
Control-Flow Static Analysis

Dragon Book: Chapter 8, Section 8.4, 
Chapter 9, Section 9.6



Outline
• Program representation: three-address code
• Control-Flow Graphs (CFGs)
• Dominators and post-dominators in CFGs
• Loops in CFGs
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“Intermediate” Program Representations: 
ASTs and Three-Address Code

• AST is a high-level IR
– Close to the source language
– Suitable for tasks such as type checking

• Three-address code is a lower-level IR
– Closer to the target language (i.e., assembly code), but 

machine-independent
– Suitable for tasks such as code generation/optimization

• Basic ideas
– A small number of simple instructions: e.g. x = y op z
– A number of compiler-generated temporary variables

a = b + c + d; in source code  t = b + c; a = t + d; 
– Simple flow of control – conditional and unconditional 

jumps to labeled statements (no while-do, switch, …) 
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Addresses and Instructions
• “Address”: a program variable, a constant, or a 

compiler-generated temporary variable
• Instructions

– x = y op z: binary operator op 
– x = op y: unary operator op
– x = y: copy instruction
– Flow-of-control (more later …)
– Each instruction contains at most three “addresses”

• Thus, three-address code
• This looks very similar to the assembly language 

we discussed in the code generation examples
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Examples of Three-Address Code
x = y; in the source code produces one three-

address instruction
Left: a pointer to the symbol table entry for x
Right: a pointer to the symbol table entry for y
For convenience, we will write this as x = y

x = - y; produces t1 = - y; x = t1;
x = y + z; produces t1 = y + z; x = t1;
x = y + z + w; produces t1 = y + z; t2 = t1 + w; x = t2;
x = y + - z; produces t1 = - z; t2 = y + t1; x = t2;
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More Complex Expressions & Assignments
• All binary & unary operators are handled similarly
• We run into more interesting issues with

– Expressions that have side effects
– Arrays

• Example: in C, we can write x = y = z + z: maybe it 
should be translated to t1 = z + z; y = t1; x = y; ?
– How should we translate x = y = z++ + w? How about      

a[v = x++] = y = z++ + w? Or i = i++ + 1? Or a[i++] = i?
– Not discussed in this course; some details in CSE 5343
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Flow of Control - Statements
Example: if (x < 100 || x > 200 && x != y) x = 0;

 if (x < 100) goto L2;  
 if (!(x > 200)) goto L1;  
 if (!(x != y)) goto L1;  
 L2: x = 0;    
 L1: …  

Instructions
– goto L: unconditional jump to the three-address 

instruction with label L
– if (x relop y) goto L: x and y are variables, temporaries, 

or constants; relop ∈ { <, <=, ==, !=, >, >=  }
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Control-Flow Graphs
• Control-flow graph (CFG) for a procedure/method

– A node is a basic block: a single-entry-single-exit 
sequence of three-address instructions

– An edge represents the potential flow of control from 
one basic block to another

• Uses of a control-flow graph
– Inside a basic block: local code optimizations; done as 

part of the code generation phase
– Across basic blocks: global code optimizations; done as 

part of the code optimization phase
– Other aspects of code generation: e.g., global register 

allocation
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Control-Flow Analysis
• Part 1: Constructing a CFG
• Part 2: Finding dominators and post-dominators
• Part 3: Finding loops in a CFG

– What exactly is a loop? Cannot simply say “whatever 
CFG subgraph is generated by while, do-while, and for 
statements” – need a general graph-theoretic definition
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Part 1: Constructing a CFG
• Nodes: basic blocks; edges: possible control flow 
• Basic block: maximal sequence of consecutive 

three-address instructions such that
– The flow of control can enter only through the first 

instruction (i.e., no jumps to the middle of the block)
– Can exit only at the last instruction (i.e., no jumps out 

of the middle of the block)
• Advantages of using basic blocks

– Reduces the cost and complexity of compile-time 
analysis

– Intra-BB optimizations are relatively easy

10



CFG Construction
• Given: the entire sequence of instructions
• First, find the leaders (starting instructions of all 

basic blocks)
– The first instruction
– The target of any conditional/unconditional jump
– Any instruction that immediately follows a conditional 

or unconditional jump
• Next, find the basic blocks: for each leader, its 

basic block contains itself and all instructions up to 
(but not including) the next leader
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Example
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Note: this example sets array 
elements a[i][j] to 0.0, for 1 <= i,j <= 10 
(instructions 1-11). It then sets a[i][i] 
to 1.0, for 1 <= i <= 10 (instructions 12-
17). The array accesses in instructions 
7 and 15 are done with offsets from 
the beginning of the array.

First instruction
Target of 11
Target of 9

Follows 9

Follows 11

Target of 17

1. i = 1
2. j = 1
3. t1 = 10 * i
4. t2 = t1 + j
5. t3 = 8 * t2
6. t4 = t3 – 88
7. a[t4] = 0.0
8. j = j + 1
9. if (j <= 10) goto (3)
10. i = i + 1
11. if (i <= 10) goto (2)
12. i = 1
13. t5 = i – 1
14. t6 = 88 * t5
15. a[t6] = 1.0
16. i = i + 1
17. if (i <= 10) goto (13)



ENTRY

i = 1

j = 1

t1 = 10 * i
t2 = t1 + j
t3 = 8 * t2
t4 = t3 – 88
a[t4] = 0.0
j = j + 1
if (j <= 10) goto B3

i = i + 1
if (i <= 10) goto B2 

i = 1

t5 = i – 1
t6 = 88 * t5
a[t6] = 1.0
i = i + 1
if (i <= 10) goto B6 

EXIT

B1

B2

B3

B4

B5

B6

Artificial ENTRY and EXIT nodes are often 
added for convenience. 

There is an edge from Bp to Bq if it is possible 
for the first instruction of Bq to be executed 
immediately after the last instruction of Bp
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Single Exit Node
• Single-exit CFG

– If there are multiple exits (e.g., multiple return 
statements), redirect them to the artificial EXIT node

– Use an artificial return variable ret
– return expr; becomes ret = expr; goto exit;

• It gets ugly with exceptions (e.g., Java exceptions)
• Common properties (we will always assume them in this class)

– Every node is reachable from the entry node
– The exit node is reachable from every node

• Not always true: e.g., a server thread could be 
while(true) …  
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Practical Considerations
• The usual data structures for graphs can be used

– The graphs are sparse (i.e., have relatively few edges), 
so an adjacency list representation is the usual choice
• Number of edges is at most 2 * number of nodes

• Nodes are basic blocks; edges are between basic 
blocks, not between instructions
– Inside each node, some additional data structures for 

the sequence of instructions in the block (e.g., a linked 
list of instructions)

– Often convenient to maintain both a list of successors 
(i.e., outgoing edges) and a list of predecessors (i.e., 
incoming edges) for each basic block
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Part 2: Dominance
• A CFG node d dominates another node n if every 

path from ENTRY to n goes through d
– Implicit assumption: every node is reachable from 

ENTRY (i.e., there is no dead code)
– A dominance relation dom ⊆ Nodes × Nodes: d dom n
– The relation is trivially reflexive: d dom d

• Node m is the immediate dominator of n if 
– m ≠ n 
– m dom n
– For any d ≠ n such d dom n, we have d dom m

• Every node has a unique immediate dominator
– Except ENTRY, which is dominated only by itself
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ENTRY

1

2

3

4

5 6

7

8

9 10

ENTRY dom n for any n
1 dom n for any n except ENTRY
2 does not dominate any other node
3 dom 3, 4, 5, 6, 7, 8, 9, 10, EXIT
4 dom 4, 5, 6, 7, 8, 9, 10, EXIT
5 does not dominate any other node
6 does not dominate any other node
7 dom 7, 8, 9, 10, EXIT
8 dom 8, 9, 10, EXIT
9 does not dominate any other node
10 dom 10, EXIT 

Immediate dominators: 
1 → ENTRY 2 → 1 
3 → 1  4 → 3 
5 → 4  6 → 4 
7 → 4  8 → 7
9 → 8  10 → 8
  EXIT → 10 

EXIT17



A Few Observations
• Dominance is a transitive relation: a dom b and      

b dom c means a dom c
• Dominance is an anti-symmetric relation: a dom b 

and b dom a means that a and b must be the same
– Reflexive, anti-symmetric, transitive: partial order

• If a and b are two dominators of some n, either a 
dom b or b dom a
– Therefore, dom is a total order for n’s dominator set
– Corollary: for any acyclic path from ENTRY to n, all 

dominators of n appear along the path, always in the 
same order; the last one is the immediate dominator 
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Dominator Tree
• The parent of n is its immediate dominator
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ENTRY

1

2 3

4

5 6 7

8

9 10

The path from n to the root contains 
all and only dominators of n 

Constructing the dominator tree: the 
classic O(Nα(N)) approach is from
T. Lengauer and R. E. Tarjan. A fast 
algorithm for finding dominators in a 
flowgraph. ACM Transactions on 
Programming Languages and 
Systems, 1(1): 121–141, July 1979.

Many other algorithms: e.g., see
K. D. Cooper, T. J. Harvey and K. 
Kennedy. A simple, fast dominance 
algorithm. Software – Practice and 
Experience, 4:1–10, 2001.



Post-Dominance
• A CFG node d post-dominates another node n if 

every path from n to EXIT goes through d
– Implicit assumption: EXIT is reachable from every node
– A relation pdom ⊆ Nodes × Nodes: d pdom n
– The relation is trivially reflexive: d pdom d

• Node m is the immediate post-dominator of n if
– m ≠ n; m pdom n; ∀d≠ n.  d pdom n ⇒ d pdom m
– Every n has a unique immediate post-dominator

• Post-dominance on a CFG is equivalent to 
dominance on the reverse CFG (all edges reversed)

• Post-dominator tree: the parent of n is its 
immediate post-dominator; root is EXIT
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ENTRY

1

2

3

4

5 6

7

8

9 10

ENTRY does not post-dominate any other n
1 pdom ENTRY, 1, 9
2 does not post-dominate any other n
3 pdom ENTRY, 1, 2, 3, 9
4 pdom ENTRY, 1, 2, 3, 4, 9  
5 does not post-dominate any other n
6 does not post-dominate any other n
7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9  
8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9 
9 does not post-dominate any other n
10 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT pdom n for any n

Immediate post-dominators: 
ENTRY → 1 1 → 3 
2 → 3  3 → 4 
4 → 7  5 → 7 
6 → 7  7 → 8
8 → 10   9 → 1 
10 → EXITEXIT21



Post-Dominator Tree
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EXIT

10

8

7

4 5 6

1

The path from n to the root 
contains all and only post-
dominators of n 

Constructing the post-
dominator tree: use any 
algorithm for constructing 
the dominator tree; just 
“pretend” that the edges are 
reversed3

2

ENTRY 9



Part 3: Loops in CFGs
• Cycle: sequence of edges that starts and ends at 

the same node
– Example:

• Strongly-connected (induced) subgraph: each node 
in the subgraph is reachable from every other 
node in the subgraph
– Example: 2, 3, 4, 5

• Loop: informally, a strongly-connected subgraph 
with a single entry point
– Not a loop:
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Back Edges and Natural Loops
• Back edge: a CFG edge (n,h) where h dominates n

– Easy to see that n and h belong to the same SCC
• Natural loop for a back edge (n,h)

– The set of all nodes m that can reach node n without 
going through node h (trivially, this set includes h) 

– Easy to see that h dominates all such nodes m
– Node h is the header of the natural loop

• Trivial algorithm to find the natural loop of (n,h) 
– Mark h as visited
– Perform depth-first search (or breadth-first) starting 

from n, but follow the CFG edges in reverse direction
– All and only visited nodes are in the natural loop
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ENTRY

1

2

3

4

5 6

7

8

9 10

Immediate dominators: 
1 → ENTRY 2 → 1  3 → 1
4 → 3  5 → 4  6 → 4
7 → 4  8 → 7  9 → 8
10 → 8  EXIT → 10

Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1, 
10 → 7

Loop(10 → 7) = { 7, 8, 10 }

Loop(7 → 4) = { 4, 5, 6, 7, 8, 10 }
      Note: Loop(10 → 7) ⊆ Loop(7 → 4) 

Loop(4 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
      Note: Loop(7 → 4) ⊆ Loop(4 → 3)

Loop(8 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
      Note: Loop(8 → 3) = Loop(4 → 3)

Loop(9 → 1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
      Note: Loop(4 → 3) ⊆ Loop(9 → 1)EXIT25



Loops in the CFG
• Find all back edges; each target h of at least one 

back edge defines a loop L with header(L) = h
• body(L) is the union of the natural loops of all back 

edges whose target is header(L)
– Note that header(L) ∈ body(L) 

• Example: this is a single                                                       
loop with header node 1

• For two CFG loops L1 and L2 
– header(L1) is different from header(L2)
– body(L1) and body(L2) are either disjoint, or one is a 

proper subset of the other (nesting – inner/outer)
26

2
3

1
4



Use Scenario: Loop-Invariant Code Motion
Motivation: avoid redundancy
a = …    
b = …     
c = …    
start loop   
…
d = a + b   Both instructions are 
e = c + d   loop-invariant; let’s move them out
…     
end loop   
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Code Transformation
• First, create a preheader for the loop

– Original CFG

– Modified CFG

• Next, move loop-invariant instructions into the 
preheader (but only if correctness conditions are 
satisfied)

• Need control flow analysis to identify loops and 
loop headers
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One of Several Correctness Conditions
• The basic block that contains the loop-invariant 

instruction must dominate all loop exit nodes
– i.e., all nodes that are sources of loop-exit edges: 

source node is in the loop, target node is not
– This means that it is impossible to exit the loop before 

the instruction is executed

• Node 6 is a loop exit node; 3 dominates 6, but 4 and 
5 do not dominate 6

• Any loop-invariant instructions in 4 and 5 cannot be 
moved into a preheader
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May Need an Enabling Pre-Transformation
• CFGs for while and for loops will not work
• Consider while(y<0) { a = 1+2; y++; }

L1: if (y<0) goto L2;
goto L3;
L2: a = 1+2;
y = y + 1;
goto L1;
L3: …

   a = 1+2 does not  loop header is now B3
   dominate the exit  and a = 1+2 dominates
   node B1   the exit node B5

30

ENTRY

if (y<0) goto L2

goto L3

B1

B2 a = 1+2
y=y+1

goto L1
B3

… B4

ENTRY

if (y<0) goto L2

goto L3

B1

B2 a = 1+2
y=y+1

goto L1
B3

… B4

if (y<0) goto L2 B5
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