Compiler Bugs

|
“Finding and Understanding Bugs in C Compilers”

X.Yang, Y. Chen, E. Eide, J. Regehr

ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2011

Example

int foo (void) {
signed char x

l

2 = 1;
3 unsigned char y =
4

5

255
return ¥ > Yy,

}

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

Results

For the past three years. we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date. we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

Common Reasons

We claim that Csmith is an effective bug-finding tool in part
because 1t generates tests that explore atypical combinations of C
language features. Atypical code 1s not unimportant code, how-
ever; it 1s simply underrepresented in fixed compiler test suites.

e S B o B o e e e ey

This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness. turn off the optimizer
in one or two files, and usually they have to do that for any of the
compilers they use” (emphasis ours).

Basic Idea

Csmit
compiler 1 compiler 2 compiler 3
execute execute execute
--_:....¢ _.1—-""'_-------
bug —= compare = ho bug
minority output majority

Figure 2. Finding bugs in three compilers using randomized differ-
ential testing

Randomly-Generated Programs

Csmith creates programs with the following features:
e function definitions, and global and local variable definitions
¢ most kinds of C expressions and statements

e control flow: if/else, function calls, for loops, return.
break, continue, goto

¢ signed and unsigned integers of all standard widths
¢ arithmetic, logical, and bitwise operations on integers
¢ structs: nested, and with bit-fields

e arrays of and pointers to all supported types, including pointers
and arrays

¢ the const and volatile type qualifiers, including at different
levels of indirection for pointer-typed variables

More Examples of Bugs

3.7 Examples of Wrong-Code Bugs

This section characterizes a few of the bugs that were revealed by
miscompilation of programs generated by Csmith. These bugs fit
into a simple model in which optimizations are structured like this:

analysis
if (safety check) {
transformation

}

An optimization can fail to be semantics-preserving if the
analysis is wrong, if the safety check is insufficiently conservative,
or if the transformation is incorrect. The most common root cause
for bugs that we found was an incorrect safety check.

More Examples of Bugs

GCC Bug #1: wrong safety check® If x is variable and c1 and
c2 are constants, the expression (x/c1)!=c2 can be profitably
rewritten as (x-(cl#*c2))>(c1-1), using unsigned arithmetic
to avoid problems with negative values. Prior to performing the
transformation, expressions such as c1#*c2 and (cl1#*c2)+(cl1-1)
are checked for overflow. If overflow occurs, further simplifications
can be made; for example, (x/1000000000) =10 always evaluates
to 0 when x i1s a 32-bit integer. GCC falsely detected overflow for
some choices of constants. In the failure-inducing test case that we
discovered, (x/-1) '=1 was folded to 0. This expression should
evaluate to 1 for many values of x, such as 0.

More Examples of Bugs

GCC Bug #2: wrong transformation® In C, if an argument of

type unsigned char is passed to a function with a parameter of
type int, the values seen inside the function should be in the range
0..255. We found a case in which a version of GCC inlined this kind

of function call and then sign-extended the argument rather than
zero-extending it, causing the function to see negative values of the

parameter when the function was called with argcuments in the range
128..255.

More Examples of Bugs

GCC Bug #3: wrong analysis® We found a bug that caused GCC
to miscompile this code:

static int g[1];
static int #*p = &gl[0];
static int *q = &gl[0];

int foo (void) {
glol = 1;
*p = 0;
*P = *q;
return g[0];

}

O WD 00 =] A e L b e

—

The generated code returned 1 instead of 0. The problem oc-
curred when the compiler failed to recognize that p and g are aliases;
this happened because q was mistakenly identified as a read-only
memory location, which is defined not to alias a mutable location.
The wrong not-alias fact caused the store in line 7 to be marked as

10 dead so that a subsequent dead-store elimination pass removed it.

More Examples of Bugs

GCC Bug #4: wrong analysis’

this function:

A version of GCC miscompiled

int x = 4,
int vy;

fad tu.—.

void foo (void) {
for (y = 1; y < 8; y +=7) {
int *p = &y;
*p = X,

}

D00 =] o n

}

When foo returns, y should be 11. A loop-optimization pass
determined that a temporary variable representing *p was invariant
with value x+7 and hoisted it in front of the loop, while retaining
a dataflow fact indicating that x+7==y+7, a relationship that no
longer held after code motion. This incorrect fact lead GCC to
generate code leaving 8 in y, instead of 11.

11
D EEEGGEGEERERRERERS

More Examples of Bugs

LLVM Bug #1: wrong safety check® (x==c1) || (x<c2) can be
simplified to x <c2 when c1 and c2 are constants and cl1<c2.
An LLVM version incorrectly transformed (x==0) || (x<-3) to
x<-3. LLVM did a comparison between 0 and —3 1n the safety
check for this optimization, but performed an unsigned comparison
rather than a signed one, leading it to incorrectly determine that the
transformation was safe.

LLVM Bug #2: wrong safety check” (x|c1)==c2evaluates to 0
if ¢1 and c2 are constants and (c1&~c2) !=0. In other words. if any
bit that 1s set in c1 is unset in c2, the original expression cannot be
true. A version of LLVM contained a logic error in the safety check
for this optimization, wrongly replacing this kind of expression with
0 even when c1 was not a constant.

12

-
Testing a Verified Compiler

lesting CompCert CompCert [14] is a verified. optimizing com-
piler for a large subset of C; it targets PowerPC, ARM., and x86. We
put significant effort into testing this compiler.

The first silent wrong-code error that we found in CompCert was

due to a miscompilation of this function:

| int bar (unsigned x) {
2 return -1 <= (1 && x);
3}

CompCert 1.6 for PowerPC generates code returning 0O, but the
proper result 1s 1 because the comparison is signed. This bug and five

in response to these bug reports, the main CompCert developer
expanded the verified portion of CompCert to include C’s integer
promotions and other tricky implicit casts.

13

Testing a Verified Compiler

The striking thing about our CompCert results is that the middle-
end bugs we found in all other compilers are absent. As of early 2011,
the under-development version of CompCert is the only compiler we
have tested for which Csmith cannot find wrong-code errors. This is
not for lack of trying: we have devoted about six CPU-vyears to the
task. The apparent unbreakability of CompCert supports a strong
arcument that developing compiler optimizations within a proof
framework, where safety checks are explicit and machine-checked.,
has tangible benefits for compiler users.

14

	Compiler Bugs
	Example
	Results
	Common Reasons
	Basic Idea
	Randomly-Generated Programs
	More Examples of Bugs
	More Examples of Bugs
	More Examples of Bugs
	More Examples of Bugs
	More Examples of Bugs
	More Examples of Bugs
	Testing a Verified Compiler
	Testing a Verified Compiler

