the final state is σ^{\prime}

Statements: $\langle\mathrm{s}, \sigma\rangle \rightarrow \sigma^{\prime}$

<skip, $\sigma>\rightarrow \sigma$

$$
\frac{\langle\mathrm{ae}, \sigma>\rightarrow v}{\langle\mathrm{id}=\mathrm{ae}, \sigma>\rightarrow \sigma[\mathrm{id} \mapsto v]}
$$

```
\(\langle b e, \sigma\rangle \rightarrow\) true \(\left\langle\mathrm{s}_{1}, \sigma\right\rangle \rightarrow \sigma^{\prime}\)
<if (be) \(s_{1}\) else \(s_{2}, \sigma>\rightarrow \sigma^{\prime}\)
```

$$
\frac{<\text { be, } \sigma>\rightarrow \text { false }\left\langle s_{2}, \sigma>\rightarrow \sigma^{\prime}\right.}{\text { <if (be) } s_{1} \text { else } s_{2}, \sigma>\rightarrow \sigma^{\prime}}
$$

This is for if-then-else; how about for if-then?

Example 1

$\mathbf{w}=\mathbf{x}+\mathbf{2}^{*} \mathbf{y}-\mathbf{z}$ executed in state $\sigma=[\mathrm{x} \mapsto 9, \mathrm{y} \mapsto 5, \mathrm{z} \mapsto 1]$

$$
\begin{aligned}
& \langle\boldsymbol{y}, \sigma\rangle \rightarrow 5<\mathbf{2}, \sigma\rangle \rightarrow 2 \\
& \left.<x, \sigma>\rightarrow 9 \quad<\mathbf{2}^{*} \mathrm{y}, \sigma\right\rangle \rightarrow 10 \\
& <x+2^{*} y, \sigma>\rightarrow 19 \quad<z, \sigma>\rightarrow 1 \\
& <x+2^{*} y-z, \sigma>\rightarrow 18 \\
& \left\langle w=x+2^{*} y-z, \sigma\right\rangle \rightarrow \sigma^{\prime}
\end{aligned}
$$

where $\sigma^{\prime}=[\mathrm{x} \mapsto 9, \mathrm{y} \mapsto 5, z \mapsto 1, w \mapsto 18]$
Note: we could have written $\sigma[w \mapsto 18]$ instead of σ^{\prime}

Example 2

if $(x>0)$ then $w=x+2^{*} y-z$ else skip in $\sigma=[x \mapsto 9, y \mapsto 5, z \mapsto 1]$

$$
\begin{aligned}
& \langle\mathrm{y}, \sigma\rangle \rightarrow 5 \quad<\mathbf{2}, \sigma\rangle \rightarrow 2 \\
& <x, \sigma>\rightarrow 9 \quad<2^{*} y, \sigma>\rightarrow 10 \\
& <x+2^{*} y, \sigma>\rightarrow 19 \quad<z, \sigma>\rightarrow 1
\end{aligned}
$$

$\langle x, \sigma\rangle \rightarrow 9 \quad<0, \sigma\rangle \rightarrow 0 \quad\left\langle x+\mathbf{2}^{*} \mathrm{y}-\mathrm{z}, \sigma\right\rangle \rightarrow 18$
$<x>0, \sigma>\rightarrow$ true
$\left\langle\mathbf{w}=\mathrm{x}+\mathbf{2}^{*} \mathrm{y}-\mathrm{z}, \sigma\right\rangle \rightarrow \sigma^{\prime}$
$<$ if $(x>0)$ then $w=x+2^{*} y-z$ else skip, $\sigma>\rightarrow \sigma^{\prime}$
where $\sigma^{\prime}=[\mathrm{x} \mapsto 9, \mathrm{y} \mapsto 5, \mathrm{z} \mapsto 1, w \mapsto 18]$

Statements

<be, $\sigma>\rightarrow$ false
 $<$ while (be) $s, \sigma>\rightarrow \sigma$

<be, $\sigma>\rightarrow$ true $\left\langle\mathrm{s}, \sigma>\rightarrow \sigma^{\prime} \quad<\right.$ while (be) $\mathrm{s}, \sigma^{\prime}>\rightarrow \sigma^{\prime \prime}$ $<$ while (be) $s, \sigma>\rightarrow \sigma^{\prime \prime}$

What happens with infinite loops? We will not be able to create a derivation tree: e.g., no tree for while (true) skip;

Statements
<program> ::= <stmtList>

$\left\langle s l, \sigma>\rightarrow \sigma^{\prime}\right.$
$<p, \sigma>\rightarrow \sigma^{\prime}$

<stmtList> ::= <stmt> ; <stmtList> | <stmt>

$$
\frac{\langle s, \sigma\rangle \rightarrow \sigma^{\prime} \quad\left\langle\mathrm{sl}, \sigma^{\prime}\right\rangle \rightarrow \sigma^{\prime \prime}}{\left\langle\mathrm{s} ; \mathrm{sl}, \sigma>\rightarrow \sigma^{\prime \prime}\right.}
$$

\square
<stmt> ::= \{<stmtList> \}

$$
\begin{gathered}
<\mathrm{sl}, \sigma>\rightarrow \sigma^{\prime} \\
\hline<\mathrm{s}, \sigma>\rightarrow \sigma^{\prime}
\end{gathered}
$$

Properties of This Operational Semantics

Determinism: suppose a given program c terminates normally (without a run-time error or infinite loop) when executed from initial state σ. Then there exists a unique state σ^{\prime} such that $\langle p, \sigma\rangle \rightarrow \sigma^{\prime}$

Note: If there is a run-time error or infinite loop, it is impossible to derive $\left\langle p, \sigma>\rightarrow \sigma^{\prime}\right.$

Semantic equivalence: programs p_{1} and p_{2} are equivalent if, for any initial state $\sigma,\left\langle p_{1}, \sigma\right\rangle \rightarrow \sigma^{\prime}$ if and only if $\left\langle p_{2}, \sigma\right\rangle \rightarrow \sigma^{\prime}$ Note: If for some σ program p_{1} terminates normally but p_{2} does not (or vice versa), they are not equivalent. Either both succeed (with the same final state), or both fail.

Semantic Equivalence

Simple example of partial redundancy elimination if be then $\left\{x=e_{1}\right\}$ else $\left\{y=e_{2}\right\} ; x=e_{1}$ transformed to if be then $\left\{x=e_{1}\right\}$ else $\left\{y=e_{2} ; x=e_{1}\right\}$
Under what conditions are these two programs equivalent?
Simple examples of movement of loop-invariant code Example: while be do $\{x=1+1 y=y+x\}$ is it equivalent to $x=1+1 ;$ while be do $\{y=y+x\}$
Example: d o $\{x=1+1 ; y=y+x\}$ while be is equivalent to $x=1+1$ do $\{y=y+x\}$ while be
Example: $d o\{y=y+x ; x=1+1\}$ while be is equivalent to $x=1+1$ do $\{y=y+x\}$ while be

