
Data-Flow Analysis

Dragon Book, Chapter 9, Section 9.2, 9.3, 9.4



Data-Flow Analysis
• Data-flow analysis is a sub-area of static program 

analysis (aka compile-time analysis)
– Used in the compiler back end for optimizations of 

three-address code and for generation of target code
– For software engineering tools: software 

understanding, restructuring, testing, verification
• Attaches to each CFG node some information that 

describes properties of the program at that point
– Based on lattice theory 

• Defines algorithms for inferring these properties
– e.g., fixed-point computation
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Example: Reaching Definitions
• A classical example of a data-flow analysis

– We will consider intraprocedural analysis: only inside a 
single procedure, based on its CFG 

• For ease of discussion, pretend that the CFG nodes 
are individual instructions, not basic blocks
– Each node defines two program points: immediately 

before and immediately after
• Goal: identify all connections between variable 

definitions (“write”) and variable uses (“read”)
– x = y + z has a definition of x and uses of y and z
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Reaching Definitions
• A definition d reaches a program point p if there exists a CFG 

path that
– starts at the program point immediately after d
– ends at p
– does not contain a definition of d (i.e., d is not “killed”)

• The CFG path may be impossible (infeasible) at run time
– Any compile-time analysis has to be conservative, so we consider 

all paths in the CFG
• For a CFG node n

– IN[n] is the set of definitions that reach the program point 
immediately before n

– OUT[n] is the set of definitions that reach the program point 
immediately after n

– Reaching definitions analysis computes IN[n] and OUT[n]
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ENTRY

i = m-1

j = n

a = u1

i = i + 1

d1

d2

OUT[n1] = { }
IN[n2] = { }
OUT[n2] = { d1 }
IN[n3] = { d1 }
OUT[n3] = { d1, d2 } 
IN[n4] = { d1, d2 } 
OUT[n4] = { d1, d2, d3 } 
IN[n5] = { d1, d2, d3, d5, d6, d7 } 
OUT[n5] = {       d2, d3, d4, d5, d6 } 
IN[n6] = {       d2, d3, d4, d5, d6 }  
OUT[n6] = {             d3, d4, d5, d6 }   
IN[n7] = {             d3, d4, d5, d6 }   
OUT[n7] = {             d3, d4, d5, d6 }   
IN[n8] = {             d3, d4, d5, d6 }   
OUT[n8] = {                   d4, d5, d6 }  
IN[n9] = {             d3, d4, d5, d6 }  
OUT[n9] = {             d3, d5, d6, d7 }  
IN[n10] = {             d3, d5, d6, d7 } 
OUT[n10] = {          d3, d5, d6, d7 }  
IN[n11] =   {          d3, d5, d6, d7 } 

d3

d4

j = j - 1d5

if (i<a)

a = u2d6

i = u3d7

if (j<a)

EXIT

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11
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Uses of Reaching Definitions Analysis
• Def-use (du) chains

– For a given definition (i.e., write) of a variable, which 
statements read the value created by the def?

• Use-def (ud) chains 
– For a given use (i.e., read) of a variable, which statements 

performed the write of this value?
– The reverse of du-chains

• Goal: potential write-read (flow) data dependences
– Compiler optimizations
– Program understanding (e.g., slicing)
– Data-flow-based testing: coverage criteria
– Semantic checks: e.g., use of uninitialized variables

6



ENTRY

i = m-1

j = n

a = u1

i = i + 1

d1

d2

OUT[n1] = { }
IN[n2] = { }
OUT[n2] = { d1 }
IN[n3] = { d1 }
OUT[n3] = { d1, d2 } 
IN[n4] = { d1, d2 } 
OUT[n4] = { d1, d2, d3 } 
IN[n5] = { d1, d2, d3, d5, d6, d7 } 
OUT[n5] = {       d2, d3, d4, d5, d6 } 
IN[n6] = {       d2, d3, d4, d5, d6 }  
OUT[n6] = {             d3, d4, d5, d6 }   
IN[n7] = {             d3, d4, d5, d6 }   
OUT[n7] = {             d3, d4, d5, d6 }   
IN[n8] = {             d3, d4, d5, d6 }   
OUT[n8] = {                   d4, d5, d6 }  
IN[n9] = {             d3, d4, d5, d6 }  
OUT[n9] = {             d3, d5, d6, d7 }  
IN[n10] = {             d3, d5, d6, d7 } 
OUT[n10] = {          d3, d5, d6, d7 }  
IN[n11] =   {          d3, d5, d6, d7 } 

d3

d4

j = j - 1d5

if (i<a)

a = u2d6

i = u3d7

if (j<a)

EXIT

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

Def-use chains for d1:
DU(d1): uses of i in 
nodes with d1 ∈ IN[n]  
DU(d1) = { n5 } 

Other examples:
DU(d2) = { n6 }
DU(d3) = { n7, n10 }
DU(d4) = { n7 }
DU(d5) = { n10, n6 }
DU(d6) = { n10, n7 }
DU(d7) = { n5 }

Use-def chains:
UD(i@n5) = { d1, d7 }
UD(j@n6) = { d2, d5 }
UD(i@n7) = { d4 }
UD(a@n7) = { d3, d6 }
UD(j@n10) = { d5 }
UD(a@n10) = { d3,d6 }
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Example: Live Variables
• A variable v is live at a program point p if there 

exists a CFG path that
– starts at p
– ends immediately before some statement that reads v
– does not contain a definition of v

• Thus, the value that v has at p could be used later
– “could” because the CFG path may be infeasible
– If v is not live at p, we say that v is dead at p

• For a CFG node n
– IN[n] is the set of variables that are live at the program 

point immediately before n
– OUT[n] is the set of variables that are live at the 

program point immediately after n
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ENTRY

i = m-1

j = n

a = u1

i = i + 1

OUT[n1] = { m, n, u1, u2, u3 }
IN[n2] = { m, n, u1, u2, u3 }
OUT[n2] = { n, u1, i, u2, u3 }
IN[n3] = { n, u1, i, u2, u3 }
OUT[n3] = { u1, i, j, u2, u3 } 
IN[n4] = { u1, i, j, u2, u3 } 
OUT[n4] = { i, j, u2, u3 } 
IN[n5] = { i, j, u2, u3 } 
OUT[n5] = { j, u2, u3 } 
IN[n6] = { j, u2, u3 }  
OUT[n6] = { u2, u3, j }   
IN[n7] = { u2, u3, j }   
OUT[n7] = { u2, u3, j }   
IN[n8] = { u2, u3, j }   
OUT[n8] = { u3, j, u2 }  
IN[n9] = { u3, j, u2 }  
OUT[n9] = { i, j, u2, u3 }  
IN[n10] = { i, j, u2, u3 } 
OUT[n10] = { i, j, u2, u3 }  
IN[n11] =  { } 

j = j - 1

if (…)

a = u2

i = u3

if (…)

EXIT

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11
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Uses of Live Variables
• Dead code elimination: e.g., 

when x is not live at x=y+z
• Register allocation



Example: Constant Propagation
• Can we guarantee that the value of a variable v at 

a program point p is always a known constant?
• Compile-time constants are quite useful

– Constant folding: e.g., if we know that v is always 3.14 
immediately before w = 2*v;  replace it w = 6.28
• Often due to symbolic constants

– Dead code elimination: e.g., if we know that v is always 
false at if (v) …

– Program understanding, restructuring, verification, 
testing, etc.

• Very similar to the abstract interpretation we 
discussed earlier
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Basic Ideas
• At each CFG node n, IN[n] is a map Vars → Values

– Each variable v is mapped to a value x ∈ Values
– Values = all possible constant values ∪ { any }

• Special value any (not-a-constant) means that the 
variable cannot be definitely proved to be a 
compile-time constant at this program point
– E.g., the value comes from user input, file I/O, network
– E.g., the value is 5 along one branch of an if statement, 

and 6 along another branch of the if statement
– E.g., value comes from some variable with any value
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Formulation as a System of Equations
• OUT[ENTRY] = empty map
• For any other CFG node n

– IN[n] = Merge(OUT[m]) for all predecessors m of n
– OUT[n] = Update(IN[n])

• Merging two maps: if v is mapped to c1 and c2
respectively, in the merged map v is mapped to:
– if c1 = any or c2 = any, the result it any
– Else if c1 ≠ c2, the result is any
– Else the result is c1 (in this case we know that c1 = c2)
– Remember IfStmt from Project 4?
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Formulation as a System of Equations
• Updating a map at an assignment v = …

– If the statement is not an assignment, OUT[n] = IN[n]
• The map does not change for any w ≠ v
• If we have v = c, where c is a constant: in OUT[n], v 

is now mapped to c
• If we have v = p + q (or similar binary operators) 

and IN[n] maps p and q to c1 and c2 respectively
– If both c1 and c2 are constants: result is c1+c2
– Else, c1 or c2 or both are any and the result is any
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ENTRY

a = 1

b = 2

c = a+b

a=1+c

OUT[n1] = { }
OUT[n2] = { a → 1 }
OUT[n3] = { a → 1, b → 2 } 
OUT[n4] = { a → 1, b → 2, c → 3 }

OUT[n6] = { a → 4, b → 2, c → 3 }   
OUT[n7] = { a → 4, b → 7, c → 3 }   
OUT[n8] = { a → 4, b → 7, c → 3, d → 11 } 

OUT[n9] = { a → 5, b → 2, c → 3 }   
OUT[n10] = { a → 5, b → 6, c → 3 }

IN[n11] = { a → any, b → any, c → 3 }
OUT[n11] = { a → any, b → any, c → 3 }

OUT[n12] = { a → any, b → any, c → 3 }

Note: at the exit node a and b are compile-time constants, 
but this analysis is not powerful enough to infer this

b = 4+c

a = 2+c

b = 3+c

a=a+b

b=a+c

n1

n2

n3

n4

n6 n9

n8

n12

n10

n11
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if (…) n5

n7

d = a+b

EXIT n13

Merge
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