
Operational Semantics

Slonneger and Kurtz Ch 8.4, 8.6 (only big-step semantics) 

Nielson and Nielson, Ch 2.1



Uses of Operational Semantics
Correctness: does this program have a run-time error?
Equivalence: given two programs, are they always 
semantically equivalent? Essential question for the 
correctness of compiler optimizations
Conditions for equivalence: given two programs, under 
what restrictions/conditions are they semantically 
equivalent? Needed to define compiler analyses that prove 
these conditions before optimizations can be applied 
Correctness of code generation: given any program and a 
translation algorithm to create low-level code (e.g., assembly 
code or Java bytecode), is the low-level program 
semantically equivalent to the original program? That is, can 
we prove the correctness of the translation algorithm?
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Background: Inductive Definitions
Inductive definition: 

Example: a set X defined as follows:
 0 ∈ X
 if n ∈ X, then n+2 ∈ X
 X is the smallest set with these properties
All even natural numbers { 0, 2, 4, … }. Note that { 0, 1, 2, 3, … } also satisfies the 
first two rules, but is not the smallest such set

Example: a set L defined as follows:
intconst ∈ L [for every intconst token]

ident ∈ L [for every ident token]

if e1 ∈ L and e2 ∈ L, then e1 + e2 ∈ L [e1, e2 are token sequences]

L is the smallest set with these properties
Language for <expr> ::= intconst | ident | <expr> + <expr>
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Background: Inference Rules
The same thing, written as inference rules [from formal logic]

     n ∈ X
0 ∈ X  n+2 ∈ X

If the premises are true, we can derive the conclusion
[For example: If we know that n ∈ X, we can conclude that n+2 ∈ X]

If there are no premises: the rule is an axiom
[For example: we know that 0 ∈ X “by itself”]

The second example: 
        e1∈ L      e2 ∈ L
intconst ∈ L ident ∈ L         e1+e2 ∈ L
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The boxes are for readability only; not 
part of the inference rule
Over the bar: zero or more premises
Below the bar: conclusion



Simple Language (related to the programming projects)

<program> ::= <stmtList>

<stmtList> ::= <stmt> ; <stmtList> | <stmt>

<stmt> ::= int id = <expr> [for brevity, only consider integer vars/consts] 

                 | id = <expr>  

                 | if ( <cond> ) <stmt>

                 | if ( <cond> ) <stmt> else <stmt>

                 | while ( <cond> ) <stmt>

                 | { <stmtList> }

                 | skip 
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Simple Language (related to the programming projects)

<expr> ::= const  | id    [for brevity, only consider integer vars/consts] 

                | <expr> + <expr> | <expr> - <expr>

             | <expr> * <expr> | <expr> / <expr>

                | ( <expr> )

<cond> ::= true  | false | <expr> < <expr>  [also <=, >, >=, ==, !=]

                | <cond> && <cond> | <cond> || <cond> 

             | ! <cond> | ( <cond> )
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Memory State (we will just say “State”)

State: a map σ from variable names to values
An abstraction of the contents of the physical memory
Example:  program with two variables x and y
        σ(x) = 9 and σ(y) = 5
    Sometimes will denote with [x↦9, y↦5]  ↦ means “maps to”

σ: Vars → Z 
Vars is the set of all variable names in the program
Z is the set of integers: { 0, -1, 1, -2, 2, … }

Note: we will ignore issues of finite-precision arithmetic. In all 
standard hardware and languages, the built-in types are limited: 
e.g. Java int is -2,147,483,648 (-231) to 2,147,483,647 (231-1)
[Interesting paper on the web page under Resources: “Understanding Integer Overflow in C/C++”]
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Evaluation for Arithmetic Expressions
Evaluation relation (3-way relation) for expressions:  
set of triples (ae, σ, v) but we will write <ae, σ>  v
 ae is a parse subtree derived from <expr>
 σ is a state
 v is a value from Z
Meaning of <ae, σ>  v : the evaluation of ae from state σ 
completes successfully and produces the value v

Example: <x+y-1, [x↦5, y↦4]>  8 

Example: <x/(y-1), [x↦5, y↦1]>  …     No triple exists
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Evaluation for Arithmetic Expressions
Syntax: id | const | <expr> + <expr> | …

<id, σ>  σ(id) axiom, applicable only if the id has a value in σ

v = v1 + v2 
<ae1, σ>  v1   <ae2, σ>  v2

             <ae1+ae2, σ>  v

Last one is an example of an inference rule with a condition (v = v1+v2); 
the rule is applicable only when the condition is satisfied

Nothing in the rule for ae1+ae2 tells us in which order the operands of + will be evaluated. In fact, their 
evaluation could be interleaved – do a bit of work for ae1 then do a bit of work for ae2 then go again to ae1 
etc. (or even evaluate them in parallel)

<const, σ>  const
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const is a parse tree node; const ∈ Z



Example
x + 2*y - z evaluated in state σ = [x↦9, y↦5, z↦1]
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<x + 2*y - z, σ>  18
<x + 2*y, σ>  19 <z, σ>  1

<x, σ>  9 <2*y, σ>  10
<y, σ>  5 <2, σ>  2



Evaluation for Arithmetic Expressions
Syntax: …  | <expr> / <expr> | …

v2 ≠ 0 and v = round(v1/v2)
v1/v2 is division for real numbers; then round toward 0

<ae1, σ>  v1   <ae2, σ>  v2

             <ae1/ae2, σ>  v

What if we have <x/(y-1), [x↦5, y↦1]>? Of course, we have 
<x, [x↦5, y↦1]>  5  and <y-1, [x↦5, y↦1]>  0

But the rule is not applicable because of the condition. This is the only 
rule we could use to derive something for <x/(y-1), [x↦5, y↦1]>, so we 
are basically “stuck” – no way to derive anything. This happens because 
the run-time execution has an error

Similar example: <z/(y-1), [x↦5, y↦2]>: use of uninitialized variable;
 σ(z) is undefined and rule <id, σ>  σ(id) cannot be applied
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Interpreter for this Language
The inference rules implicitly define a math function 
eval(code,state)
 eval(const, σ) = const.lexval
 eval(id, σ) = σ(id.lexval)
 eval(ae1+ae2, σ) = eval(ae1, σ) + eval(ae2, σ)
An interpreter (e.g., in Project 3) is an implementation 
of this function

Note: Project 3 has reading of input values from stdin; this 
means that expression could have side effects on stdin and 
evaluation cannot be modeled by such a simple function: 
e.g., consider print x + readin x; [stdin is part of the state]
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Evaluation for Boolean Expressions
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<cond> ::= true  | false | <expr> < <expr>  [also <=, >, >=, ==, !=]

                | <cond> && <cond> | <cond> || <cond> 

             | ! <cond> | ( <cond> )

<be, σ>  v
 be is a parse subtree derived from <cond>
 σ is a state
 v is a value from { true, false }



Evaluation for Boolean Expressions
Syntax: true | false| <expr>==<expr> | !<cond> | <cond> && <cond> | … 

<true, σ>  true <false, σ>  false

v1  = v2 

[similar rule for v1 ≠ v2, evaluates to false]

<ae1, σ>  v1   <ae2, σ>  v2

         <ae1==ae2, σ>  true
Also, similar rules for < , <= , >, >=, != 

<be, σ>  true

   <!be, σ>  false

<be1, σ>  true   <be2, σ>  true

        <be1 && be2, σ>  true
and three more similar rules, for    
true/false, false/true, false/false

<be, σ>  false

   <!be, σ>  true

Also, similar rules for <be> || <be>
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Short-Circuit Evaluation
<be1, σ>  true   <be2, σ>  true

        <be1 && be2, σ>  true

<be1, σ>  true   <be2, σ>  false

        <be1 && be2, σ>  false

<be1, σ>  false 

        <be1 && be2, σ>  false

How about the rules for <be> || <be>? 
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Execution of Statements
Expression: produces a value; does not change the memory 
σ  (the evaluation does not have side effects on the memory)

Note: in imperative languages, some expressions can have side 
effects (e.g. in C: x++ or f() if function f changes some existing var)

Statement: does not produce a value; changes the memory 
σ; so, we evaluate an expression but we execute a statement

Syntax: <stmt>  ::=  skip | id = <expr> | ...

Semantics: <s, σ>  σ′

Starting from initial state σ, the execution of s completes 
successfully, and the final state is σ′ 
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Statements: <s,σ> σ′

<ae, σ>  v

<id=ae, σ>  σ[id↦v]

<skip, σ>  σ

<be, σ>  true    <s1, σ>  σ′ 
<if (be) s1 else s2, σ>  σ′
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<be, σ>  false    <s2, σ>  σ′ 
<if (be) s1 else s2, σ>  σ′

This is for if-then-else; how about for if-then?

id is mapped (or remapped) to v;
the rest of the vars are not changed



Example 1
w = x + 2*y - z executed in state σ = [x↦9, y↦5, z↦1]
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<x + 2*y - z, σ>  18
<x + 2*y, σ>  19 <z, σ>  1

<x, σ>  9 <2*y, σ>  10
<y, σ>  5 <2, σ>  2

<w = x + 2*y - z, σ>  σ’

where σ’ = [x↦9, y↦5, z↦1, w↦18]
Note: we could have written σ[w↦18] instead of σ’ 



Example 2
if (x>0) then w = x + 2*y - z else skip in σ = [x↦9, y↦5, z↦1]
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<x + 2*y - z, σ>  18
<x + 2*y, σ>  19 <z, σ>  1

<x, σ>  9 <2*y, σ>  10
<y, σ>  5 <2, σ>  2

<w = x + 2*y - z, σ>  σ’

< if (x>0) then w = x + 2*y - z else skip, σ>  σ’
<x>0, σ>  true

<x, σ>  9 <0, σ>  0

where σ’ = [x↦9, y↦5, z↦1, w↦18]



Statements

<be, σ>  false 

<while (be) s, σ>  σ

What happens with infinite loops? We will not be able to create a 
derivation tree: e.g., no tree for while (true) skip;

<be, σ>  true      <s, σ>  σ′    <while (be) s, σ′>  σ′′ 
                     < while (be) s, σ>  σ′′
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Statements
<program> ::= <stmtList>
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<s, σ>  σ′    

            <sl, σ>  σ′

<sl, σ>  σ′    

             <p, σ>  σ′

<sl, σ>  σ′    

             <s, σ>  σ′

<stmtList> ::= <stmt> ; <stmtList> | <stmt>

<stmt> ::= { <stmtList> }

<s, σ>  σ′    <sl, σ′>  σ′′ 
           <s ; sl, σ>  σ′′



Properties of This Operational Semantics
Determinism: suppose a given program c terminates 
normally (without a run-time error or infinite loop) when 
executed from initial state σ. Then there exists a unique  
state σ′ such that <p, σ>  σ′
Note: If there is a run-time error or infinite loop, it is impossible to 
derive <p, σ>  σ′ 

Semantic equivalence: programs p1 and p2 are equivalent if, 
for any initial state σ, <p1, σ>  σ′ if and only if <p2, σ>  σ′ 
Note: If for some σ program p1 terminates normally but p2 does not (or 
vice versa), they are not equivalent. Either both succeed (with the 
same final state), or both fail. 
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Semantic Equivalence
Simple example of partial redundancy elimination
if be then { x=e1 } else { y=e2 }; x=e1 transformed to

if be then { x=e1 } else { y=e2; x=e1 }
Under what conditions are these two programs equivalent?
Simple examples of movement of loop-invariant code
Example: while be do { x=1+1; y=y+x } is it equivalent to                               

       x=1+1; while be do { y=y+x }
Example: do { x=1+1; y=y+x } while be is it equivalent to 

       x=1+1; do { y=y+x } while be
Example: do { y=y+x; x=1+1 } while be is it equivalent to 

       x=1+1; do { y=y+x } while be
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