
Control-Flow Static Analysis

Dragon Book: Chapter 8, Section 8.4,
Chapter 9, Section 9.6

Outline
• Program representation: three-address code
• Control-Flow Graphs (CFGs)
• Dominators and post-dominators in CFGs
• Loops in CFGs

2

“Intermediate” Program Representations:
ASTs and Three-Address Code

• AST is a high-level IR
– Close to the source language
– Suitable for tasks such as type checking

• Three-address code is a lower-level IR
– Closer to the target language (i.e., assembly code), but

machine-independent
– Suitable for tasks such as code generation/optimization

• Basic ideas
– A small number of simple instructions: e.g. x = y op z
– A number of compiler-generated temporary variables

a = b + c + d; in source code  t = b + c; a = t + d;
– Simple flow of control – conditional and unconditional

jumps to labeled statements (no while-do, switch, …)
3

Addresses and Instructions
• “Address”: a program variable, a constant, or a

compiler-generated temporary variable
• Instructions

– x = y op z: binary operator op
– x = op y: unary operator op
– x = y: copy instruction
– Flow-of-control (more later …)
– Each instruction contains at most three “addresses”

• Thus, three-address code
• This looks very similar to the assembly language

we discussed in the code generation examples
4

Examples of Three-Address Code
x = y; in the source code produces one three-

address instruction
Left: a pointer to the symbol table entry for x
Right: a pointer to the symbol table entry for y
For convenience, we will write this as x = y

x = - y; produces t1 = - y; x = t1;
x = y + z; produces t1 = y + z; x = t1;
x = y + z + w; produces t1 = y + z; t2 = t1 + w; x = t2;
x = y + - z; produces t1 = - z; t2 = y + t1; x = t2;

5

More Complex Expressions & Assignments
• All binary & unary operators are handled similarly
• We run into more interesting issues with

– Expressions that have side effects
– Arrays

• Example: in C, we can write x = y = z + z: maybe it
should be translated to t1 = z + z; y = t1; x = y; ?
– How should we translate x = y = z++ + w? How about

a[v = x++] = y = z++ + w? Or i = i++ + 1? Or a[i++] = i?
– Not discussed in this course; some details in CSE 5343

6

Flow of Control - Statements
Example: if (x < 100 || x > 200 && x != y) x = 0;

 if (x < 100) goto L2;
 if (!(x > 200)) goto L1;
 if (!(x != y)) goto L1;
 L2: x = 0;
 L1: …

Instructions
– goto L: unconditional jump to the three-address

instruction with label L
– if (x relop y) goto L: x and y are variables, temporaries,

or constants; relop ∈ { <, <=, ==, !=, >, >= }
7

Control-Flow Graphs
• Control-flow graph (CFG) for a procedure/method

– A node is a basic block: a single-entry-single-exit
sequence of three-address instructions

– An edge represents the potential flow of control from
one basic block to another

• Uses of a control-flow graph
– Inside a basic block: local code optimizations; done as

part of the code generation phase
– Across basic blocks: global code optimizations; done as

part of the code optimization phase
– Other aspects of code generation: e.g., global register

allocation
8

Control-Flow Analysis
• Part 1: Constructing a CFG
• Part 2: Finding dominators and post-dominators
• Part 3: Finding loops in a CFG

– What exactly is a loop? Cannot simply say “whatever
CFG subgraph is generated by while, do-while, and for
statements” – need a general graph-theoretic definition

9

Part 1: Constructing a CFG
• Nodes: basic blocks; edges: possible control flow
• Basic block: maximal sequence of consecutive

three-address instructions such that
– The flow of control can enter only through the first

instruction (i.e., no jumps to the middle of the block)
– Can exit only at the last instruction (i.e., no jumps out

of the middle of the block)
• Advantages of using basic blocks

– Reduces the cost and complexity of compile-time
analysis

– Intra-BB optimizations are relatively easy

10

CFG Construction
• Given: the entire sequence of instructions
• First, find the leaders (starting instructions of all

basic blocks)
– The first instruction
– The target of any conditional/unconditional jump
– Any instruction that immediately follows a conditional

or unconditional jump
• Next, find the basic blocks: for each leader, its

basic block contains itself and all instructions up to
(but not including) the next leader

11

Example

12

Note: this example sets array
elements a[i][j] to 0.0, for 1 <= i,j <= 10
(instructions 1-11). It then sets a[i][i]
to 1.0, for 1 <= i <= 10 (instructions 12-
17). The array accesses in instructions
7 and 15 are done with offsets from
the beginning of the array.

First instruction
Target of 11
Target of 9

Follows 9

Follows 11

Target of 17

1. i = 1
2. j = 1
3. t1 = 10 * i
4. t2 = t1 + j
5. t3 = 8 * t2
6. t4 = t3 – 88
7. a[t4] = 0.0
8. j = j + 1
9. if (j <= 10) goto (3)
10. i = i + 1
11. if (i <= 10) goto (2)
12. i = 1
13. t5 = i – 1
14. t6 = 88 * t5
15. a[t6] = 1.0
16. i = i + 1
17. if (i <= 10) goto (13)

ENTRY

i = 1

j = 1

t1 = 10 * i
t2 = t1 + j
t3 = 8 * t2
t4 = t3 – 88
a[t4] = 0.0
j = j + 1
if (j <= 10) goto B3

i = i + 1
if (i <= 10) goto B2

i = 1

t5 = i – 1
t6 = 88 * t5
a[t6] = 1.0
i = i + 1
if (i <= 10) goto B6

EXIT

B1

B2

B3

B4

B5

B6

Artificial ENTRY and EXIT nodes are often
added for convenience.

There is an edge from Bp to Bq if it is possible
for the first instruction of Bq to be executed
immediately after the last instruction of Bp

13

Single Exit Node
• Single-exit CFG

– If there are multiple exits (e.g., multiple return
statements), redirect them to the artificial EXIT node

– Use an artificial return variable ret
– return expr; becomes ret = expr; goto exit;

• It gets ugly with exceptions (e.g., Java exceptions)
• Common properties (we will always assume them in this class)

– Every node is reachable from the entry node
– The exit node is reachable from every node

• Not always true: e.g., a server thread could be
while(true) …

14

Practical Considerations
• The usual data structures for graphs can be used

– The graphs are sparse (i.e., have relatively few edges),
so an adjacency list representation is the usual choice
• Number of edges is at most 2 * number of nodes

• Nodes are basic blocks; edges are between basic
blocks, not between instructions
– Inside each node, some additional data structures for

the sequence of instructions in the block (e.g., a linked
list of instructions)

– Often convenient to maintain both a list of successors
(i.e., outgoing edges) and a list of predecessors (i.e.,
incoming edges) for each basic block

15

Part 2: Dominance
• A CFG node d dominates another node n if every

path from ENTRY to n goes through d
– Implicit assumption: every node is reachable from

ENTRY (i.e., there is no dead code)
– A dominance relation dom ⊆ Nodes × Nodes: d dom n
– The relation is trivially reflexive: d dom d

• Node m is the immediate dominator of n if
– m ≠ n
– m dom n
– For any d ≠ n such d dom n, we have d dom m

• Every node has a unique immediate dominator
– Except ENTRY, which is dominated only by itself

16

ENTRY

1

2

3

4

5 6

7

8

9 10

ENTRY dom n for any n
1 dom n for any n except ENTRY
2 does not dominate any other node
3 dom 3, 4, 5, 6, 7, 8, 9, 10, EXIT
4 dom 4, 5, 6, 7, 8, 9, 10, EXIT
5 does not dominate any other node
6 does not dominate any other node
7 dom 7, 8, 9, 10, EXIT
8 dom 8, 9, 10, EXIT
9 does not dominate any other node
10 dom 10, EXIT

Immediate dominators:
1 → ENTRY 2 → 1
3 → 1 4 → 3
5 → 4 6 → 4
7 → 4 8 → 7
9 → 8 10 → 8
 EXIT → 10

EXIT17

A Few Observations
• Dominance is a transitive relation: a dom b and

b dom c means a dom c
• Dominance is an anti-symmetric relation: a dom b

and b dom a means that a and b must be the same
– Reflexive, anti-symmetric, transitive: partial order

• If a and b are two dominators of some n, either a
dom b or b dom a
– Therefore, dom is a total order for n’s dominator set
– Corollary: for any acyclic path from ENTRY to n, all

dominators of n appear along the path, always in the
same order; the last one is the immediate dominator

18

Dominator Tree
• The parent of n is its immediate dominator

19

ENTRY

1

2 3

4

5 6 7

8

9 10

The path from n to the root contains
all and only dominators of n

Constructing the dominator tree: the
classic O(Nα(N)) approach is from
T. Lengauer and R. E. Tarjan. A fast
algorithm for finding dominators in a
flowgraph. ACM Transactions on
Programming Languages and
Systems, 1(1): 121–141, July 1979.

Many other algorithms: e.g., see
K. D. Cooper, T. J. Harvey and K.
Kennedy. A simple, fast dominance
algorithm. Software – Practice and
Experience, 4:1–10, 2001.

Post-Dominance
• A CFG node d post-dominates another node n if

every path from n to EXIT goes through d
– Implicit assumption: EXIT is reachable from every node
– A relation pdom ⊆ Nodes × Nodes: d pdom n
– The relation is trivially reflexive: d pdom d

• Node m is the immediate post-dominator of n if
– m ≠ n; m pdom n; ∀d≠ n. d pdom n ⇒ d pdom m
– Every n has a unique immediate post-dominator

• Post-dominance on a CFG is equivalent to
dominance on the reverse CFG (all edges reversed)

• Post-dominator tree: the parent of n is its
immediate post-dominator; root is EXIT

20

ENTRY

1

2

3

4

5 6

7

8

9 10

ENTRY does not post-dominate any other n
1 pdom ENTRY, 1, 9
2 does not post-dominate any other n
3 pdom ENTRY, 1, 2, 3, 9
4 pdom ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT pdom n for any n

Immediate post-dominators:
ENTRY → 1 1 → 3
2 → 3 3 → 4
4 → 7 5 → 7
6 → 7 7 → 8
8 → 10 9 → 1
10 → EXITEXIT21

Post-Dominator Tree

22

EXIT

10

8

7

4 5 6

1

The path from n to the root
contains all and only post-
dominators of n

Constructing the post-
dominator tree: use any
algorithm for constructing
the dominator tree; just
“pretend” that the edges are
reversed3

2

ENTRY 9

Part 3: Loops in CFGs
• Cycle: sequence of edges that starts and ends at

the same node
– Example:

• Strongly-connected (induced) subgraph: each node
in the subgraph is reachable from every other
node in the subgraph
– Example: 2, 3, 4, 5

• Loop: informally, a strongly-connected subgraph
with a single entry point
– Not a loop:

23

2 3 4 51

2
3

5 61
4

1

2

3

Back Edges and Natural Loops
• Back edge: a CFG edge (n,h) where h dominates n

– Easy to see that n and h belong to the same SCC
• Natural loop for a back edge (n,h)

– The set of all nodes m that can reach node n without
going through node h (trivially, this set includes h)

– Easy to see that h dominates all such nodes m
– Node h is the header of the natural loop

• Trivial algorithm to find the natural loop of (n,h)
– Mark h as visited
– Perform depth-first search (or breadth-first) starting

from n, but follow the CFG edges in reverse direction
– All and only visited nodes are in the natural loop

24

ENTRY

1

2

3

4

5 6

7

8

9 10

Immediate dominators:
1 → ENTRY 2 → 1 3 → 1
4 → 3 5 → 4 6 → 4
7 → 4 8 → 7 9 → 8
10 → 8 EXIT → 10

Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1,
10 → 7

Loop(10 → 7) = { 7, 8, 10 }

Loop(7 → 4) = { 4, 5, 6, 7, 8, 10 }
 Note: Loop(10 → 7) ⊆ Loop(7 → 4)

Loop(4 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
 Note: Loop(7 → 4) ⊆ Loop(4 → 3)

Loop(8 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
 Note: Loop(8 → 3) = Loop(4 → 3)

Loop(9 → 1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
 Note: Loop(4 → 3) ⊆ Loop(9 → 1)EXIT25

Loops in the CFG
• Find all back edges; each target h of at least one

back edge defines a loop L with header(L) = h
• body(L) is the union of the natural loops of all back

edges whose target is header(L)
– Note that header(L) ∈ body(L)

• Example: this is a single
loop with header node 1

• For two CFG loops L1 and L2
– header(L1) is different from header(L2)
– body(L1) and body(L2) are either disjoint, or one is a

proper subset of the other (nesting – inner/outer)
26

2
3

1
4

Use Scenario: Loop-Invariant Code Motion
Motivation: avoid redundancy
a = …
b = …
c = …
start loop
…
d = a + b Both instructions are
e = c + d loop-invariant; let’s move them out
…
end loop

27

Code Transformation
• First, create a preheader for the loop

– Original CFG

– Modified CFG

• Next, move loop-invariant instructions into the
preheader (but only if correctness conditions are
satisfied)

• Need control flow analysis to identify loops and
loop headers

28

3
4

6 71
5

2

3
4

6 73’
5

2

1

One of Several Correctness Conditions
• The basic block that contains the loop-invariant

instruction must dominate all loop exit nodes
– i.e., all nodes that are sources of loop-exit edges:

source node is in the loop, target node is not
– This means that it is impossible to exit the loop before

the instruction is executed

• Node 6 is a loop exit node; 3 dominates 6, but 4 and
5 do not dominate 6

• Any loop-invariant instructions in 4 and 5 cannot be
moved into a preheader

29

3
4

6 71
5

2

May Need an Enabling Pre-Transformation
• CFGs for while and for loops will not work
• Consider while(y<0) { a = 1+2; y++; }

L1: if (y<0) goto L2;
goto L3;
L2: a = 1+2;
y = y + 1;
goto L1;
L3: …

 a = 1+2 does not loop header is now B3
 dominate the exit and a = 1+2 dominates
 node B1 the exit node B5

30

ENTRY

if (y<0) goto L2

goto L3

B1

B2 a = 1+2
y=y+1

goto L1
B3

… B4

ENTRY

if (y<0) goto L2

goto L3

B1

B2 a = 1+2
y=y+1

goto L1
B3

… B4

if (y<0) goto L2 B5

	Control-Flow Static Analysis
	Outline
	“Intermediate” Program Representations: ASTs and Three-Address Code
	Addresses and Instructions
	Examples of Three-Address Code
	More Complex Expressions & Assignments
	Flow of Control - Statements
	Control-Flow Graphs
	Control-Flow Analysis
	Part 1: Constructing a CFG
	CFG Construction
	Example
	Slide Number 13
	Single Exit Node
	Practical Considerations
	Part 2: Dominance
	Slide Number 17
	A Few Observations
	Dominator Tree
	Post-Dominance
	Slide Number 21
	Post-Dominator Tree
	Part 3: Loops in CFGs
	Back Edges and Natural Loops
	Slide Number 25
	Loops in the CFG
	Use Scenario: Loop-Invariant Code Motion
	Code Transformation
	One of Several Correctness Conditions
	May Need an Enabling Pre-Transformation

