
Operational Semantics

Slonneger and Kurtz Ch 8.4, 8.6 (only big-step semantics)

Nielson and Nielson, Ch 2.1

Uses of Operational Semantics
Correctness: does this program have a run-time error?
Equivalence: given two programs, are they always
semantically equivalent? Essential question for the
correctness of compiler optimizations
Conditions for equivalence: given two programs, under
what restrictions/conditions are they semantically
equivalent? Needed to define compiler analyses that prove
these conditions before optimizations can be applied
Correctness of code generation: given any program and a
translation algorithm to create low-level code (e.g., assembly
code or Java bytecode), is the low-level program
semantically equivalent to the original program? That is, can
we prove the correctness of the translation algorithm?

2

Background: Inductive Definitions
Inductive definition:

Example: a set X defined as follows:
 0 ∈ X
 if n ∈ X, then n+2 ∈ X
 X is the smallest set with these properties
All even natural numbers { 0, 2, 4, … }. Note that { 0, 1, 2, 3, … } also satisfies the
first two rules, but is not the smallest such set

Example: a set L defined as follows:
intconst ∈ L [for every intconst token]

ident ∈ L [for every ident token]

if e1 ∈ L and e2 ∈ L, then e1 + e2 ∈ L [e1, e2 are token sequences]

L is the smallest set with these properties
Language for <expr> ::= intconst | ident | <expr> + <expr>

3

Background: Inference Rules
The same thing, written as inference rules [from formal logic]

 n ∈ X
0 ∈ X n+2 ∈ X

If the premises are true, we can derive the conclusion
[For example: If we know that n ∈ X, we can conclude that n+2 ∈ X]

If there are no premises: the rule is an axiom
[For example: we know that 0 ∈ X “by itself”]

The second example:
 e1∈ L e2 ∈ L
intconst ∈ L ident ∈ L e1+e2 ∈ L

4

The boxes are for readability only; not
part of the inference rule
Over the bar: zero or more premises
Below the bar: conclusion

Simple Language (related to the programming projects)

<program> ::= <stmtList>

<stmtList> ::= <stmt> ; <stmtList> | <stmt>

<stmt> ::= int id = <expr> [for brevity, only consider integer vars/consts]

 | id = <expr>

 | if (<cond>) <stmt>

 | if (<cond>) <stmt> else <stmt>

 | while (<cond>) <stmt>

 | { <stmtList> }

 | skip
5

Simple Language (related to the programming projects)

<expr> ::= const | id [for brevity, only consider integer vars/consts]

 | <expr> + <expr> | <expr> - <expr>

 | <expr> * <expr> | <expr> / <expr>

 | (<expr>)

<cond> ::= true | false | <expr> < <expr> [also <=, >, >=, ==, !=]

 | <cond> && <cond> | <cond> || <cond>

 | ! <cond> | (<cond>)

6

Memory State (we will just say “State”)

State: a map σ from variable names to values
An abstraction of the contents of the physical memory
Example: program with two variables x and y
 σ(x) = 9 and σ(y) = 5
 Sometimes will denote with [x↦9, y↦5] ↦ means “maps to”

σ: Vars → Z
Vars is the set of all variable names in the program
Z is the set of integers: { 0, -1, 1, -2, 2, … }

Note: we will ignore issues of finite-precision arithmetic. In all
standard hardware and languages, the built-in types are limited:
e.g. Java int is -2,147,483,648 (-231) to 2,147,483,647 (231-1)
[Interesting paper on the web page under Resources: “Understanding Integer Overflow in C/C++”]

7

Evaluation for Arithmetic Expressions
Evaluation relation (3-way relation) for expressions:
set of triples (ae, σ, v) but we will write <ae, σ> v
 ae is a parse subtree derived from <expr>
 σ is a state
 v is a value from Z
Meaning of <ae, σ> v : the evaluation of ae from state σ
completes successfully and produces the value v

Example: <x+y-1, [x↦5, y↦4]> 8

Example: <x/(y-1), [x↦5, y↦1]> … No triple exists

8

Evaluation for Arithmetic Expressions
Syntax: id | const | <expr> + <expr> | …

<id, σ> σ(id) axiom, applicable only if the id has a value in σ

v = v1 + v2
<ae1, σ> v1 <ae2, σ> v2

 <ae1+ae2, σ> v

Last one is an example of an inference rule with a condition (v = v1+v2);
the rule is applicable only when the condition is satisfied

Nothing in the rule for ae1+ae2 tells us in which order the operands of + will be evaluated. In fact, their
evaluation could be interleaved – do a bit of work for ae1 then do a bit of work for ae2 then go again to ae1
etc. (or even evaluate them in parallel)

<const, σ> const

9

const is a parse tree node; const ∈ Z

Example
x + 2*y - z evaluated in state σ = [x↦9, y↦5, z↦1]

10

<x + 2*y - z, σ> 18
<x + 2*y, σ> 19 <z, σ> 1

<x, σ> 9 <2*y, σ> 10
<y, σ> 5 <2, σ> 2

Evaluation for Arithmetic Expressions
Syntax: … | <expr> / <expr> | …

v2 ≠ 0 and v = round(v1/v2)
v1/v2 is division for real numbers; then round toward 0

<ae1, σ> v1 <ae2, σ> v2

 <ae1/ae2, σ> v

What if we have <x/(y-1), [x↦5, y↦1]>? Of course, we have
<x, [x↦5, y↦1]> 5 and <y-1, [x↦5, y↦1]> 0

But the rule is not applicable because of the condition. This is the only
rule we could use to derive something for <x/(y-1), [x↦5, y↦1]>, so we
are basically “stuck” – no way to derive anything. This happens because
the run-time execution has an error

Similar example: <z/(y-1), [x↦5, y↦2]>: use of uninitialized variable;
 σ(z) is undefined and rule <id, σ> σ(id) cannot be applied

11

Interpreter for this Language
The inference rules implicitly define a math function
eval(code,state)
 eval(const, σ) = const.lexval
 eval(id, σ) = σ(id.lexval)
 eval(ae1+ae2, σ) = eval(ae1, σ) + eval(ae2, σ)
An interpreter (e.g., in Project 3) is an implementation
of this function

Note: Project 3 has reading of input values from stdin; this
means that expression could have side effects on stdin and
evaluation cannot be modeled by such a simple function:
e.g., consider print x + readin x; [stdin is part of the state]

12

Evaluation for Boolean Expressions

13

<cond> ::= true | false | <expr> < <expr> [also <=, >, >=, ==, !=]

 | <cond> && <cond> | <cond> || <cond>

 | ! <cond> | (<cond>)

<be, σ> v
 be is a parse subtree derived from <cond>
 σ is a state
 v is a value from { true, false }

Evaluation for Boolean Expressions
Syntax: true | false| <expr>==<expr> | !<cond> | <cond> && <cond> | …

<true, σ> true <false, σ> false

v1 = v2

[similar rule for v1 ≠ v2, evaluates to false]

<ae1, σ> v1 <ae2, σ> v2

 <ae1==ae2, σ> true
Also, similar rules for < , <= , >, >=, !=

<be, σ> true

 <!be, σ> false

<be1, σ> true <be2, σ> true

 <be1 && be2, σ> true
and three more similar rules, for
true/false, false/true, false/false

<be, σ> false

 <!be, σ> true

Also, similar rules for <be> || <be>
14

Short-Circuit Evaluation
<be1, σ> true <be2, σ> true

 <be1 && be2, σ> true

<be1, σ> true <be2, σ> false

 <be1 && be2, σ> false

<be1, σ> false

 <be1 && be2, σ> false

How about the rules for <be> || <be>?

15

Execution of Statements
Expression: produces a value; does not change the memory
σ (the evaluation does not have side effects on the memory)

Note: in imperative languages, some expressions can have side
effects (e.g. in C: x++ or f() if function f changes some existing var)

Statement: does not produce a value; changes the memory
σ; so, we evaluate an expression but we execute a statement

Syntax: <stmt> ::= skip | id = <expr> | ...

Semantics: <s, σ> σ′

Starting from initial state σ, the execution of s completes
successfully, and the final state is σ′

16

Statements: <s,σ> σ′

<ae, σ> v

<id=ae, σ> σ[id↦v]

<skip, σ> σ

<be, σ> true <s1, σ> σ′
<if (be) s1 else s2, σ> σ′

17

<be, σ> false <s2, σ> σ′
<if (be) s1 else s2, σ> σ′

This is for if-then-else; how about for if-then?

id is mapped (or remapped) to v;
the rest of the vars are not changed

Example 1
w = x + 2*y - z executed in state σ = [x↦9, y↦5, z↦1]

18

<x + 2*y - z, σ> 18
<x + 2*y, σ> 19 <z, σ> 1

<x, σ> 9 <2*y, σ> 10
<y, σ> 5 <2, σ> 2

<w = x + 2*y - z, σ> σ’

where σ’ = [x↦9, y↦5, z↦1, w↦18]
Note: we could have written σ[w↦18] instead of σ’

Example 2
if (x>0) then w = x + 2*y - z else skip in σ = [x↦9, y↦5, z↦1]

19

<x + 2*y - z, σ> 18
<x + 2*y, σ> 19 <z, σ> 1

<x, σ> 9 <2*y, σ> 10
<y, σ> 5 <2, σ> 2

<w = x + 2*y - z, σ> σ’

< if (x>0) then w = x + 2*y - z else skip, σ> σ’
<x>0, σ> true

<x, σ> 9 <0, σ> 0

where σ’ = [x↦9, y↦5, z↦1, w↦18]

Statements

<be, σ> false

<while (be) s, σ> σ

What happens with infinite loops? We will not be able to create a
derivation tree: e.g., no tree for while (true) skip;

<be, σ> true <s, σ> σ′ <while (be) s, σ′> σ′′
 < while (be) s, σ> σ′′

20

Statements
<program> ::= <stmtList>

21

<s, σ> σ′

 <sl, σ> σ′

<sl, σ> σ′

 <p, σ> σ′

<sl, σ> σ′

 <s, σ> σ′

<stmtList> ::= <stmt> ; <stmtList> | <stmt>

<stmt> ::= { <stmtList> }

<s, σ> σ′ <sl, σ′> σ′′
 <s ; sl, σ> σ′′

Properties of This Operational Semantics
Determinism: suppose a given program c terminates
normally (without a run-time error or infinite loop) when
executed from initial state σ. Then there exists a unique
state σ′ such that <p, σ> σ′
Note: If there is a run-time error or infinite loop, it is impossible to
derive <p, σ> σ′

Semantic equivalence: programs p1 and p2 are equivalent if,
for any initial state σ, <p1, σ> σ′ if and only if <p2, σ> σ′
Note: If for some σ program p1 terminates normally but p2 does not (or
vice versa), they are not equivalent. Either both succeed (with the
same final state), or both fail.

22

Semantic Equivalence
Simple example of partial redundancy elimination
if be then { x=e1 } else { y=e2 }; x=e1 transformed to

if be then { x=e1 } else { y=e2; x=e1 }
Under what conditions are these two programs equivalent?
Simple examples of movement of loop-invariant code
Example: while be do { x=1+1; y=y+x } is it equivalent to

 x=1+1; while be do { y=y+x }
Example: do { x=1+1; y=y+x } while be is it equivalent to

 x=1+1; do { y=y+x } while be
Example: do { y=y+x; x=1+1 } while be is it equivalent to

 x=1+1; do { y=y+x } while be
23

	Operational Semantics
	Uses of Operational Semantics
	Background: Inductive Definitions
	Background: Inference Rules
	Simple Language (related to the programming projects)
	Simple Language (related to the programming projects)
	Memory State (we will just say “State”)
	Evaluation for Arithmetic Expressions
	Evaluation for Arithmetic Expressions
	Example
	Evaluation for Arithmetic Expressions
	Interpreter for this Language
	Evaluation for Boolean Expressions
	Evaluation for Boolean Expressions
	Short-Circuit Evaluation
	Execution of Statements
	Statements: <s,σ> σ
	Example 1
	Example 2
	Statements
	Statements
	Properties of This Operational Semantics
	Semantic Equivalence

