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ABSTRACT
As architectures evolve, optimization techniques to obtain
good performance evolve as well. Using low-level program-
ming languages like C/C++ typically results in architecture-
specific optimization techniques getting entangled with the
application specification. In such situations, moving from
one target architecture to another usually requires a reim-
plementation of the entire application. Further, several com-
piler transformations are rendered ineffective due to imple-
mentation choices. Domain-Specific Languages (DSL) tackle
both these issues by allowing developers to specify the com-
putation at a high level, allowing the compiler to handle
many tedious and error-prone tasks, while generating effi-
cient code for multiple target architectures at the same time.

Here we present Forma, a DSL for image processing appli-
cations that targets both CPUs and GPUs. The language
provides syntax to express several operations like stencils,
sampling, etc. which are commonly used in this domain.
These can be chained together to specify complex pipelines
in a concise manner. The Forma compiler is in charge of
tedious tasks like memory management, data transfers from
host to device, handling boundary conditions, etc. The
high-level description allows the compiler to generate ef-
ficient code through use of compile-time analysis and by
taking advantage of hardware resources, like texture mem-
ory on GPUs. The ease with which complex pipelines can
be specified in Forma is demonstrated through several ex-
amples. The efficiency of the generated code is evaluated
through comparison with a state-of-the-art DSL that tar-
gets the same domain, Halide. Our experimental result show
that using Forma allows developers to obtain comparable
performance on both CPU and GPU with lesser program-
mer effort. We also show how Forma could be easily inte-
grated with widely used productivity tools like Python and
OpenCV. Such an integration would allow users of such tools
to develop efficient implementations easily.
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Figure 1: Comparison of Forma with existing frame-
works for developing image processing applications

1. INTRODUCTION
Image processing techniques have contributed significantly

to the widespread use of technology in our day-to-day lives.
From mundane applications like face-recognition in digital
cameras, to critical applications like medical imaging to screen
for cancer and other neuro-degenerative diseases, image pro-
cessing techniques form an important part of innovation ev-
erywhere. With the advent of smart phones and the increas-
ing resolution of images captured by its cameras, processing
these images on a phone using its limited hardware resources
quickly and in a power efficient manner is important for a
good end-user experience. As a result, significant time and
effort has been spent in manual optimizations of these appli-
cations. This often leads to the specifics of the computation
being intertwined with code transformations necessary to
get good performance on a specific hardware. To port such
an application to different architectures usually requires a
significant change to the code. With the wide range of con-
stantly evolving architectures currently used in computing
devices, maintaining all architecture specific optimizations
for each application can be quite cumbersome.

Domain-Specific Languages (DSLs) [12, 25, 10, 9] have
traditionally been used to separate the architecture specific
details from the specification of the computation. They pro-
vide domain specific abstractions that allow the programmer
to easily specify the computation. Simultaneously, compil-
ers can exploit the semantics of these abstractions to gen-
erate optimized code for different hardware. The challenge
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1 temp(x,y) = (image (2*x-1,y)
+ 2*image (2*x,y) + image (2*x+1,y)) / 4;

2 output(x,y) = (temp(x,2*y-1)
+ 2*temp(x,2*y) + temp(x,2*y+1)) / 4;

Listing 1: Mathematical description of a sampling
filter

1 temp (2*x,y) = (3* image(x,y) + image(x-1,y))/4;
2 temp (2*x+1,y) = (3* image(x,y) + image(x+1,y))/4;
3 output(x,2*y) = (3* temp(x,y) + temp(x,y -1))/4;
4 output(x,2*y+1) = (3* temp(x,y) + temp(x,y+1))/4;

Listing 2: Mathematical description of an extrapo-
lation filter

in designing DSLs is to devise a set of abstractions that are
expressive enough while still exposing optimization oppor-
tunities to the compiler.

In this paper we present Forma, a DSL for image process-
ing applications that is capable of targeting both multi-core
CPUs and GPGPUs. Listing 1 provides a mathematical de-
scription of a simple image-processing pipeline involving two
steps to sample a 2D image. The first step uses a stencil to
sample along the x-dimension of the input image, and the
second step uses a similar stencil to sample along the y-
dimension. The resulting image (output) is half the size of
the input image along each dimension. An image processing
DSL should provide syntax to allow the user to specify such
stencils easily, while allowing the user to chain together, dif-
ferent stages of a pipeline.

Listing 2 shows a more involved pipeline which computes
an extrapolated image from a given input image. Here,
the output image is computed by first extrapolating along
the x-dimension followed by an extrapolation along the y-
dimension. The difference here is that for every dimension
the even and odd points are computed through different
stencils.

The implementation methodology that would achieve good
performance would depend on the target architecture. For
example, on CPU it might be better to apply both the odd
and even stencil within a single loop-nest to increase local-
ity. On the GPU, if each thread is operating on one pixel of
the output, making this decision for each pixel would result
in thread divergence within the kernel. In addition, using
low-level programming languages like C++/CUDA would
require the developer to manage tedious details such as allo-
cating buffers of appropriate sizes for intermediate images,
handling boundary conditions while applying a stencil, copy-
ing data to and from the device while targeting GPUs, etc.
The syntax of Forma allows application developers to specify
image processing pipelines and the stencil to be applied at
every stage in a concise manner. Tedious details of memory
management, applying boundary conditions and data trans-
fers are left to the compiler to manage. The syntax also
allows the compiler to optimize the generated code without
being constrained by the implementation details.

This paper highlights the ease with which complex ap-
plications can be easily specified using the syntax provided
by Forma, while achieving good performance on both CPUs
and GPUs. The rest of the paper describes the syntax of
Forma and demonstrates the ease with which complex image

processing pipelines can be expressed in this language. We
evaluate the developed DSL in terms of ease of programming
and performance with several existing frameworks, including
NumPy [20], OpenCV [22], and Halide [24]. Figure 1 sum-
marizes the benefits of using Forma over these frameworks.
In particular, NumPy can only accelerate individual array
operations, and does not support offloading arbitrary com-
putations to accelerators such as GPUs. Similarly, OpenCV
does not optimize across the entire program. In the general
use case, OpenCV is just a library and the compiler only
sees function calls to OpenCV routines without knowledge
of the implementations of these routines. It supports GPU
offloading for a limited set of pre-existing operations and not
arbitrary code written using the OpenCV library. Halide
comes closest to Forma in feature set, but requires the user
to explicitly specify the execution schedule of the generated
code. This requires the user to have intimate knowledge of
the target hardware in order to achieve optimal performance.
As shown later in this paper, Forma provides a useful frame-
work to provide whole program optimization and automatic
GPU offloading of arbitrary computations to applications
using NumPy and OpenCV.

The rest of the paper is organized as follows. Section 2
describes the syntax of Forma programs and their seman-
tics. Section 3 describes the internal representation of the
pipeline derived by the compiler from a Forma program and
optimizations that are possible due to this representation.
It also describes the architecture specific optimizations im-
plemented by the back-end while targeting multi-core CPUs
and NVIDIA GPUs. Section 4 describe several simple to
complex image processing pipelines and shows the ease with
which they could be expressed, along with the performance
of the generated code on both CPUs and GPUs. Halide [24]
another DSL used for image processing, is used as a ba-
sis for performance comparison of the generated code. Sec-
tion 5 explains how Forma can be integrated with produc-
tivity tools like Python and OpenCV while highlighting the
potential gains in performance. Section 6 describes other re-
lated research in this area. Sections 7 presents some future
directions that we wish to explore based on the described
framework with Section 8 stating the conclusion that are
drawn from the work described here.

2. SYNTAX AND SEMANTICS OF FORMA
PROGRAMS

Forma provides syntax to define and manipulate orthog-
onal domains, where each point in the domain is associated
with some data. Basic data types supported are 8-bit in-
tegers (int8), 16-bit integer (int16), 32-bit integer (int),
single-precision floating point number (float) or double-
precision floating point number (double). User defined data
structures with fields of basic data types are also supported.
Therefore, an RGB image can be viewed as a rectangular
domain of points, each point associated with a structure
having three fields of type int8.

Listing 3 shows a simple Forma program. The input do-
main is declared at line 5 as a 2D domain of size M×N , with
each point containing an RGB value. Temporary variables
can be used to store intermediate results within the pipeline.
Forma uses a single-assignment paradigm, i.e. once assigned
a variable cannot be reassigned. This ensures that the size
of the domain represented by variables, once set, does not
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1 struct RGB{
2 int8 r; int8 g; int8 b;
3 }
4 parameter M,N;
5 vector #2 RGB input[M,N];
6 output = input;
7 return output;

Listing 3: Hello World in Forma

1 stencil jacobi2d(vector #2 int X){
2 y_pt = 4*X - (X@[-1,0]+X@[0,-1]+X@[1,0]+X@[0 ,1]);
3 return y_pt;
4 }
5 parameter M,N;
6 vector #2 int x[M,N];
7 y = jacobi2d(x:constant (0));
8 return y;

Listing 4: Stencils in Forma

change during the program execution. The compiler checks
that every variable used within the program is either an
input or has been defined previously. It is not necessary
that the generated code allocates memory for every vari-
able within the program, allowing it to inline/fuse multiple
stages. The program ends with a return statement which
specifies the result of the computation. Section 3.2.3 de-
scribes the interface that allows the user to pass the input
domain and parameter values to the generated code and to
receive the result of the pipeline.

2.1 Stencil
Stencils represent the basic operations of an image pro-

cessing pipeline. In Forma, stencils are specified as functions
that are applied on domains. Listing 4 shows a specification
of 2D-Jacobi stencil. Stencil function definitions are prefixed
with the keyword stencil. The arguments to the function
specify the type and dimensionality of the domains oper-
ated on. In Listing 4 the input argument is a 2D domain of
integers. When applied to a domain (at Line 7), the compu-
tation specified within the stencil function is performed at
every point of the domain.

Within the stencil specification, Forma allows the use of an
offset operator, ‘@[. . .]’, to access neighboring points of in-
put domains. The list of integers specified within the square
braces represent the offset of the point whose value is to
be used. Therefore X@[-1,0] refers to the value at point
(i − 1, j) while performing the computation at point (i, j).
Dropping the offset operator is a short-hand to refer to the
value at point (i, j) itself. The right-hand side of statements
within a stencil function definition can contain mathematical
operations, math functions, or ternary expressions. Loops
and conditionals are not allowed within a stencil definition.
The return value is stored at point (i, j) of the output do-
main.

To allow the specification of stencil operations like the one
described in Listing 1, a scaling factor can be used for every
dimension in the offset operator. Instead of a list of integers,
one can specify a list of tuples of the form (a, b) to refer to
a point a+ i× b while computing at the ith point along that
dimension. Listing 5 shows the Forma specification of the
filter in Listing 1. Using an integer instead of a tuple for a

1 stencil sample_x(vector #2 int X){
2 x_pt= (X@[( -1 ,2) ,0]+2*X@[(0 ,2) ,0]+X@[(1 ,2) ,0])/4;
3 return x_pt;
4 }
5 stencil sample_y(vector #2 int Y){
6 y_pt= (Y@[0 ,( -1 ,2)]+2*Y@[0 ,(0 ,2)]+Y@[0 ,(1 ,2)])/4;
7 return y_pt;
8 }
9 parameter M,N;

10 vector #2 int image[M,N];
11 temp = sample_x(image);
12 return sample_y(temp);

Listing 5: Stencils with non-unit scaling factor

dimension, sets the scaling factor as 1 for that dimension.
Using a scaling factor along a dimension reduces the size
of the output domain along that dimension by the scaling
factor. Therefore, the size of temp is half that of image along
the x-dimension. The size of the output is half of the input
image along both dimensions.

Boundary Conditions: Applying the stencil in List-
ings 4 and 5 along the edges of the output domain would
be erroneous. By default, the computation is done only at
those points of the output domain where applying the offset
results in a valid point of the input domain. Forma also pro-
vides language support for the following standard boundary
conditions:

• constant(val) : The values accessed outside the domain
are set to a constant value, val

• clamped : The values accessed outside the domain are
set to the value at the closest edge

• wrap : The domain is treated as being wrapped along
all dimensions

• mirror : The values outside the domain are computed
by treating the closest edge as a mirror.

Boundary conditions are specified while applying the stencil
as shown in Listing 4, which applies the constant bound-
ary condition. Since the stencil definition is decoupled from
the boundary conditions to be used, the same stencil spec-
ification can be used with different boundary conditions at
different points of a Forma program. In case of multiple in-
put domains to a stencil function, each argument can have
a different boundary condition.

2.1.1 Extrapolation
To support the extrapolation operation (also refered to

as upsample) shown in Listing 2, Forma allows the use of
the offset operator outside of a stencil definition. Listing 6
shows the syntax to specify the first step of the extrapola-
tion operation. At line 7, use of the offset operator on the
left-hand side of the assignment statement specifies that the
value at a point (i, j) of the domain on the right-hand side
(which is the result of a stencil application) is assigned to
the point (2i, j) of the domain represented by temp.

2.2 Compose Operation
While the operations described in Section 2.1 allows you

to specify individual steps of the filters shown in Listing 1
and 2, the single assignment paradigm of Forma would not
allow the programmer to assign to different points of a do-
main in successive statements. The compose operation can
be used in such situations to specify the operations used to
compute different portions of a domain. Line 7 of Listing 7
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1 stencil upsample_x_even(vector #2 int X){
2 x_even = (3*X + X@[-1,0]) / 4;
3 return x_even;
4 }
5 parameter M,N;
6 vector #2 int image[M,N];
7 temp@ [(0,2),0] = upsample_x_even(image);

Listing 6: Extrapolation

1 stencil upsample_x_even(vector #2 float X){
2 return (3*X + X@[-1,0]) / 4;
3 }
4 stencil upsample_x_odd(vector #2 float X){
5 return (X@[1,0] + X*3)/4;
6 }
7 out = ( @[(0,2),0] = upsample_x_even(in);

@[(1,2),0] = upsample_x_odd(in); );

Listing 7: Compose Expression

shows an example of this operation used to specify the com-
putation for the odd and even points along the x-dimension.
Each statement within the compose operation is assumed
to specify the evaluation of disjoint portions of the output
domain, which can be computed independent of each other.
In case where the regions are not disjoint, the behavior is
unspecified.

2.3 Cropping and Stacking of Images
Forma allows the programmer to also extract an orthog-

onal sub-domain of points by using the crop operator. The
region to be extracted is specified within ‘[ ]’. For example,
at Line 2 of Listing 8, the crop operation is used to extract
a rectangular region formed between the points (3, 5) and
(25, 29). The size of the resulting domain (y) is 23 × 25.

A similar operator is the padding operator which is used
on the left-hand side of a statement, an example of which is
shown in Line 3 of Listing 8. It is similar to the crop oper-
ator with the upper-bound unspecified. The output domain
is padded by the amount specified for each dimension. In
the example shown, the values from the domain represented
by x are copied to the domain z after being padded by 3
along the first dimension and 5 along the second. The re-
sulting domain is of size (M + 3)× (N + 5). The number of
elements in the list of the padding operator can be greater
than the dimensionality of the right-hand side expression.
The resultant domain has the same dimensionality as the
number of elements in this list. When used in conjunction
with the compose operation, this allows stacking of images
as shown in Listing 9. The domains represented by x, is
placed along the 0th index of the domain stack, with the
elements of the former used to initialize the points along the
inner dimensions. Domains y and z are used to initialize
the points along the 1st and 2nd indices of the outermost
dimensions of stack.

1 vector #2 int x[M,N];
2 y = x[3..25 ,5..29];
3 z[3.. ,5..] = x;

Listing 8: Crop Operation

1 vector #2 int x[M,N];
2 vector #2 int y[M,N];
3 vector #2 int z[M,N];
4 stack = ( @[0.. ,0.. ,0..] = x;

@[1.. ,0.. ,0..] = y;
@[2.. ,0.. ,0..] = z; );

Listing 9: Intersection Example

1 stencil jacobi1D(vector #2 int X){
2 return (X@[-1,0] + 2*X + X@[1 ,0])/4;
3 }
4 stencil bdy0(vector #2 int X){
5 return (3*X + X@[1 ,0])/4;
6 }
7 stencil bdyN(vector #2 int X){
8 return (3*X + X@[ -1 ,0])/4;
9 }

10 parameter N;
11 vector #2 int a[N,N];
12 b=([0.. ,0..] = bdy0(a[0..1 ,0..N-1]);

[1.. ,0..] = jacobi1d(a)[1..N-2,0..N];
[N-1.. ,0..]= bdyN(a[N-2..N-1,0..N-1]); );

Listing 10: Custom Boundary Conditions

Custom Boundary Conditions : The crop, padding
and compose operator can be used to specify custom bound-
ary conditions. For example, consider the jacobi1D stencil
shown in Listing 10. This stencil is applied at all points of
an image except the first and last column, where the stencils
bdy0 and bdyN are to be applied instead. Line 12 extracts the
first and last column of the domain a, applies the respective
stencils on these and places them along the first and last
column of the output domain b. The interior points of b

are computed by applying the stencil jacobi1D with default
boundary conditions. The result of the stencil application
is cropped at the edges and placed in the output with a
padding of 1 along the x-dimension. The compose operator
is used to specify these operations simultaneously in keeping
with the single-assignment paradigm.

2.4 Vector Functions and Loops
The previous sections highlighted operations on domains

that are supported within Forma that allow the user to spec-
ify a stage in an image processing pipeline. In this section
we discuss a constructs that allow programmers to express
complex pipelines succinctly by chaining together multiple
stages.

2.4.1 Vector Functions
It is common for a sequence of filters to be applied repeat-

edly over the course of a computation. As an example con-
sider the pipeline shown in Figure 2, which is used to com-
bine multiple RGB images at different exposures to get an
HDR image [19]. The filters exposure, make_grey, lapla-
cian, saturation and multiply are applied in the same
sequence for every input image. This sequence computes
a weight to be used for each input image while combin-
ing them (combine) to get the final HDR image. Vector
functions encapsulate a sequence of operations into a single
function. In Forma, vector functions are defined by adding
the keyword vector to the function definition as shown in
Listing 11. Vector functions allow the Forma programs to
be more concise, and easier to maintain. (The term vector
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compute_weights compute_weights

image1
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sa tu ra t ion
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combine

image2

make_grey

sa tu ra t ion

exposure

ou t pu t

laplacian

multiply

laplacian

multiply

Figure 2: Basic Exposure Fusion algorithm

1 ...
2 vector compute_weights(vector #2 rgb X){
3 grey = make_grey(X);
4 laplacian = laplacian(grey);
5 saturation = saturation(X);
6 well_exposed = well_exposed(X);
7 return multiply(laplacian ,

saturation ,well_exposed );
8 }
9 ...

10 weights1 = compute_weights(image1 );
11 weights2 = compute_weights(image2 );
12 return combine(weights1 ,image1 ,weights2 ,image2 );

Listing 11: Vector Functions

functions refers to operations on image objects, or vectors,
as a whole. It does not refer to mapping operations to SSE
vector instruction/intrinsics.)

2.4.2 Loops and Qualified Variables
For some image processing pipelines, loops provide a nat-

ural way of expressing the computation. A prime example
of this is the Laplacian Pyramid [7] computation. Here,
two image pyramids are constructed from the input image,
namely the Gaussian pyramid and the Laplacian Pyramid.
The input image forms the base of the gaussian pyramid.
Successive level are constructed by sampling from the im-
ages at a lower level. The laplacian pyramid is constructed
by extrapolating the images at a level of the gaussian pyra-
mid and subtracting the image at the immediately lower
level. Each level of gaussian and laplacian pyramids can be
computed using loops.

Listing 12 shows the specification of the laplacian pyra-
mid computation in Forma, with the use of loops at line
17. Loops within Forma can only have numeric bounds and
increments of +1 or −1. The variables gaussian and lapla-

cian are tagged by an additional parameter specified within
‘< >’. Such variables are refered to as qualified variables and
represent a list of domains, each of which are of the same
type but can have different sizes. To maintain the single-
assignment property, all statements within a loop body can
only assign to variables that are qualified. The compiler also
ensures that a particular domain within a qualified variable
has been defined before it is used. For example, in Listing 12

1 ...
2 vector sample(vector #2 float Z){
3 return sample_y(sample_x(Z));
4 }
5 vector upsample_x(vector #2 float X){
6 return

(@[(0 ,2) ,(0 ,1)] = upsample_x_even(X);
@[(1 ,2) ,(0 ,1)] = upsample_x_odd(X); );

7 }
8 vector upsample_y(vector #2 float Y){
9 return

(@[(0 ,1) ,(0 ,2)] = upsample_y_even(Y);
@[(0 ,1) ,(1 ,2)] = upsample_y_odd(Y); );

10 }
11 vector upsample(vector #2 float Z){
12 return upsample_y(upsample_x(Z));
13 }
14 parameter M,N;
15 vector #2 float image[M,N];
16 gaussian <0> = image;
17 for i = 1..3
18 gaussian <i> = sample(gaussian <i-1>);
19 laplacian <i> = subtract(gaussian <i>,

upsample(gaussian <i-1>));
20 endfor
21 ...

Listing 12: Laplacian Pyramid Computation

the compiler checks that (i − 1)th domain of qualified vari-
able gaussian, has been defined before its use. As a result,
the 0th domain of gaussian has to be defined outside the
loop-body for the program to be correct.

3. COMPILE-TIME ANALYSIS AND CODE
GENERATION

The previous sections outlined the syntax and semantics
of various operations that allow the programmer to express
image processing pipelines in a compact manner. The Forma
compiler uses this high-level specification to optimize across
pipeline stages and generate code that can target both multi-
core CPUs and GPUs. These aspects are discussed in this
section.

3.1 Computation DAG and Fusing Stages of
the Pipeline

Directed Acyclic Graphs (DAGs) represent a convenient
abstraction to represent the dependences between the differ-
ent stages of an image processing pipeline. Figure 2 accu-
rately captures the dependence between the different stages
of a pipeline to compute HDR images. The single-assignment
paradigm used in Forma allows the compiler to build a simi-
lar computation DAG for all Forma programs. Every stencil
or vector function application is represented by a node in
this DAG. An edge is added from one node to another when
the result of a function application represented by the for-
mer is used as an argument to function represented by the
latter. A separate DAG is built for each vector function. Be-
fore building a DAG, each loop is completely unrolled. This
representation can be leveraged to merge (or fuse) multi-
ple stages of the image processing pipeline. This not only
reduces the number of intermediate buffers (and hence the
memory footprint) needed for the computation, but also re-
duces the total memory bandwidth requirements.

Within Forma, fusion is performed only when it doesn’t
result in redundant computation. Consider the DAG shown
in Figure 2. The filters laplacian and make_grey are shown
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1 stencil make_grey(vector #2 rgb X){
2 return (0.02126f * X.r + 0.7152f * X.g

+ 0.0722f * X.b) / 255;
3 }
4 stencil laplacian(vector #2 float X){
5 return 4 * X - ( X@[-1,0] + X@[0,-1] +

X@[1,0] + X@[0,1] );
6 }

Listing 13: Laplacian Filter

+

ou tpu t

inpu t

f g

h 1 h 2

(a) Initial DAG

h1  o  h2  o  +

o u t p u t

inpu t

f g

(b) First Pass

f  o  g  o h1 o h2 o +

o u t p u t

inpu t

(c) Second Pass

Figure 3: Multiple passes of Fusion

in Listing 13. If these two filters were combined, before
using the value at the neighboring points to compute the
laplacian, the grey value at all the neighboring points would
have to be computed as well. This would result in redundant
computation. To avoid this, stages are only combined when
the function represented by the target node doesn’t refer
to neighbors of the result of the function represented by
the source node. Since boundary conditions are meaningful
only when neighboring points are accessed using a stencil,
the fusion optimization does not have to consider handling
boundaries.

Further, nodes are merged only if the source node has only
one outgoing edge, i.e., the result at the source node is not
used in multiple stages of the pipeline. Under these two con-
straints, the nodes saturation, exposure and laplacian,
which do not refer to neighboring points of their input do-
mains, can be merged with the node multiple. The node
make_grey cannot be merged with laplacian. To fuse as
many stages as possible, Forma inlines all vector functions
beforehand.

Fusing two nodes might unearth further fusion opportu-
nities. Consider a computation DAG shown in Figure 3a
where none of the stages apply stencils that refer to neigh-
boring points of input domains. Under the constraints de-
scribed earlier, only the stages h1 and h2 can be fused with
their successor, resulting in a computation DAG shown in
Figure 3b. This results in the nodes f and g now having
only one successor and can be fused with it. Therefore, to
minimize the number of stages in the pipeline, the Forma
compiler does multiple passes over the computation DAG,
terminating only when no candidates for fusion are found.
Figure 4 shows the computation DAG obtained as a result of
the fusion optimization starting with the DAG in Figure 2.

image1

make_grey

combine_fused

ou t pu t

image2

make_grey

Figure 4: Fused computation DAG for exposure fu-
sion algorithm

The number of stages in the computation reduces from 11 to
3, reducing the number of intermediate buffers needed from
10 to 2.

3.2 Code Generation
Forma compiler generates C code with OpenMP prag-

mas to target multi-core CPUs and CUDA code to target
NVIDIA GPUs. Here we discuss architecture specific opti-
mizations that are implemented within Forma to enhance
the performance of the generated code.

3.2.1 Targeting CPUs
For multi-core CPUs, after fusing as many stages as possi-

ble (as discussed in Section 3.1), for each stage Forma gener-
ates loop nests to iterate over the output domain and apply
the specified filter or stencil function. The size of all in-
termediate buffers are automatically computed by the com-
piler from the program specification, freeing the programmer
from the burden of explicit memory management. By de-
sign, for each loop-nest generated, there is no loop carried
dependence at any level. This allows the use of OpenMP
pragmas to parallelize the outermost loop, at the same time
enabling vectorization of the innermost loop through use of
vectorization pragmas (like #pragma ivdep, #pragma vector

always in ICC). Therefore the generated C code is able to
exploit both coarse-gained parallelism across cores, and fine-
grained parallelism through use of vector functional units on
each core. Both of these are critical to obtain good perfor-
mance on modern CPU architectures.

When no boundary conditions are specified for stencil
function arguments, the generated loop-nests compute only
points along the interior where applying the offsets to the
input domains results in a valid memory location. To handle
boundary conditions, additional loop-nests are generated to
apply the appropriate boundary condition along the edges.
Since the loop-nest for the interior points and the boundary
points are disjoint, the code for the interior points avoids
the use of conditionals that adversely affect vectorization.
This is analogous to loop-peeling and allows the application
of boundary conditions with relatively minimal overhead.

3.2.2 Targeting GPUs
For NVIDIA GPUs, Forma generates separate kernels for

each stage in the image processing pipeline (after stages have
been fused). Each thread on the device is responsible for
computation of a single point of the output domain. Apart
from handling memory allocation and deallocation on the
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device, Forma also generates code to move data to and from
the device. The kernel code is generated such that the access
to global memory are unit-stride, as far as possible, to enable
coalesced accesses across threads. Similar to the CPU code-
generation, when no boundaries are specified for arguments
of a stencil function, the generated kernel ignores the points
along edges of the output domain. Boundary conditions are
handled by generating separate kernels for edges, and for
the interior points. This avoids branches within the kernel
for the latter, avoiding the cost of branch divergence.

Additionally, a compile-time option can be specified to
utilize the texture units on the device. Buffers that are read-
only within a kernel, and are pitch-linear in global memory
can be mapped to the texture fetch units of the device1.
These units exploit spatial locality of accesses from multiple
threads to reduce the cost of global memory reads. In ad-
dition, the texture fetch units provide hardware support for
handling the boundary conditions supported by Forma, i.e.,
constant, clamped, wrap and mirror. Using texture allows
the GPU backend to implement these without generating
separate kernels for the boundaries.

3.2.3 Interface to the Generated Code
The generated Forma code (for GPU or CPU) is encap-

sulated within a C-function. A header file is also generated
with the signature of this function. The arguments to this
functions are

• Variables that are defined as input within the Forma
program,

• Parameters used within the program, and
• Pointers to memory location which should contain the

result of the pipeline (specified along with the return

expression in the program).
The header file also has a description of the size of the out-

put buffer needed, which is computed by the Forma compiler
but has to be allocated by the calling function. On return-
ing from the Forma generated function, the output buffer
contains the result of the pipeline.

4. CASE STUDIES AND PERFORMANCE
EVALUATION

In this section we discuss several image processing pipelines
that have been ported to Forma. These range from simple
stencils stencils to complex multi-step pipelines which use
multiple pyramids. Apart from demonstrating the ease with
which these pipelines can be specified, we compare the per-
formance of the C and CUDA code generated by the Forma
backend with Halide2. ICC 14.13 was used for compiling
the C code, while NVCC 6.54 was used for compiling the
CUDA code. A few of these pipelines were ported from
examples that are packaged with Halide. For such exam-
ples, the schedule tuned for x86 architectures was used. For
those which are not in Halide, we developed the schedule
ourselves by exploring many possibilities. All schedules for
GPUs were also developed by us after significant effort to
obtain the best execution times.

The experimental evaluation of the CPU back-end was
done on an Intel i7-4820k which is based on the IvyBridge ar-

1https://docs.nvidia.com/cuda/cuda-c-programming-guide
2http://halide-lang.org/
3https://software.intel.com/en-us/c-compilers
4https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc

1 stencil emboss(vector #2 float X){
2 return X@[1,1] + X@[0,1] + X@[1,0] -

X@[-1,0] - X@[0,-1] - X@[-1,-1];
3 }

Listing 14: Emboss filter in Forma

1 stencil blurx(vector #2 float X){
2 return X@[-1,0] + X + X@[1,0];
3 }
4 stencil blury(vector #2 float Y){
5 return Y@[0,-1] + Y + Y@[0,1];
6 }
7 return blury(blurx(input ));

Listing 15: Blur Filer in Forma

chitecture and an Intel i5-4570 which is based on the Haswell
architecture. Figure 5 shows the speed up of the Forma gen-
erated C code for different number of hardware threads with
respect to the sequential execution time of the Halide gen-
erated CPU code. Also shown is the speed up of Halide
generated CPU code for 2 and 4 threads. The performance
of the code generated by the GPU backend was evaluated
on two GPUs, a GTX 680 (compute capability 3.0) and a
Tesla K20c (compute capability 3.5). For all the GPU codes
the total execution time of all the kernels was obtained by
using NVProf5. For each of the pipelines, the speed up of
the Forma generated CUDA code with respect to the Halide
generated GPU code is shown. The specifics of the data
presented in Figures 5 and 6 will be discussed below.

4.1 Simple Stencils
We start with two simple stencil applications, emboss and

blur. The Forma code for these are shown in Listings 14
and 15, respectively. The former is a simple 5-pt stencil.
The latter contains two stages. The first stage applies a 3-
pt stencil along x-direction, followed by a 3-pt stencil along
y-direction. For evaluation, these filters were applied to an
input of 2048 × 2048 32-bit floating point values.

The GPU results show that the Halide generated code and
the Forma generated code are on-par. The use of texture
units results in significant improvements in the execution
times for the emboss kernel. For blur as well, the perfor-
mance of the code generated by Forma is comparable or
better than that generated by Halide. On CPU, the Forma
generated code is effectively vectorized by the host compiler,
resulting in better performance than the Halide generated
CPU code. For blur, the Halide schedule that interleaves
the two stages delivers good performance, especially on the
IvyBridge machine due to reduced bandwidth requirements.
On the Haswell machine the performance of the Forma gen-
erated code and Halide generated code are comparable.

4.2 Canny Edge Detection
Canny edge detection in an image processing pipeline used

to detect edges of images [8]. This was implemented in both
Halide and Forma. The Forma specification is done in less
than 10 lines, and without having to pay attention to inter-
mediate buffer sizes or boundary computations. While the
current implementation used a 5-pt gaussian blur stencil in
the first step, it can be easily adapted to implement more
complex stencil functions without significant programming

5https://docs.nvidia.com/cuda/profiler-users-guide
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Figure 5: CPU execution times: Speed up with respect to sequential Halide CPU code

effort. Making similar changes to a C/CUDA code would
require a change to the entire computation since the sizes of
the boundaries depend on the stencil used.

The CPU results in Figure 5 show that the Forma gen-
erated C-code performs significantly better than the Halide
code for both Ivybridge and Sandybridge machines. The
GPU results indicate that the use of textures gives a signifi-
cant performance boost for this benchmark. This is because
the most expensive step, the gaussian blur, is ideal for using
texture fetch units on the GPU.

4.3 Laplacian Pyramid
Laplacian Pyramids were briefly introduced in Section 2.4.2.

Implementation of pyramids in a low-level language, like
C++/CUDA, is challenging since the images at different lev-
els of the pyramid have different sizes. Further, they depend
on the filter used for sampling and extrapolation. The appli-
cation developer would have to compute these sizes manually
and allocate memory for these intermediate levels. Using a
filter with different sampling rates would require a change
at all these levels.

In Forma, the pyramid computation can be expressed us-
ing just 26 lines of code, making it easy to debug and main-
tain. Since the compiler automatically figures out the sizes
for each level of the pyramid from the program specification,
the filters used can be easily modified. Handling boundary
conditions adds an additional challenge while programming
in low-level languages, while these can be specified easily in
Forma with minimal changes to the code. Effect of different
boundary conditions can also be explored easily.

The bars labeled pyramid in Figures 5 compare the per-
formance of the Forma generated C-code with Halide for this
pipeline. The schedule for Halide was obtained from exam-
ples available with the Halide package. The Forma generated
code performs significantly better than the Halide generated
code for the Haswell machine and is on-par for the Sandy-
bridge machines. The bars labeled pyramid:mirror show
the speed-up of the Forma C-code which implements mirror
boundary conditions for all stencil applications, with respect
to the sequential Halide CPU code for pyramid, i.e., without
any boundary conditions. These results illustrate the negli-
gible costs incurred while handling boundaries on the CPU

(a) Image 1 (b) Image 2

(c) Image 3 (d) Image 4

Figure 7: Inputs used for the Exposure Fusion [19]

while using Forma.
On GPUs, the benefit of using textures is illustrated by

comparing the normalized execution times of pyramid and
pyramid:mirror in Figure 6. Both the bars show the speed
up achieved by the Forma code when compared to the Halide
GPU code for pyramid. Without using textures, the default
CUDA code uses additional kernels to handle boundary con-
ditions, while the texture code uses hardware support for
implementing them. Consequently, implementing the stan-
dard boundary conditions supported by Forma comes for
free while using the texture fetch units.

4.4 Exposure Fusion
Section 3.1 introduced a simple technique to generate HDR

images. In some cases using this scheme results in seam ef-
fects. Exposure Fusion [19] is method developed to address
this issue. It starts by building 3 laplacian pyramids and 3
gaussian pyramids for each input image, one for each color.
The laplacian pyramids for each color are combined using
the method described in Section 3.1 to get the laplacian
pyramid for each color of the output image. Finally the
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Figure 6: GPU execution times: Speed up with respect to Halide GPU code

(a) Without Boundary Conditions

(b) With Mirror Boundary Conditions

Figure 8: Effect of improper boundary conditions

gaussian pyramid of the output image is computed to get
the final HDR image. The Forma implementation of this
method combines the 4 images shown in Figure 7, resulting
in the construction of 30 pyramid objects. Improper han-
dling of boundary conditions results in edge effects shown
in Figure 8a. Figure 8b shows the final HDR images con-
structed when using mirror boundary conditions for all sten-
cil applications. This complex image processing pipeline can
be expressed in Forma with just 184 lines of code, using 25
stencil functions, 9 vector functions and 2 loops.

The bars labeled hdr:direct and hdr:pyramid in Figures 5
and 6 show that the performance of the Forma generated
code is comparable to that of Halide for both CPU and GPU.

4.5 Camera Pipe
Camera pipeline is a benchmark from [24], and is used

in many cameras to convert raw data from the sensors into
an image. An implementation from the Halide package was
used as a reference to develop the Forma implementation.
The original Halide implementation used 32 functions and
22 different stencils. The Forma implementation used 12
stencil functions (it was easier to express the computation
in Forma by combining some of the stencils) and 1 vector

function (to define the demosaic stack used in the compu-
tation). Developing a schedule for such a complex pipelines
is quite challenging even for an expert programmer, since
the ideal choice of where to compute and store intermediate
buffers used in the pipeline requires inter-procedural rea-
soning. Further, this has to be repeated for every target
architecture. For this specific example, while the Halide
implementation comes with a schedule tuned for x86 archi-
tectures, the GPU schedule was developed by the authors.
The schedule that gave the best performance was obtaining
by aggressive inlining, a strategy that diverges significantly
from the CPU schedule.

In Forma, the same schedule is used to generate both CPU
and GPU code. Even with the relatively simple scheduling
strategy used in Forma, performance of the generated tex-
ture code on Tesla K20c and of the C code on Haswell CPU
is comparable to that obtained from Halide after significant
effort.

5. INTEGRATING FORMA WITH EXIST-
ING TOOLS

5.1 Using Forma with NumPy/SciPy
The NumPy/SciPy [20, 14] ecosystem for Python has

emerged in recent years as a high-productivity platform for
image processing and scientific computing. It provides a
high-level abstraction, and familiar development environ-
ment and language for engineers and researchers while achiev-
ing performance on-par with tuned native routines for many
common operations. It does this by exposing a generic n-
dimensional array type and many associated operations to

117



Table 1: Execution time for NumPy/SciPy and
Forma (ms).

Operation Python NumPy/ Forma
Scipy

Emboss 9335.371 20.806 4.033
Exposure Fusion 84158.143 142.704 15.307

Rician Denoise 2D 9526.096 7.889 0.706
Rician Denoise 3D 10149.112 9.669 1.091

1 def emboss_arr(inp , outp):
2 outp [1:-1,1:-1] = inp [2: ,2:] + inp[1:-1,2:]

+ inp[2:,1:-1] - inp[0:-2,1:-1]
- inp[1:-1,0:-2] - inp[0:-2,0:-2]

Listing 16: Emboss filter in NumPy

Python while implementing much of the functionality in op-
timized native code. Highly-tuned libraries such as BLAS [4]
and LAPACK [2] are used to accelerate matrix operations,
allowing Python code to take advantage of tuned implemen-
tations for a number of target platforms including super-
computer clusters and GPGPU devices.

Unfortunately, as NumPy and SciPy are just Python li-
braries, they are not able to accelerate user code that intro-
duces new basic operations. Users that want to write new
algorithms that cannot be efficiently composed of NumPy
primitives must either (a) write NumPy array code in Python
and pay the performance cost of executing in the Python in-
terpreter, or (b) write their algorithm in optimized C, C++
or Fortran code and expose it as a native Python module.
Ideally, a user could express the computation at a higher
level and also benefit from any accelerator hardware avail-
able. Even if the user opts for choice (b), new code must be
written for each type of target to ensure the best possible
performance.

Consider the emboss filter written in NumPy shown in
Listing 16. This implementation uses NumPy’s vectorized
access expressions to achieve decent performance on CPU
targets. However, the Python interpreter executes each arith-
metic operator sequentially. Even though adding/subtract-
ing two arrays may be accelerated behind the scenes in opti-
mized C code, there is no possibility of fusion across opera-
tions. In contrast, we can write the same algorithm in Forma
(Listing 14) and expose the generated code as a Python func-
tion. Users can leverage this to write high-level code without
sacrificing performance in a Python environment. NumPy
is used as a data format to allow users to leverage Forma
within the vast amount of NumPy application already writ-
ten.

Table 1 shows the performance advantage of using Forma
to generate NumPy kernels from a high level description.
For each operation, the kernel is implemented using Python
loops, using NumPy vectorized array expressions, and using
Forma to generate a Python extension module. The times
shown are the wall clock execution times for the kernel on
a Core i7-4820, averaged across 20 runs, as timed by the
calling Python code.

The advantage of this approach is that users can write
high level descriptions of the operations they wish to per-
form while taking advantage of the underlying hardware.
The Forma compiler takes care of generating optimal code

Table 2: Operation execution time for OpenCV and
Forma (ms).

Operation OpenCV Forma
Emboss (filter2D) 4.065 2.701
Rician Denoise 2D 66.558 15.120
Rician Denoise 3D 49.314 9.120

and exposing a simple Python interface to the user. Accel-
erators such as GPGPUs can even be leveraged transpar-
ently by the Forma compiler. The results show that the
code generated by Forma is much more efficient than the
corresponding Python NumPy implementation. While the
vectorized array expression syntax in NumPy can greatly
accelerate Python array code compared to standard Python
loops, it does not enable optimization across individual array
operations. The operations may be highly optimized in the
NumPy library, but they are executed sequentially by the
Python interpreter. Forma, on the other hand, has global
knowledge of the entire Forma program and can perform use-
ful optimizations like fusion and parallelization across differ-
ent parts of the computation.

5.2 Using Forma with OpenCV
OpenCV [22] is a popular C++ library for computer vi-

sion. Like NumPy, it provides an n-dimensional array type
and many pre-optimized implementations of image process-
ing operations. Users can combine operations to form imple-
mentations of more complex algorithms, and automatically
benefit from the tuning work done within OpenCV. How-
ever, for users writing new image processing filters that are
not expressible as lower-level OpenCV operations, OpenCV
provides little performance and productivity advantage. The
developer must write loop code in C++ and either optimize
it by hand or rely on an optimizing compiler to parallelize
and tile the code sufficiently. Most C++ compilers are also
unable to optimize across OpenCV operations as they are
just pre-compiled functions.

Forma provides an easy way to write higher-level image
operations that are automatically optimized for the target
machine. Since the OpenCV Mat data type allows users to
obtain a direct pointer to image memory, Forma-generated
code can be easily adapted to operate on OpenCV Mat vari-
ables. Table 2 shows the performance of Forma-generated
code used with OpenCV data types compared to the same
operations written in C++ and optimized by the host com-
piler (GCC 4.8.2). Simple stencil operations like the emboss
operation are implemented using the OpenCV filter2D func-
tion that applies a kernel matrix to an image. Though this
function is optimized in OpenCV, it is still a general imple-
mentation that must work with arbitrary kernel matrices.
Forma on the other hand generates code that is specialized
for the embossing operation and can be better optimized.
The rician denoising operations have complex per-pixel in-
teractions and do not have a corresponding OpenCV im-
plementation that we can use. In this case, the Forma-
generated code is much faster than the hand-written loop
code. In both cases, the generated code fits nicely into larger
OpenCV applications.
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6. RELATED WORK
Domain-Specific Languages are an attractive framework

that allows programmers to raise the level at which a com-
putation is specified. As a result the compiler is less encum-
bered by specific programming methodology used for the
implementation and is free to choose an optimal strategy.
Many research groups have developed DSLs to target dif-
ferent applications or computation paradigms. Due to the
wide-spread use of stencils, many DSLs have been developed
to address stencil computations.

The Pochoir [25] stencil compiler embeds a DSL within
C++. The DSL syntax can be parsed by standard C++
compilers using a template library, or by the Pochoir com-
piler that generates high-performance C++ code using cache-
oblivious algorithms to generate efficient tiling. SDSL [12,
13] is a stencil DSL that addresses the issue of time-tiling
using the approach described in [15] to target both SIMD ar-
chitecture and GPGPUs. Unlike Forma, both these DSLs fo-
cus on stencil computations that are iterative in nature with
values in buffers modified and used repeatedly. Forma, on
the other hand, focuses on computations that are more nat-
urally represented as a DAG. Patus [10] allows the program-
mer to decouple the stencil specification from the schedul-
ing strategy for efficient execution. The programmer can
also specify auto-tuning parameters for the compiler. Par-
tans [17] is a stencil DSL that focuses on optimizations for
multi-GPUs. Other DSLs like Diderot [9] and Spiral [23]
raise the level of abstraction even higher by allowing the
programmer to specify computations in terms of mathemat-
ical operations.

Two frameworks that target the same space of applica-
tions are Hipacc [18] and KernelGenius [16]. Hipacc is a DSL
embedded in C++, that allows specification of simple convo-
lutions and targets both CPU and GPU. It supports much
of the boundary conditions that are supported by Forma,
but does not support features like sampling, extrapolation,
or pyramid objects. KernelGenius on the other hand uses
a similar DAG abstraction for modeling impage processing
pipelines. The same abstraction is then used for implement-
ing tiling strategies. The input specification, while more
verbose, can be used to express many of the same applica-
tions targeted by Forma. Due to the nature of hardware
targeted by this framework, the focus was more on opti-
mizing data movement and tiling, rather than on exploiting
parallelism. Some of the same scheduling strategies are be-
ing explored in Forma as well for improving the performance
of the generated code.

The work that comes closest to Forma is the Halide [24]
image processing compiler. Embedded within C++, it pro-
vides a functional abstraction for images with the value of a
pixel viewed as the result of a function application. Interme-
diate images are functions, and image processing pipelines
are formed by composing expressions of functions. Halide
uses many optimization techniques like spatial tiling and
sliding-window optimizations to generate high-performance
code on CPUs and GPUs, but relies on the user to spec-
ify the parallelism and tiling scheme. For complex bench-
marks described in this paper, it can be quite challenging
to specify an optimal schedule, especially across multiple
functions. While Halide can auto-tune for various parame-
ters like tile-sizes, unroll factors, etc. for many applications
the search space can become intractable. In this paper, we
have shown that for many representative benchmarks per-

formance equivalent to that of a tuned Halide implemen-
tation can be achieved without auto-tuning or having the
user specify a schedule. This was achieved with a relatively
naive scheduling strategy used within Forma, by generating
code in a form that can be aggressively optimized by device-
specific compilers like ICC and NVCC. Section 7 lists some
of the other scheduling/target specific optimizations that
will be added to Forma in future iterations. Further, in
Forma the boundary condition to be applied is not tied to
the variable but is specified at the time of stencil applica-
tion. This approach allows the same intermediate image to
be used with different boundary conditions at various pro-
gram points.

The polyhedral compilation framework [11, 1, 21] pro-
vides a powerful abstraction for affine programs, viewing
statement instances within loops as points in a convex poly-
hedron. Several compiler frameworks use this abstraction to
enhance reuse through tiling [6], to exploit shared-memory
parallelism and to target GPGPUs [3]. AlphaZ [26] is a DSL
that allows the user to setup producer-consumer relation-
ships between points in an iteration space. While semantics
of Forma are inspired by such abstractions, the dependences
are tracked at a granularity of domains. Indeed, polyhedral
techniques could be used to improve the code generated by
Forma through use of techniques like tiling and vectoriza-
tion.

7. FUTURE WORK
In the presented work, we focused on the design of the

language and semantics of Forma. The aim was to make the
language expressive enough to allow specification of generic
image processing pipelines in a convenient manner. While
our code-generation uses OpenMP to utilize multiple cores
of the CPU and optimizes for the data-accesses on GPUs,
we want to incorporate more aggressive optimizations, like
tiling and other loop transformations. The code generated
from Forma programs is affine and can therefore be repre-
sented using the polyhedral compilation model. Our goal is
to use this to help generate efficient tiled, parallelized, and
vectorized code. This will allow us to leverage the large body
of research that has gone into polyhedral code optimization.
We also want to address hybrid code generation where dif-
ferent stages of an image pipeline are executed on either the
CPU or GPU device. Such functionality is imperative for
taking advantage of the growing number of heterogeneous
architectures coming to both the workstation and mobile
markets.

8. CONCLUSION
This paper describes the syntax and semantics of Forma,

a new DSL for image processing applications that allows
programmers to conveniently express several complex im-
age processing techniques. The ease of programming in this
DSL has been demonstrated through several complex and
real-world image processing applications. These implemen-
tations were developed by the authors based on a description
of the computation in literature in a matter of days if not
hours. The developed code is easy to read and maintain. We
have also shown how the compiler can use this high-level de-
scription of the computation to target both multi-core CPUs
and GPGPUs, while making use of specific architectural fea-
tures of the target such as texture units on GPUs. The
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achieved performance is in many cases better than current
state of the art DSLs targeting image processing applica-
tion. We also describe how Forma can be incorporated into
existing tools like Python and OpenCV, and show the po-
tential benefits of such an integration. In future, the DSL
compiler would be linked with other traditional optimizing
compilers (like the polyhedral compilers [21, 5]) to generate
better quality code, further improving the performance of
the applications without needing any change in its specifi-
cation.
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