Control-Flow Static Analysis

Dragon Book: Chapter 8, Section 8.4, Chapter 9, Section 9.6

Outline

- Program representation: three-address code
- Control-Flow Graphs (CFGs)
- Dominators and post-dominators in CFGs
- Loops in CFGs

"Intermediate" Program Representations: ASTs and Three-Address Code

- AST is a high-level IR
 - Close to the source language
 - Suitable for tasks such as type checking
- Three-address code is a lower-level IR
 - Closer to the target language (i.e., assembly code), but machine-independent
 - Suitable for tasks such as code generation/optimization
- Basic ideas
 - A small number of simple instructions: e.g. x = y op z
 - A number of compiler-generated temporary variables a = b + c + d; in source code $\rightarrow t = b + c$; a = t + d;
 - Simple flow of control conditional and unconditional jumps to labeled statements (no while-do, switch, ...)

Addresses and Instructions

- "Address": a program variable, a constant, or a compiler-generated temporary variable
- Instructions
 - -x = y op z: binary operator op
 - -x = op y: unary operator op
 - -x = y: copy instruction
 - Flow-of-control (more later ...)
 - Each instruction contains at most three "addresses"
 - Thus, three-address code
- This looks very similar to the assembly language we discussed in the code generation examples

Examples of Three-Address Code

x = y; in the source code produces one threeaddress instruction

Left: a pointer to the symbol table entry for x Right: a pointer to the symbol table entry for y For convenience, we will write this as $\mathbf{x} = \mathbf{y}$

```
x = - y; produces t1 = - y; x = t1;
x = y + z; produces t1 = y + z; x = t1;
x = y + z + w; produces t1 = y + z; t2 = t1 + w; x = t2;
x = y + - z; produces t1 = - z; t2 = y + t1; x = t2;
```

More Complex Expressions & Assignments

- All binary & unary operators are handled similarly
- We run into more interesting issues with
 - Expressions that have side effects
 - Arrays
- Example: in C, we can write x = y = z + z: maybe it should be translated to t1 = z + z; y = t1; x = y; ?
 - How should we translate x = y = z++ + w? How about a[v = x++] = y = z++ + w? Or i = i++ + 1? Or a[i++] = i?
 - Not discussed in this course; some details in CSE 5343

Flow of Control - Statements

```
Example: if (x < 100 | | x > 200 && x != y) x = 0; if (x < 100) goto L2; if (!(x > 200)) goto L1; if (!(x != y)) goto L1; L2: x = 0; L1: ...
```

Instructions

- goto L: unconditional jump to the three-address instruction with label L
- if (x relop y) goto L: x and y are variables, temporaries, or constants; relop $\in \{ <, <=, ==, !=, >, >= \}$

Control-Flow Graphs

- Control-flow graph (CFG) for a procedure/method
 - A node is a basic block: a single-entry-single-exit sequence of three-address instructions
 - An edge represents the potential flow of control from one basic block to another
- Uses of a control-flow graph
 - Inside a basic block: local code optimizations; done as part of the code generation phase
 - Across basic blocks: global code optimizations; done as part of the code optimization phase
 - Other aspects of code generation: e.g., global register allocation

Control-Flow Analysis

- Part 1: Constructing a CFG
- Part 2: Finding dominators and post-dominators
- Part 3: Finding loops in a CFG
 - What exactly is a loop? Cannot simply say "whatever
 CFG subgraph is generated by while, do-while, and for statements" need a general graph-theoretic definition

Part 1: Constructing a CFG

- Nodes: basic blocks; edges: possible control flow
- Basic block: maximal sequence of consecutive three-address instructions such that
 - The flow of control can enter only through the first instruction (i.e., no jumps to the middle of the block)
 - Can exit only at the last instruction (i.e., no jumps out of the middle of the block)
- Advantages of using basic blocks
 - Reduces the cost and complexity of compile-time analysis
 - Intra-BB optimizations are relatively easy

CFG Construction

- Given: the entire sequence of instructions
- First, find the leaders (starting instructions of all basic blocks)
 - The first instruction
 - The target of any conditional/unconditional jump
 - Any instruction that immediately follows a conditional or unconditional jump
- Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader

Example

1.
$$i = 1$$

2.
$$i = 1$$

3.
$$t1 = 10 * i$$

4.
$$t2 = t1 + j$$

5.
$$t3 = 8 * t2$$

6.
$$t4 = t3 - 88$$

7.
$$a[t4] = 0.0$$

8.
$$j = j + 1$$

9. if
$$(j \le 10)$$
 goto (3)

10.
$$i = i + 1$$

12.
$$i = 1$$

13.
$$t5 = i - 1$$

16.
$$i = i + 1$$

First instruction

Target of 11

Target of 9

Follows 9

Follows 11

Target of 17

Note: this example sets array elements a[i][j] to 0.0, for 1 <= i,j <= 10 (instructions 1-11). It then sets a[i][i] to 1.0, for 1 <= i <= 10 (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets from the beginning of the array.

Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from B_p to B_q if it is possible for the first instruction of B_q to be executed immediately after the last instruction of B_p

Single Exit Node

- Single-exit CFG
 - If there are multiple exits (e.g., multiple return statements), redirect them to the artificial EXIT node
 - Use an artificial return variable ret
 - return expr; becomes ret = expr; goto exit;
- It gets ugly with exceptions (e.g., Java exceptions)
- Common properties (we will always assume them in this class)
 - Every node is reachable from the entry node
 - The exit node is reachable from every node
 - Not always true: e.g., a server thread could be while(true) ...

Practical Considerations

- The usual data structures for graphs can be used
 - The graphs are sparse (i.e., have relatively few edges),
 so an adjacency list representation is the usual choice
 - Number of edges is at most 2 * number of nodes
- Nodes are basic blocks; edges are between basic blocks, not between instructions
 - Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
 - Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block

Part 2: Dominance

- A CFG node d dominates another node n if every path from ENTRY to n goes through d
 - Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
 - A dominance relation $dom \subseteq Nodes \times Nodes$: d dom n
 - The relation is trivially reflexive: d dom d
- Node m is the immediate dominator of n if
 - $-m \neq n$
 - m dom n
 - For any $d \neq n$ such d dom n, we have d dom m
- Every node has a unique immediate dominator
 - Except ENTRY, which is dominated only by itself

ENTRY dom n for any n

1 dom n for any n except ENTRY

2 does not dominate any other node

3 dom 3, 4, 5, 6, 7, 8, 9, 10, EXIT

4 dom 4, 5, 6, 7, 8, 9, 10, EXIT

5 does not dominate any other node

6 does not dominate any other node

7 dom 7, 8, 9, 10, EXIT

8 dom 8, 9, 10, EXIT

9 does not dominate any other node

10 dom 10, EXIT

Immediate dominators:

 $1 \rightarrow \text{ENTRY}$ $2 \rightarrow 1$

 $3 \rightarrow 1$ $4 \rightarrow 3$

 $5 \rightarrow 4$ $6 \rightarrow 4$

 $7 \rightarrow 4$ $8 \rightarrow 7$

 $9 \rightarrow 8$ $10 \rightarrow 8$

 $EXIT \rightarrow 10$

A Few Observations

- Dominance is a transitive relation: a dom b and b dom c means a dom c
- Dominance is an anti-symmetric relation: a dom b
 and b dom a means that a and b must be the same
 - Reflexive, anti-symmetric, transitive: partial order
- If a and b are two dominators of some n, either a dom b or b dom a
 - Therefore, dom is a total order for n's dominator set
 - Corollary: for any acyclic path from ENTRY to n, all dominators of n appear along the path, always in the same order; the last one is the immediate dominator

Dominator Tree

The parent of n is its immediate dominator

The path from *n* to the root contains all and only dominators of *n*

Constructing the dominator tree: the classic $O(N\alpha(N))$ approach is from T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM Transactions on Programming Languages and Systems, 1(1): 121-141, July 1979.

Many other algorithms: e.g., see K. D. Cooper, T. J. Harvey and K. Kennedy. A simple, fast dominance algorithm. Software – Practice and Experience, 4:1–10, 2001.

Post-Dominance

- A CFG node d post-dominates another node n if every path from n to EXIT goes through d
 - Implicit assumption: EXIT is reachable from every node
 - − A relation $pdom \subseteq Nodes \times Nodes$: d pdom n
 - The relation is trivially reflexive: d pdom d
- Node m is the immediate post-dominator of n if
 - $-m \neq n$; m pdom n; $\forall d \neq n$. $d pdom n \Rightarrow d pdom m$
 - Every n has a unique immediate post-dominator
- Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)
- Post-dominator tree: the parent of n is its immediate post-dominator; root is EXIT

ENTRY does not post-dominate any other *n*

1 pdom ENTRY, 1, 9

2 does not post-dominate any other *n*

3 *pdom* ENTRY, 1, 2, 3, 9

4 pdom ENTRY, 1, 2, 3, 4, 9

5 does not post-dominate any other *n*

6 does not post-dominate any other *n*

7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9

8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9

9 does not post-dominate any other *n*

10 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

EXIT *pdom n* for any *n*

Immediate post-dominators:

$$ENTRY \rightarrow 1 \qquad 1 \rightarrow 3$$

$$1 \rightarrow 3$$

$$2 \rightarrow 3$$

$$3 \rightarrow 4$$

$$4 \rightarrow 7$$

$$4 \rightarrow 7$$
 $5 \rightarrow 7$

$$6 \rightarrow 7$$

$$7 \rightarrow 8$$

$$8 \rightarrow 10$$

$$9 \rightarrow 1$$

 $10 \rightarrow EXIT$

Post-Dominator Tree

The path from *n* to the root contains all and only post-dominators of *n*

Constructing the postdominator tree: use any algorithm for constructing the dominator tree; just "pretend" that the edges are reversed

Part 3: Loops in CFGs

- Cycle: sequence of edges that starts and ends at the same node
 - Example:
- Strongly-connected (induced) subgraph: each node in the subgraph is reachable from every other
 - node in the subgraph
 - Example: 2, 3, 4, 5

 1
 2
 5
 6

1

- Loop: informally, a strongly-connected subgraph with a single entry point
 - Not a loop:

Back Edges and Natural Loops

- Back edge: a CFG edge (n,h) where h dominates n
 - Easy to see that n and h belong to the same SCC
- Natural loop for a back edge (n,h)
 - The set of all nodes m that can reach node n without going through node h (trivially, this set includes h)
 - Easy to see that h dominates all such nodes m
 - Node h is the header of the natural loop
- Trivial algorithm to find the natural loop of (n,h)
 - Mark h as visited
 - Perform depth-first search (or breadth-first) starting
 from n, but follow the CFG edges in reverse direction
 - All and only visited nodes are in the natural loop

Immediate dominators:

$$\begin{array}{cccccc}
1 \rightarrow \mathsf{ENTRY} & 2 \rightarrow 1 & 3 \rightarrow 1 \\
4 \rightarrow 3 & 5 \rightarrow 4 & 6 \rightarrow 4 \\
7 \rightarrow 4 & 8 \rightarrow 7 & 9 \rightarrow 8 \\
10 \rightarrow 8 & \mathsf{EXIT} \rightarrow 10
\end{array}$$

Back edges: $4 \rightarrow 3$, $7 \rightarrow 4$, $8 \rightarrow 3$, $9 \rightarrow 1$, $10 \rightarrow 7$

$$Loop(10 \rightarrow 7) = \{ 7, 8, 10 \}$$

Loop(
$$7 \rightarrow 4$$
) = { 4, 5, 6, 7, 8, 10 }
Note: Loop($10 \rightarrow 7$) \subseteq Loop($7 \rightarrow 4$)

Loop(
$$4 \rightarrow 3$$
) = { 3, 4, 5, 6, 7, 8, 10 }
Note: Loop($7 \rightarrow 4$) \subseteq Loop($4 \rightarrow 3$)

Loop(
$$8 \rightarrow 3$$
) = { 3, 4, 5, 6, 7, 8, 10 }
Note: Loop($8 \rightarrow 3$) = Loop($4 \rightarrow 3$)

Loop(
$$9 \rightarrow 1$$
) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
Note: Loop($4 \rightarrow 3$) \subseteq Loop($9 \rightarrow 1$)

Loops in the CFG

- Find all back edges; each target h of at least one back edge defines a loop L with header(L) = h
- body(L) is the union of the natural loops of all back edges whose target is header(L)
 - Note that header(L) ∈ body(L)
- Example: this is a single loop with header node 1

- For two CFG loops L₁ and L₂
 - $-header(L_1)$ is different from $header(L_2)$
 - $-body(L_1)$ and $body(L_2)$ are either disjoint, or one is a proper subset of the other (nesting inner/outer)

Use Scenario: Loop-Invariant Code Motion Motivation: avoid redundancy

```
a = ...
```

$$b = ...$$

start loop

• •

$$d = a + b$$

$$e = c + d$$

. . .

end loop

Both instructions are

loop-invariant; let's move them out

Code Transformation

First, create a preheader for the loop

- Next, move loop-invariant instructions into the preheader (but only if correctness conditions are satisfied)
- Need control flow analysis to identify loops and loop headers

One of Several Correctness Conditions

- The basic block that contains the loop-invariant instruction must dominate all loop exit nodes
 - i.e., all nodes that are sources of loop-exit edges:
 source node is in the loop, target node is not
 - This means that it is impossible to exit the loop before the instruction is executed

- Node 6 is a loop exit node; 3 dominates 6, but 4 and 5 do not dominate 6
- Any loop-invariant instructions in 4 and 5 cannot be moved into a preheader

May Need an Enabling Pre-Transformation

- CFGs for while and for loops will not work
- Consider while(y<0) { a = 1+2; y++; }

a = 1+2 does notdominate the exitnode B1

loop header is now B3 and **a = 1+2** dominates the exit node B5