Control-Flow Static Analysis

Dragon Book: Chapter 8, Section 8.4,
Chapter 9, Section 9.6

Outline
* Program representation: three-address code
e Control-Flow Graphs (CFGs)
* Dominators and post-dominators in CFGs

* Loops in CFGs

-
“Intermediate” Program Representations:

ASTs and Three-Address Code

 AST is a high-level IR

— Close to the source language
— Suitable for tasks such as type checking

 Three-address code is a lower-level IR
— Closer to the target language (i.e., assembly code), but
machine-independent
— Suitable for tasks such as code generation/optimization

* Basic ideas
— A small number of simple instructions: e.g. x =y op z
— A number of compiler-generated temporary variables
a=b+c+d;insourcecode>t=b+c;a=t+d;
— Simple flow of control — conditional and unconditional
jumps to labeled statements (no while-do, switch, ...)

3
D EEEGGEGEERERRERERS

Addresses and Instructions

 “Address”: a program variable, a constant, or a
compiler-generated temporary variable

* |nstructions
— X =y op z: binary operator op
— X = 0p y: unary operator op
— X = y: copy instruction
— Flow-of-control (more later ...)
— Each instruction contains at most three “addresses”
* Thus, three-address code

* This looks very similar to the assembly language
we discussed in the code generation examples

Examples of Three-Address Code

X =V; in the source code produces one three-

address instruction
Left: a pointer to the symbol table entry for x
Right: a pointer to the symbol table entry fory
For convenience, we will write thisas x =y

X =-y; producestl =-vy; x=tl;
X=y+2z; producestl =y +z; x=11;
X=y+z+w;producestl=y+z;t2=t1+w,; x=12;

X=y+-z;producestl=-z,t2=y+tl; x = t2;

More Complex Expressions & Assignments
e All binary & unary operators are handled similarly

 We run into more interesting issues with

— Expressions that have side effects
— Arrays

 Example: in C, we can write x=y =z + z: maybe it
should be translatedtotl=z+z;y=tl, x=vy; ?
— How should we translate x =y = z++ + w? How about
a[lv=x++]=y=z+++wW? Ori=i+++1? Or afi++] =i?
— Not discussed in this course; some details in CSE 5343

Flow of Control - Statements
Example: if (x <100 || x> 200 && x !I=y) x = 0;
if (x < 100) goto L2;
if (!(x > 200)) goto L1;
if (1(x !=y)) goto L1,

L2: x = 0;
L1: ...

Instructions
— goto L: unconditional jump to the three-address
instruction with label L
— if (x relop y) goto L: x and y are variables, temporaries,
or constants; relop € {<, <=, ==, I=, >, >= }

7

Control-Flow Graphs

* Control-flow graph (CFG) for a procedure/method
— A node is a basic block: a single-entry-single-exit
sequence of three-address instructions
— An edge represents the potential flow of control from
one basic block to another

* Uses of a control-flow graph
— Inside a basic block: local code optimizations; done as
part of the code generation phase
— Across basic blocks: global code optimizations; done as
part of the code optimization phase
— Other aspects of code generation: e.g., global register
allocation

8
D EEEGGEGEERERRERERS

Control-Flow Analysis
* Part 1: Constructing a CFG
* Part 2: Finding dominators and post-dominators

e Part 3: Finding loops in a CFG
— What exactly is a loop? Cannot simply say “whatever
CFG subgraph is generated by while, do-while, and for
statements” — need a general graph-theoretic definition

-
Part 1: Constructing a CFG
* Nodes: basic blocks; edges: possible control flow

e Basic block: maximal sequence of consecutive

three-address instructions such that

— The flow of control can enter only through the first
instruction (i.e., no jumps to the middle of the block)

— Can exit only at the last instruction (i.e., no jumps out
of the middle of the block)

* Advantages of using basic blocks
— Reduces the cost and complexity of compile-time
analysis
— Intra-BB optimizations are relatively easy

10

CFG Construction
* Given: the entire sequence of instructions

* First, find the leaders (starting instructions of all

basic blocks)
— The first instruction
— The target of any conditional/unconditional jump

— Any instruction that immediately follows a conditional
or unconditional jump

* Next, find the basic blocks: for each leader, its
basic block contains itself and all instructions up to
(but not including) the next leader

11

1

=
[=1

t1=10%i
t2=t1+]j
t3=8*1t2

t4 =13 -88
a[t4] = 0.0
j=j+1

if (j <= 10) goto (3)

©®ONOU P WNK

10. i=i+1
11. if (i <= 10) goto (2)

12. i=1

13. t5=i-1

14. t6 =88 * t5

15. a[t6] =1.0

16. i=i+1

17. if (i <= 10) goto (13)

12

Example

First instruction
Target of 11
Target of 9

Follows 9

Follows 11

Target of 17

Note: this example sets array
elements a[i][j] to 0.0, for 1 <=1i,j <= 10
(instructions 1-11). It then sets a[i][i]
to 1.0, for 1 <=i<=10 (instructions 12-
17). The array accesses in instructions
7 and 15 are done with offsets from
the beginning of the array.

Bl

B2

B3

B4

13

ENTRY

t1=10%i
t2=1t1+j
t3=8*12

t4 =13 -88
a[t4] = 0.0
j=j+1

if (j <= 10) goto B3

i=i+1
if (i <= 10) goto B2

BS |i=1

t5=i-1

t6 =88 * t5

B6 | a[t6] = 1.0
i=i+1l

if (i <= 10) goto B6

EXIT

Artificial ENTRY and EXIT nodes are often
added for convenience.

There is an edge from B to B, if it is possible
for the first instruction of B, to be executed
immediately after the last instruction of B,

Single Exit Node

* Single-exit CFG
— If there are multiple exits (e.g., multiple return
statements), redirect them to the artificial EXIT node
— Use an artificial return variable ret
— return expr; becomes ret = expr; goto exit;

|t gets ugly with exceptions (e.g., Java exceptions)

 Common properties (we will always assume them in this class)
— Every node is reachable from the entry node
— The exit node is reachable from every node
* Not always true: e.g., a server thread could be
while(true) ...

14

Practical Considerations

* The usual data structures for graphs can be used
— The graphs are sparse (i.e., have relatively few edges),
so an adjacency list representation is the usual choice
 Number of edges is at most 2 * number of nodes

* Nodes are basic blocks; edges are between basic

blocks, not between instructions

— Inside each node, some additional data structures for
the sequence of instructions in the block (e.g., a linked
list of instructions)

— Often convenient to maintain both a list of successors
(i.e., outgoing edges) and a list of predecessors (i.e.,
incoming edges) for each basic block

15

Part 2: Dominance

* A CFG node d dominates another node n if every

path from ENTRY to n goes through d

— Implicit assumption: every node is reachable from
ENTRY (i.e., there is no dead code)

— A dominance relation dom — Nodes x Nodes: d dom n

— The relation is trivially reflexive: d dom d

e Node mis the immediate dominator of n if
— M Zn
—mdomn

— For any d #n such d dom n, we have d dom m

* Every node has a unique immediate dominator
— Except ENTRY, which is dominated only by itself

16
D EEEGGEGEERERRERERS

17

ENTRY

EXIT

ENTRY dom n forany n

1 dom n for any n except ENTRY

2 does not dominate any other node
3dom3,4,5,6,7,8,9, 10, EXIT
4dom4,5,6,7,8,9, 10, EXIT

5 does not dominate any other node
6 does not dominate any other node
7dom7,8,9, 10, EXIT

8 dom 8, 9, 10, EXIT

9 does not dominate any other node
10 dom 10, EXIT

Immediate dominators:

1 —> ENTRY 2—>1

3—>1 4 —>3

554 6—>4

7 —>4 8—>7

9—>8 10> 8
EXIT —> 10

e
A Few Observations

* Dominance is a transitive relation: a dom b and
b dom ¢ means a dom c

* Dominance is an anti-symmetric relation: a dom b

and b dom a means that g and b must be the same
— Reflexive, anti-symmetric, transitive: partial order

* If a and b are two dominators of some n, either a

dom b or b dom a
— Therefore, dom is a total order for n’s dominator set

— Corollary: for any acyclic path from ENTRY to n, all

dominators of n appear along the path, always in the
same order; the last one is the immediate dominator

18

ENTRY

Dominator Tree
* The parent of nis its immediate dominator

19

10

The path from n to the root contains
all and only dominators of n

Constructing the dominator tree: the
classic O(No(N)) approach is from

T. Lengauer and R. E. Tarjan. A fast
algorithm for finding dominators in a
flowgraph. ACM Transactions on
Programming Languages and
Systems, 1(1): 121-141, July 1979.

Many other algorithms: e.g., see

K. D. Cooper, T. J. Harvey and K.
Kennedy. A simple, fast dominance
algorithm. Software — Practice and
Experience, 4:1-10, 2001.

Post-Dominance

* A CFG node d post-dominates another node n if

every path from n to EXIT goes through d

— Implicit assumption: EXIT is reachable from every node
— A relation pdom < Nodes x Nodes: d pdom n

— The relation is trivially reflexive: d pdom d

* Node m is the immediate post-dominator of n if

—m #n; mpdomn;, ¥Yd#n. d pdomn = d pdom m
— Every n has a unique immediate post-dominator

* Post-dominance on a CFG is equivalent to
dominance on the reverse CFG (all edges reversed)

* Post-dominator tree: the parent of nis its
immediate post-dominator; root is EXIT

20
D EEEGGEGEERERRERERS

21

ENTRY

EXIT

ENTRY does not post-dominate any other n
1 pdom ENTRY, 1, 9

2 does not post-dominate any other n

3 pdom ENTRY, 1, 2, 3,9

4 pdom ENTRY, 1, 2,3,4,9

5 does not post-dominate any other n

6 does not post-dominate any other n

7 pdom ENTRY, 1, 2,3,4,5,6,7,9

8 pdom ENTRY, 1, 2,3,4,5,6,7,8,9

9 does not post-dominate any other n

10 pdom ENTRY, 1, 2, 3,4,5,6,7,8,9, 10

EXIT pdom n for any n
Immediate post-dominators:
ENTRY —> 1 1—->3
2—>3 3—>4

4 —7 57
6—>7 7—>38
8—>10 9->1

10 - EXIT

Post-Dominator Tree

EXIT
10 The path from n to the root
contains all and only post-
8 dominators of n
Constructing the post-
4 dominator tree: use any
algorithm for constructing
4 5 6 the dominator tree; just
“pretend” that the edges are
3 reversed

ENTRY 9

22

Part 3: Loops in CFGs
* Cycle: sequence of edges that starts and ends at

the same node o

— Example: 1 2 3 4 5

e Strongly-connected (induced) subgraph: each node
in the subgraph is reachable from every other
node in the subgraph

— Example: 2, 3,4, 5 T 3 L
1 2 < . >){ 5 6
* Loop: informally, a strongly-connected subgraph

with a single entry point

2
— Not a loop: 1 < ()
23 3

Back Edges and Natural Loops

* Back edge: a CFG edge (n,h) where h dominates n
— Easy to see that n and h belong to the same SCC

* Natural loop for a back edge (n,h)
— The set of all nodes m that can reach node n without
going through node h (trivially, this set includes h)
— Easy to see that h dominates all such nodes m
— Node h is the header of the natural loop

* Trivial algorithm to find the natural loop of (n,h)
— Mark h as visited
— Perform depth-first search (or breadth-first) starting
from n, but follow the CFG edges in reverse direction
— All and only visited nodes are in the natural loop

24

25

ENTRY

EXIT

Immediate dominators:

1 — ENTRY 2—>1 351
4 —>3 5514 6—>4
/]—>14 8—7 9->8
10> 8 EXIT — 10

Back edges: 4 —>3,7—>4,8—>3,9->1,
10> 7

Loop(10—>7)={7,8,10}

Loop(7 —>4)={4,5,6,7,8,10}
Note: Loop(10 — 7) < Loop(7 — 4)

Loop(4 —>3)={3,4,5,6,7,8,10}
Note: Loop(7 = 4) < Loop(4 — 3)

Loop(8 >3)={3,4,5,6,7,8,10}
Note: Loop(8 — 3) = Loop(4 — 3)

Loop(9—>1)={1,2,3,4,5,6,7,8,9,10}
Note: Loop(4 — 3) < Loop(9 —> 1)

Loops in the CFG

* Find all back edges; each target h of at least one
back edge defines a loop L with header(L) = h

e body(L) is the union of the natural loops of all back

edges whose target is header(L)
— Note that header(L) € body(L)

 Example: this is a single T
loop with header node 1 N 4

* For two CFG loops L; and L,
— header(L,) is different from header(L,)
— body(L,) and body(L,) are either disjoint, or one is a
proper subset of the other (nesting — inner/outer)

26

Use Scenario: Loop-Invariant Code Motion

Motivation: avoid redundancy
d=..

b=..

cC=...

start loop

d=a+b Both instructions are
e=c+d loop-invariant; let’s move them out

end loop

27

Code Transformation
* First, create a preheader for the loop

T 4 L
— Original CFG 1 7 3 < : >>{ 6 7
— Modified CFG g T
1 7 3’ 3 < Z >){ 6 7

2

* Next, move loop-invariant instructions into the
preheader (but only if correctness conditions are
satisfied)

* Need control flow analysis to identify loops and
loop headers

28

One of Several Correctness Conditions

* The basic block that contains the loop-invariant

instruction must dominate all loop exit nodes

—i.e., all nodes that are sources of loop-exit edges:
source node is in the loop, target node is not

— This means that it is impossible to exit the loop before
the instruction is executed

BT O

2

* Node 6 is a loop exit node; 3 dominates 6, but 4 and
5 do not dominate 6

* Any loop-invariant instructions in 4 and 5 cannot be
moved into a preheader

29

-
May Need an Enabling Pre-Transformation

* CFGs for while and for loops will not work

* Consider while(y<0) {a = 1+2; y++; }

L1: if (y<0) goto L2;

goto L3;
L2: 2 =1+2;
y=y+1;
goto L1;
L3: ...

Bl

ENTRY

if (y<0)

goto L2

goto L3

B2 [4=

B4

y=y+1
goto L1

1+2
B3

a =1+2 does not
dominate the exit
node B1

30

=

Bl

ENTRY

if (y<0)

goto L2

goto L3

T

B2 [4=

B4

y=y+1
goto L1

1+2
B3

if (y<0)

goto L2

B5

loop header is now B3
and a = 1+2 dominates
the exit node B5

	Control-Flow Static Analysis
	Outline
	“Intermediate” Program Representations: ASTs and Three-Address Code
	Addresses and Instructions
	Examples of Three-Address Code
	More Complex Expressions & Assignments
	Flow of Control - Statements
	Control-Flow Graphs
	Control-Flow Analysis
	Part 1: Constructing a CFG
	CFG Construction
	Example
	Slide Number 13
	Single Exit Node
	Practical Considerations
	Part 2: Dominance
	Slide Number 17
	A Few Observations
	Dominator Tree
	Post-Dominance
	Slide Number 21
	Post-Dominator Tree
	Part 3: Loops in CFGs
	Back Edges and Natural Loops
	Slide Number 25
	Loops in the CFG
	Use Scenario: Loop-Invariant Code Motion
	Code Transformation
	One of Several Correctness Conditions
	May Need an Enabling Pre-Transformation

