
Brief Overview

Also see document from Education Board of
ACM SIGPLAN (“Motivation” on web page)

Main Questions in PL
– Q1: Is this a valid program?

– Compile-time and run-time checking (in 6341: attribute
grammars and type systems)

– Q2: What is this program supposed to do?
– Precise language semantics (in 6341: operational

semantics)
– Q3: How do we execute this program correctly and

efficiently?
– Implementation of compilers and interpreters (in 6341:

projects to build an interpreter; attribute grammars for
code generation in a compiler; static analysis for
performance optimization)

2

Why Study Foundations of PL?
– Understand your tools better

– Compilers, interpreters, virtual machines, code
checking tools, debuggers, assemblers, linkers

– Write your own languages, compilers, analyzers, …
– Happens more often than you’d think [example: Forma]

– To fix bugs & make programs fast, often you need
to understand what’s happening “under the hood”

– Most importantly: PLs are the foundations of
software; we need to be clear on what they mean
and how to support their users with useful tools

3

Example: Inside a Compiler

4

Regular grammars &
context-free grammars
(expected background)

Attribute grammars,
type checking,
PL semantics

PL semantics

Attribute Grammars

Pagan Ch. 2.1, 2.2, 2.3, 3.2

Slonneger and Kurtz Ch 3.1, 3.2 [online; under
Resources on course web page]

Dragon Book Ch. 5.1, 5.2

Outline
– Review context-free grammars [expected background]

– Introduce attribute grammars
– Use scenario: simple type checking
– Two flavors of attribute grammars: (1) pure and

(2) with limited side effects
– Use scenario: more complex type checking
– Use scenario: generation of assembly code

6

Formal Languages
– Theoretical basis for the design and

implementation of programming languages
– Alphabet: finite set T of symbols
– String: finite sequence of symbols

– Empty string ε (i.e., sequence of length 0)

– T* - set of all strings over T (incl. ε)
– T+ - set of all non-empty strings over T

– Language: set of strings L ⊆ T*

7

Grammars
G = (N, T, S, P)

– Finite set of non-terminal symbols N
– Finite set of terminal symbols T (this is our alphabet)
– Starting non-terminal symbol S ∈ N
– Finite set of productions P
– Goal: define a language L ⊆ T*

Production: x → y
– x: non-empty sequence of terminals and non-terminals
– y: possibly-empty sequence of terminals/non-terminals

Applying a production: uxv ⇒ uyv

8

Languages and Grammars
Derivation of a string

w1 ⇒ w2 ⇒ … ⇒ wn; denoted w1 ⇒ wn

Language generated by a grammar
L(G) = { w ∈ T* | S ⇒ w }

Traditional classification of languages and grammars
– Regular ⊂ Context-free ⊂ Context-sensitive ⊂

Unrestricted

*

*

9

Use in Compilers and Interpreters

Lexical Analyzer (uses a regular grammar)

Parser (uses a context-free grammar)

stream of
characters

stream of
tokens

parse
tree

… more components

w,h,i,l,e,(,a,1,5,>,b,b,),d,o,…

keyword[while],leftparen,id[a15],op[>],
id[bb],rightparen,keyword[do], …

each token is a leaf in the parse tree

10

Context-Free Languages
Strict superset of regular languages

– Example: L = { anbn | n > 0 } is context-free but not
regular

Generated by a context-free grammar
– Each production: A → w
– A is a non-terminal, w is a (possibly empty) sequence of

terminals and non-terminals
BNF: alternative notation for context-free grammars

– Backus-Naur form: John Backus and Peter Naur, for
ALGOL60 (both have received the ACM Turing Award)

11

BNF Example (related to the language for the project)

<program> ::= <stmtList>

<stmtList> ::= <stmt> <stmtList>

 | <stmt>

<stmt> ::= <varDecl> = <expr> ;

 | ident = <expr> ;

<varDecl> ::= int ident

<expr> ::= intconst

 | ident

 | <expr> + <expr>
12

If there are several productions

<X> ::= …

for convenience we write them as a
single production

<X> ::= … | … | …

We say “the ith production alternative”

String Derivation
Example of a string from the language
[next slide shows the leftmost derivation sequence (always expands the leftmost non-terminal)]

[try this at home: the rightmost derivation sequence (always expands the rightmost non-terminal)]

int x = 1; y = x + 2;

Example of a string not from the language

x+1 = y;

13

14

<program> ::= <stmtList>
<stmtList> ::= <stmt> <stmtList> | <stmt>
<stmt> ::= <varDecl> = <expr> ; | ident = <expr> ;
<varDecl> ::= int ident
<expr> ::= intconst | ident | <expr> + <expr>

int x = 1 ; y = x + 2 ;

<program> => <stmtList> =>

<stmt> <stmtList> =>

<varDecl> = <expr> ; <stmtList> =>

int identx = <expr> ; <stmtList> =>

int identx = intconst1 ; <stmtList> =>

int identx = intconst1 ; <stmt> =>

int identx = intconst1 ; identy = <expr> ; =>

int identx = intconst1 ; identy = <expr> + <expr> ; =>

int identx = intconst1 ; identy = identx + <expr> ; =>

int identx = intconst1 ; identy = identx + intconst2 ;

Parse Tree
Also called derivation tree or concrete syntax tree

– Leaf nodes: terminals
– Inner nodes: non-terminals
– Root: starting non-terminal of the grammar
– Leaf nodes, from left to right, define the string

Each non-leaf node X has children that correspond to
some production <X> ::= …

– Children are ordered as they appear in the production

15

Parse Tree Examples

Example 1: int x = 1; int y = x + 2;

Example 2: int y = x + w; int x = y;

Example 3: w = x + y + z;

16

17

int y = x + w; int x = y;
<program>

<stmtList>

<stmt> <stmtList>

<varDecl> = <expr> ;

int identy <expr> + <expr>

identx identw

<stmt>

<varDecl> = <expr> ;

int identx identy

<program> ::= <stmtList>
<stmtList> ::= <stmt> <stmtList> | <stmt>
<stmt> ::= <varDecl> = <expr> ; | ident = <expr> ;
<varDecl> ::= int ident
<expr> ::= intconst | ident | <expr> + <expr>

18

w = x + y + z;

<program>

<stmtList>

<stmt>

= <expr> ;identw

<expr> + <expr>

identx

identz<expr> + <expr>

identy

<program>

<stmtList>

<stmt>

= <expr> ;identw

<expr> + <expr>

identx

identz

<expr> + <expr>

identy

<program> ::= <stmtList>
<stmtList> ::= <stmt> <stmtList> | <stmt>
<stmt> ::= <varDecl> = <expr> ; | ident = <expr> ;
<varDecl> ::= int ident
<expr> ::= intconst | ident | <expr> + <expr>

Ambiguous Grammar
For some string, there are multiple parse trees
An ambiguous grammar
Gives more freedom to the compiler writer: e.g., for

code optimizations (several possible translations)
Allows under-specification of irrelevant details [we will see

this later when we discuss operational semantics and abstract interpretation]

Must be disambiguated when we build a real parser
To remove ambiguity

– Change the grammar, or
– Keep it ambiguous, but tell the parser how to resolve

ambiguity so that we have only one possible parse tree
[this is the approach used in the programming projects]

19

Classic Examples of Ambiguity
<expr> ::= <expr> + <expr> | ident

Two different parse trees for x + y + z

<expr> ::= <expr> + <expr> | <expr> * <expr> | ident

Two different parse trees for x + y * z

We will illustrate the importance of ambiguity in one specific
scenario: associativity and precedence of binary operators in
programming languages

20

Binary Operators in Math
Commutativity: a op b = b op a
– Example: + is commutative and – is not commutative
Associativity [same op]: (a op b) op c = a op (b op c)
– + is associative; we can write a + b + c since the location

of parentheses does not matter
– – is not associative; for convenience, we write a – b – c

to mean (a – b) – c [i.e., left-to-right reading of a – b – c]

Precedence [two different ops]: a op1 b op2 c
– Does it mean (a op1 b) op2 c or is it a op1 (b op2 c)?
– If the precedence is defined, we can omit parentheses
– + vs × : higher precedence for ×, so a + b × c is a + (b × c)

21

Operator Associativity in PL
Associativity [same op]: how should a op b op c be
evaluated when we execute the program?
– Left-associative operator: a op b op c should be

evaluated as “first compute the value of the left
subexpression a op b; then compute the result op c”
[i.e., treat it as (a op b) op c]

– Right-associative operator: a op b op c should be
evaluated as “first compute the value of the right
subexpression b op c; then compute a op the result”
[i.e., treat it as a op (b op c)]

22

Why Does Ambiguity Matter?
<expr> ::= <expr> + <expr> | ident

w = x + y + z;

Left or right associativity? Same as asking “how should x + y + z be
parsed”? It does matter …
// non-associative math operations
int p = 1 - 2 - 3;
// floating-point computations
double x = (0.1 + 0.2) + 0.3;
double y = 0.1 + (0.2 + 0.3);
System.out.println(x==y); // what will be printed here?23

Parse tree version 1 leads to
assembly code version 1
ADD R1, x, y
ADD R2, R1, z
STORE w, R2

Parse tree version 2 leads to
assembly code version 2
ADD R1, y, z
ADD R2, x, R1
STORE w, R2

SUB R1, 1, 2
SUB R2, R1, 3
STORE p, R2

SUB R1, 2, 3
vs SUB R2, 1, R1
 STORE p, R2

Why Does Ambiguity Matter?
<expr> ::= <expr> + <expr> | <expr> * <expr> | ident

w = x + y * z;

Precedence: how should x + y * z be parsed? The shape of the parse
tree matters …

Exercise: how many different parse trees are possible for x * y + z * w

24

Assembly code version 1
ADD R1, x, y
MUL R2, R1, z
STORE w, R2

Assembly code version 2
MUL R1, y, z
ADD R2, x, R1
STORE w, R2

25

In C++

Elimination of Ambiguity
<expr> ::= <expr> + <expr> | <expr> * <expr> | ident

Simple solution: change the language to force the
programmer to write all parentheses

<expr> ::= (<expr> + <expr>) | (<expr> * <expr>) | ident

Exercise: convince yourself that this grammar is not ambiguous

Problem: too much work for the programmer – e.g., cannot
just write x + y + z but must write ((x + y) + z)

Better solution: let’s not force the programmer to write all
these (and), but rather change the grammar accordingly

26

Elimination of Ambiguity
<expr> ::= <expr> + <expr> | <expr> * <expr> | ident | const
Note: added const to make the grammar more interesting

Goal: Create an equivalent non-ambiguous grammar with the
appropriate precedence and associativity:
 * has higher precedence than +
 both are left-associative

Solution: two new non-terminals
<expr> ::= <expr> + <term> | <term>
<term> ::= <term> * <factor> | <factor>
<factor> ::= ident | const

Exercise: construct parse trees for x + y + z and x + y * z and imagine
what the generated assembly code may look like

27

Adding Parentheses
Goal: extend the language to allow for parenthesized
subexpressions – e.g., x * (y + z)

Solution:
<expr> ::= <expr> + <term> | <term>
<term> ::= <term> * <factor> | <factor>
<factor> ::= ident | const | (<expr>)

Exercise: construct the parse tree for x * (y + z) and imagine what the
generated assembly code may look like

Exercise 2: look at the grammar definition in the CUP file for Project 1,
convince yourself it is ambiguous, and see the extra “hints” to the
parser about precedence and associativity (to resolve ambiguity)
 28

Abstract Syntax Trees (AST)
A simplified version of a concrete syntax tree,
without loss of information [we will use ASTs in the programming projects]

<funcDef> ::= ident (<formalDeclList>) { < stmtList> }

 <funcDecl> parse tree

ident(“factorial”) (<formalDeclList>) { <stmtList> }

 <funcDecl> [“factorial”] AST

 <formalDeclList> <stmtList>

29

Use of Context-Free Grammars
Syntax of a programming language

– Java: Chapter 19 of the language specification (JLS)
defines a grammar [under Resources on the web page]

– Terminals: identifiers, keywords, literals, separators,
operators

– Starting non-terminal: CompilationUnit
Implementation of a parser in a compiler

– e.g. the JLS grammar (Ch. 19) is used by the parser
inside the javac compiler

30

Limitations of Context-Free Grammars
Cannot represent semantics

– Example: “every variable used in a statement should be
declared earlier in the code” or “the use of a variable
should conform to its type declaration” (type checking)
• Need to allow only programs that satisfy certain

context-sensitive conditions
• An example of a context: “an earlier declaration of x

must exist, and it must declare an int type”
Cannot generate things other than parse trees

– Example: what if we wanted to generate assembly code
for the given program?

31

Attribute Grammars
Generalization of context-free grammars
Used for semantic checking and other compile-time
analyses

– e.g. type checking in a compiler
Used for translation

– e.g. parse tree  assembly code
Implicitly represents a traversal of the parse tree and
the computation of information during traversal

32

Structure of an Attribute Grammar
1. Underlying context-free grammar
2. For a terminal or non-terminal: some attributes
3. For each attribute: type of its possible values

1. e.g., integer or string or map(string  list(integer))
4. Set of evaluation rules for each production
5. Set of boolean conditions for attribute values

33

Example
L = { anbncn | n > 0 }; not a context-free language
BNF

<start> ::= <A><C> <A> ::= a | a<A>
 ::= b | b <C> ::= c | c<C>

Attributes
Na: associated with <A>
Nb: associated with
Nc: associated with <C>
Type of possible values for Na, Nb, Nc: integer values

34

Example
Evaluation rules (similar for , <C>)

<A> ::= a
 <A>.Na := 1
 | a<A>2
 <A>.Na := 1 + <A>2.Na

Conditions
<start> ::= <A><C>
Cond: [<A>.Na = .Nb = <C>.Nc]

a string belongs to the language defined by this attribute grammar
if and only if the parse tree satisfies the condition

35

Parse Tree
 <start>

 <A> <C>

a <A> b c <C>

 a b c

Na:1

Na:2

Nc:1Nb:1

Cond:true

Nc:2Nb:2

36

Parse Tree for an Attribute Grammar
Valid tree for the underlying BNF
Each node has (attribute,value) pairs

– One pair for each attribute associated with the node
Some nodes have boolean conditions

– If there is a corresponding Cond: … rule
Valid parse tree

– Attribute values are consistent with the evaluation rules
– All boolean conditions are true

37

Modified Example
Same evaluation rules as before e.g.

<A> ::= a
 <A>.Na := 1
 | a<A>2
 <A>.Na := 1 + <A>2.Na

Different conditions
<start> ::= <A><C>
Cond: [<A>.Na = 3]
Cond: [<A>.Na > .Nb]
Cond: [.Nb > <C>.Nc]

How many valid parse trees exist for this attribute grammar?

38

Comments
– If non-terminal X has an attribute A, each

occurrence of X in the parse tree must have a value
for A. The evaluation rules should define exactly
one value for A for a particular X node.
– Attributes are not like program variables; cannot have:

<Z>.A := 1 + <Z>.A
– In rules/conditions, can only refer to attributes of

non-terminals and terminals in the current
production alternative
– Cannot look at “grandparent”/”grandchild” parse tree

nodes, or even further away up/down the tree

39

Synthesized vs. Inherited Attributes
– Each non-terminal X: disjoint sets of synthesized

attributes and inherited attributes
– An attribute A for X cannot be both

– For each synthesized attribute A: each
production alternative in X ::= … should have
exactly one evaluation rule for X.A

– For each inherited attribute A: each occurrence
of X in … ::= … X … X … X … should have exactly
one evaluation rule for X.A

40

Synthesized vs. Inherited Attributes
Synthesized attributes convey information about

the subtree rooted at the node
Inherited attributes convey context conditions

– E.g., information about variable declarations that
have appeared earlier in the program

– The starting non-terminal does not have inherited
attributes

For convenience: assume each terminal symbol has
one attribute lexval with a pre-defined value
– The lexical analyzer sets these values (e.g., some int

value for a token representing an integer constant)
41

Example (revisited)
<start> ::= <A><C>

 .expectedNb := <A>.Na
 <C>.expectedNc := <A>.Na

<A> ::= a
 <A>.Na := 1
 | a<A>2
 <A>.Na := 1 + <A>2.Na

 ::= b similarly for <C>
 Cond: [.expectedNb = 1]
 | b2
 2.expectedNb := .expectedNb – 1

 Na is synthesized, expectedNb/Nc are inherited

42

Example: Binary Numbers
Context-free grammar

 ::= <D>
 ::= <D>
 <D> ::= 0
 <D> ::= 1

Goal: compute the value of the binary number
– Needed, for example, in compilers during code

translation

43

BNF Parse Tree for Input 1010
B

B

B

B

D

D

D

D

1

0

0

1

Define integer attributes
: synthesized val
: synthesized pos
<D>: inherited pow
<D>: synthesized val

44

Example: Binary Numbers
 ::= <D>
 .pos := 1
 .val := <D>.val
 <D>.pow := 0
1 ::= <D>2
 1.pos := 2.pos + 1
 1.val := 2.val + <D>.val
 <D>.pow := 2.pos
<D> ::= 0
 <D>.val := 0
<D> ::= 1
 <D>.val := 2<D>.pow

45

Evaluated Parse Tree
B

B

B

B

D

D

D

D

1

0

0

1

pos:4 val:10

pos:3 val:2

pos:2 val:2

pos:1 val:0

pow:0
val:0

pow:1
val:2

pow:2
val:0

pow:3
val:8

46

Complex Evaluation Rules
<X>.A := … could be rather complex – e.g. with
helper functions, conditional expressions, etc.
Example:
<X>.A := if (<Y>.B = <Z>.C) then f1(<Y>.D) else f2(<Z>.E)
– Must be if-then-else; cannot be if-then. Why?

– Helper functions such as f1 and f2 can use basic
algorithms and data structures/operations

– Can only use attributes of non-terminals and terminals
that appear in this production alternative

47

Attribute Evaluation: Dependence Graph
<X>.A := <Y>.B + <Z>.C

 Since the value of <X>.A depends on <Y>.B:
Y.B  X.A dependence edge

 Since the value of <X>.A depends on <Z>.C:
Z.C  X.A dependence edge

 <X>1.A := <X>2.A two different X nodes in the parse tree

 Since the value of <X>1.A depends on <X>2.A:
X2.A  X1.A dependence edge

48

Algorithm for Attribute Evaluation
– Given a parse tree with attributes attached to tree

nodes, how do we compute the attribute values?

– Step 1: find evaluation order of attributes
a) Build dependence graph where a node is a pair

(parse tree node, attribute)
b) Complain about cycles in the graph: cannot evaluate
c) Topologically sort the graph

– Step 2: evaluate the attributes in sorted order

49

Example: Binary Numbers
 ::= <D>
 .pos := 1
 .val := <D>.val
 <D>.pow := 0
1 ::= <D>2
 1.pos := 2.pos + 1
 1.val := 2.val + <D>.val
 <D>.pow := 2.pos
<D> ::= 0
 <D>.val := 0
<D> ::= 1
 <D>.val := 2<D>.pow

50

Dependence Graph for Binary Numbers

 B1 pos val

 D1 pow val B2 pos val

 1 D2 pow val B3 pos val

 0 D3 pow val B4 pos val

 1 D4 pow val

 0

51

Sort the Graph
Topological sort: x is ”smaller” than y iff x  y

 D4.pow, B4.pos, D4.val, B4.val,

 B3.pos, D3.pow, D3.val, B3.val,

 B2.pos, D2.pow, D2.val, B2.val,

 B1.pos, D1.pow, D1.val, B1.val
52

Cycles
– The notion of “topological sort” only makes sense

for directed acyclic graphs

– Cycles in the dependence graph means we have
recursive dependencies
– In general, there are approaches to solve meaningful

recursive systems of equations

– But, in this course we will disallow cycles
– No cyclic dependencies in exams and homeworks

53

Use Scenario 1: Simple Type Checking
<program> ::= <stmtList>

<stmtList> ::= <stmt> <stmtList> | <stmt>

<stmt> ::= <varDecl> = <expr> ;

 | ident = <expr> ;

<varDecl> ::= int ident | float ident

<expr> ::= intconst | floatconst | ident
 | <expr> + <expr>

 | (<expr>)
54

[grammar is ambiguous; assume the parser
 resolved this somehow]

Type Checking: Simple Examples
Example 1:

int y = x + w; int x = y; vs int y = 5 + 3; int x = y;

Discussed in the next few slides

Example 2: for practice

float x = 5.0; float y = x + 1.0; int z = x + y;

Will this type check in Java?

Should it type check in our language? It’s up to us. We will
choose “No”.

55

56

Our Type Checking Goals

57

Goal 1: Any variable in an <expr> must have a
corresponding declaration in an earlier <stmt>

Example: do not allow int x = 1; int y = x + w;
Example: do not allow int x = x+1;
Note: in the programming project will also check that no variable is declared more than once; in
class we will not discuss this check, but you should think how the solution should be changed to
perform such checking

Goal 2: Both operands of + must be of the same type
Example: do not allow int x = 1; float y = x + 3.14;

Attributes for Type Checking Solution

58

Inherited attribute tbl (short for “symbol table”). The
attribute is a map from strings to INT/FLOAT. Each
<stmtList>, <stmt>, and <expr> has its tbl.

Synthesized attribute type for <expr>: INT/FLOAT
When the <expr> is an ident (just a variable name),
need to look inside <expr>.tbl to figure out if the
variable was already declared and with what type

Type Checking: Expressions
<expr> ::= intconst <expr>.type := INT

 | floatconst <expr>.type := FLOAT

 | ident

 Cond: [ident.lexval has a type in <expr>.tbl]

 <expr>.type := <expr>.tbl.lookupId(ident.lexval)

 | (<expr>2)

 <expr>2.tbl := <expr>.tbl.clone() Copies the entire table

 <expr>.type := <expr>2.type

 59

Type Checking: Expressions
<expr> ::= <expr>2 + <expr>3

 <expr>2.tbl := <expr>.tbl.clone()

 <expr>3.tbl := <expr>.tbl.clone()

 Cond: [<expr>2.type = <expr>3.type]

 <expr>.type := <expr>2.type
Note: this would disallow code such as int x = 1; float y = x + 3.14;

60

61

Cond: [<expr>2.type = <expr>3.type]

What will happen here with this check?

62

Cond: [ident.lexval has a type in <expr>.tbl]

What will happen here with this check?

Attributes for Type Checking Solution

63

Inherited attribute tbl (short for “symbol table”). The
attribute is a map from strings to INT/FLOAT. Each
<stmtList>, <stmt>, and <expr> has its tbl.

Synthesized attribute type for <expr>: INT/FLOAT
When the <expr> is an ident (just a variable name),
need to look inside <expr>.tbl to figure out if the
variable was already declared and with what type

Synthesized attribute decl for <varDecl> and <stmt>:
a set containing zero or one pair (string,INT/FLOAT)

64

Note: not showing decl in this
part of the tree (but it is there)

Type Checking: Symbol Tables
<program> ::= <stmtList>

 <stmtList>.tbl := newTable() empty table

<stmtList> ::= <stmt> <stmtList>2

 <stmt>.tbl := <stmtList>.tbl.clone()

 <stmtList>2.tbl := <stmtList>.tbl.clone(<stmt>.decl)
 Creates a copy of <stmtList>.tbl and adds to it <stmt>.decl

 | <stmt>

 <stmt>.tbl := <stmtList>.tbl.clone()

65

Type Checking: Symbol Tables
<varDecl> ::= int ident

 <varDecl>.decl := newSet(ident.lexval,INT)

 | float ident Similarly here

<stmt> ::= <varDecl> = <expr> ;

 <stmt>.decl := <varDecl>.decl.clone()

 <expr>.tbl := <stmt>.tbl.clone()

 | ident = <expr> ;

 <stmt>.decl := newSet() empty set

 <expr>.tbl := <stmt>.tbl.clone()
66

Set with one element:
a pair (string,INT)

Type Checking: Assignments

67

Goal 1: Any variable in an <expr> must have a
corresponding declaration in an earlier <stmt>

Example: do not allow int x = 1; int y = x + w;
Example: do not allow int x = x+1;

Goal 2: Both operands of + must be of the same type
Example: do not allow int x = 1; float y = x + 3.14;

Goal 3: Both sides of an assignment must be of the
same type

Example: do not allow int x = 1; float y = x;

Type Checking: Assignments
<stmt> ::= <varDecl> = <expr> ;

 Cond: [<expr>.type = type in <varDecl>.decl]

 | ident = <expr> ;

 Cond: [ident.lexval has a type in <stmt>.tbl]

 Cond: [<expr>.type = <stmt>.tbl.lookupId(ident.lexval)]

68

Example

69

Consider again Example 1:
int y = x + w; int x = y; vs int y = 5 + 3; int x = y;
Already saw parse tree and attributes tbl, type, and decl

Where in the tree do the type checks occur?

<expr> ::= indent Cond: [ident.lexval has a type in <expr>.tbl]

<expr> ::= <expr>2 + <expr>3 Cond: [<expr>2.type = <expr>3.type]

<stmt> ::= <varDecl> = <expr> ; Cond: [<expr>.type = type in <varDecl>.decl]

<stmt> ::= ident = <expr> ; Cond: [ident.lexval has a type in <stmt>.tbl]

 Cond:[<expr>.type=<stmt>.tbl.lookupId(ident.lexval)]

Efficiency Of Type Checking

70

Inherited attribute tbl: each <stmtList>, <stmt>, and
<expr> has its own table, which is inefficient

Consider a list of n variable declarations. What is the total
size of all tbl attributes?

Let’s just have one single “global” table
Advantage: more efficient use of space; no need for clone()
operations
Disadvantage: need to be very careful in which order
attributes are evaluated and how this affects the table

Modified solution: at each <stmtList>, <stmt>, and
<expr>, tbl is a pointer to a single global table

71

Inefficient

72

Efficient

Typechecking: Expressions
<expr> ::= intconst <expr>.type := INT

 | floatconst <expr>.type := FLOAT

 | ident

 Cond: [ident.lexval has a type in <expr>.tbl]

 <expr>.type := <expr>.tbl.lookupId(ident.lexval)

 | (<expr>2)

 <expr>2.tbl := <expr>.tbl Copies the pointer; both point to the same global table

 <expr>.type := <expr>2.type

 73

Typechecking: Expressions
<expr> ::= <expr>2 + <expr>3

 <expr>2.tbl := <expr>.tbl was <expr>.tbl.clone()

 <expr>3.tbl := <expr>.tbl was <expr>.tbl.clone()

 Cond: [<expr>2.type = <expr>3.type]

 <expr>.type := <expr>2.type

74

Typechecking: Symbol Tables
<program> ::= <stmtList>

 <stmtList>.tbl := newTable() empty table

<stmtList> ::= <stmt> <stmtList>2

 <stmt>.tbl := <stmtList>.tbl

 { <stmtList>2.tbl := <stmtList>.tbl;

 <stmtList>2.tbl.insertId(<stmt>.decl) “side effect” of the evaluation }

 | <stmt>

 <stmt>.tbl := <stmtList>.tbl

75

Typechecking: Symbol Tables
<varDecl> ::= int ident

 <varDecl>.decl := newSet(ident.lexval,INT)

 | float ident Similarly here

<stmt> ::= <varDecl> = <expr> ;

 <stmt>.decl := <varDecl>.decl

 <expr>.tbl := <stmt>.tbl

 | ident = <expr> ;

 <stmt>.decl := newSet() empty set

 <expr>.tbl := <stmt>.tbl
76

Set with one element:
a pair (string,INT)

Example

77

Consider
int y = 5 + 3; int x = y;
All tbl are now pointers to the same table
 It matters when the checks are performed
relative to the insertId side effects

Specifically, for <stmtList> ::= <stmt> <stmtList>2 :
checks inside <stmt> should happen before the side effect of
<stmtList>2.tbl.insertId(<stmt>.decl) but after insertId side
effects for <stmtList> nodes that are higher in the parse tree

Attribute Grammars with Side Effects
More generally, can we have “global” data
structures, i.e., data shared among tree nodes?
Pure attribute grammars: nothing is shared; each
node has its own local data, computed once and
unchangeable (for example, the first version of type checking)

Advantage: easy to decide the order of evaluation
of attributes as we don’t have to worry about order
of updates to shared data

Attribute grammars with side effects: some
shared data and limited side effects on it (Dragon book, Sec
5.1 and 5.2: also known as “syntax-directed definitions”)

Advantage: efficiency
78

Side Effects and Order of Evaluation
– Pure attribute grammars: any topological sort

order is a valid evaluation order

– Attribute grammars with side effects: we need to
define additional restrictions on the evaluation
(e.g., as we did for insertId for the type checking attribute grammar)

– Think of these restrictions as additional artificial
edges in the dependence graph (Dragon book, Sec 5.2.5)

79

Use Scenario 2: More Type Checking
– In general, type checking is a form of semantic

checking that a compiler will perform after parsing,
on the parse tree (or, more likely, on the AST)
– An attribute grammar specifies both the goals of

typechecking and (implicitly) the actual algorithm

– A generalization of our earlier example: given
program with declarations, check types of
identifiers (integers, floats, functions)
– For type checking inside a nested block, use the

innermost variable declarations
– Will not discuss the complete grammar, just key ideas

80

Context-Free Grammar
<program> ::= <funcDefList>

<funcDefList> ::= <funcDef> <functDefList> | <funcDef>

<funcDef> ::= <varDecl> (<formalDeclList>) { <stmtList> }

<varDecl> ::= int ident | float ident

<stmt> ::= … | { <stmtList> } | while, if, return statements (not shown)

<expr> ::= … | ident (<exprList>) function call

Example:

int f (int x, int y) { int z = x+y; return z; }

int g(int x) { int z = 5; { int t = x+z; return t; } }

int main (int w) { return f(w+1,w+2) + g(8); }
81

Type Checking Goals

82

Goal 1: Any variable in an <expr> must have an
earlier corresponding declaration, including (1) vars
from surrounding blocks and (2) function parameters

Goal 2: Any function name in a call must have a
corresponding definition somewhere in the program;
types of actual parameters at the call should match
types of formal parameters at the definition;
similarly for the return type

Idea: use a tree of symbol tables

83

Type Checking: Expressions
<expr> ::= … | ident

 Cond: [ident.lexval has a type in <expr>.tbl]

 <expr>.type := <expr>.tbl.lookupId(ident.lexval)

 Note: lookupId checks the table, its parent table, the grandparent table, etc. until a match is found

84

Type Checking: Symbol Tables
<stmt> ::= … | { <stmtList> } nested block

 <stmtList>.tbl := <stmt>.tbl.newChildTable()

int f (int x, float y) { int z … { float w … } { int v …} }

Root table T1: (f, (INT,FLOAT)INT)

T2, child of T1, table for formals: (x,INT) and (y,FLOAT)

T3, child of T2, table for locals: (z,INT)

T4, child of T3, table for first nested block: (w,FLOAT)

T5, child of T3, table for second nested block: (v,INT)

85

Type Checking: Function Calls
<expr> ::= … | ident (<exprList>)

 Cond: [ident.lexval has a function type in <expr>.tbl]

 Cond: [formal types in <expr>.tbl.lookupId(ident.lexval)
match actual types in <exprList>]

 <expr>.type := return type from <expr>.tbl.lookupId(…)

86

Use Scenario 3: Code Generation
– Given: parse tree for a simple program (after type

checking)
– Goal: translate to assembly code
– The evaluation rules of the attribute grammar

generate the assembly code

– Note: in a real compiler, the parse tree (or AST) will be translated to
a machine-independent simplified representation (e.g., three-
address code) which is then optimized and translated to machine-
specific assembly code. Details in CSE 5343 “Compilers”.

87

Code Generation for Expressions
<expr> ::= intconst | ident | (<expr>)

 | <expr> + <expr> | <expr> * <expr>

Output language

Assembly language for a machine with an infinite number
of registers R1, R2, … and instruction set as follows

LOAD Ri, x: copy the value of variable x into Ri
LOAD Ri, const: set the value of Ri to an integer constant
STORE x, Ri: write Ri to variable x
ADD Ri, Rj, Rk: add Rj and Rk and store in Ri (Ri could be same as Rj or Rk)

MUL Ri, Rj, Rk: multiply Rj and Rk and store in Ri

88

Code Generation Strategy
Synthesized attribute code contains a sequence
of instructions: concatenation of subsequences
from its children, plus new instructions

<expr> ::= <expr>2 + <expr>3
 <expr>.code :=
 <expr>2.code
 <expr>3.code
 "ADD" R[for <expr>],R[for <expr>2],R[for <expr>3]

89

Simple Code Generation
<expr> ::= intconst
 <expr>.reg := newReg() // create a new register name

 <expr>.code := newInstr(LOAD, <expr>.reg, intconst.lexval)

 | ident
 <expr>.reg := newReg()
 <expr>.code := newInstr(LOAD, <expr>.reg, ident.lexval)

 | <expr>2 + <expr>3 // similarly for *

 <expr>.reg := newReg()
 <expr>.code := concat(<expr>2.code, <expr>3.code,
 newInstr(ADD, <expr>.reg, <expr>2.reg, <expr>3.reg))

 | (<expr>2)
 <expr>.reg := <expr>2.reg
 <expr>.code := <expr>2.code
90

Observations
– newReg(): creates a unique register name. This is a

side effect, but the order of these side effects does
not matter

– We are assuming an infinite number of “abstract”
registers, but in reality there is a limit; in compilers,
a register allocation pass re-maps the abstract
registers to a finite number of real registers

91

Example
(x+99)*z + v*w
LOAD R1, x
LOAD R2, 99
ADD R3, R1, R2
LOAD R4, z
MUL R5, R3, R4
LOAD R6, v
LOAD R7, w
MUL R8, R6, R7
ADD R9, R5, R8

92

Code Generation for Statements
<stmtList> ::= <stmt> <stmtList> | <stmt>

<stmt> ::= ident = <expr> ; | if (<cond>) <stmt> else <stmt>

 | while (<cond>) <stmt> | { <stmtList> }

Output language

Labels for some instructions; jump instructions BR and BZ

BR Li: branch unconditionally to instruction with label Li
BZ Ri, Lk: branch to instruction with label Lk but only if the value in

register Ri is zero (BZ = branch on zero); in many machine
languages, zero is a way to represent “false”

Li : : label Li; target of BR/BZ

93

Code Generation for Statements
<stmtList> ::= <stmt> <stmtList>2

 <stmtList>.code := concat(<stmt>.code,<stmtList>2.code)

| <stmt>

 <stmtList>.code := <stmt>.code

<stmt> ::= ident = <expr> ;

 <stmt>.code := concat(<expr>.code,

 newInstr(STORE, ident.lexval, <expr>.reg))

 | { <stmtList> }

 <stmt>.code := <stmtList>.code
94

Code Generation for Statements
<stmt> ::= if (<cond>) <stmt>2 else <stmt>3

 <stmt>.elseLabel := newLabel()
 <stmt>.exitLabel := newLabel()
 <stmt>.code := concat(
 <cond>.code, // leaves 0 in <cond>.reg if condition is “false”

 newInstr(BZ, <cond>.reg, <stmt>.elseLabel),
 <stmt>2.code,
 newInstr(BR, <stmt>.exitLabel),
 <stmt>.elseLabel,
 <stmt>3.code,
 <stmt>.exitLabel)

 95

Example
if (…) x = y+5; else x = 8;
code for … // leaves 0 in R8 if condition is “false”

BZ R8, L33 // jump to “else” if condition is “false”

LOAD R1, y
LOAD R2, 5
ADD R3, R1, R2
STORE x, R3
BR L34
L33: // else label

LOAD R4, 8
STORE x, R4
L34: // exit label

96

Code Generation for Statements
<stmt> ::= while (<cond>) <stmt>2
 <stmt>.startLabel := newLabel()
 <stmt>.exitLabel := newLabel()
 <stmt>.code := concat(
 <stmt>.startLabel,
 <cond>.code, // leaves 0 in <cond>.reg if condition is “false”

 newInstr(BZ, <cond>.reg, <stmt>.exitLabel),
 <stmt>2.code,
 newInstr(BR, <stmt>.startLabel),
 <stmt>.exitLabel)

97

Example
while (…) x = x+1;
L15: // start label

code for … // leaves 0 in R8 if condition is “false”

BZ R8, L16 // jump to “exit” if condition is “false”

LOAD R1, x
LOAD R2, 1
ADD R3, R1, R2
STORE x, R3
BR L15
L16: // exit label

98

Summary: Attribute Grammars
– Useful for expressing arbitrary cycle-free traversals

over context-free parse trees
– Synthesized and inherited attributes
– Conditions to reject invalid parse trees
– Evaluation order depends on attribute dependencies

– Uses: type checking and code generation
– Basic data structures (sets, maps, etc.) can be used
– The evaluation rules can call helper functions
– If functions have global effects (“side effects”),

need to define when these effects happen

99

	Brief Overview
	Main Questions in PL
	Why Study Foundations of PL?
	Example: Inside a Compiler
	Attribute Grammars
	Outline
	Formal Languages
	Grammars
	Languages and Grammars
	Use in Compilers and Interpreters
	Context-Free Languages
	BNF Example (related to the language for the project)
	String Derivation
	Slide Number 14
	Parse Tree
	Parse Tree Examples
	Slide Number 17
	Slide Number 18
	Ambiguous Grammar
	Classic Examples of Ambiguity
	Binary Operators in Math
	Operator Associativity in PL
	Why Does Ambiguity Matter?
	Why Does Ambiguity Matter?
	Slide Number 25
	Elimination of Ambiguity
	Elimination of Ambiguity
	Adding Parentheses
	Abstract Syntax Trees (AST)
	Use of Context-Free Grammars
	Limitations of Context-Free Grammars
	Attribute Grammars
	Structure of an Attribute Grammar
	Example
	Example
	Parse Tree
	Parse Tree for an Attribute Grammar
	Modified Example
	Comments
	Synthesized vs. Inherited Attributes
	Synthesized vs. Inherited Attributes
	Example (revisited)
	Example: Binary Numbers
	BNF Parse Tree for Input 1010
	Example: Binary Numbers
	Evaluated Parse Tree
	Complex Evaluation Rules
	Attribute Evaluation: Dependence Graph
	Algorithm for Attribute Evaluation
	Example: Binary Numbers
	Dependence Graph for Binary Numbers
	Sort the Graph
	Cycles
	Use Scenario 1: Simple Type Checking
	Type Checking: Simple Examples
	Slide Number 56
	Our Type Checking Goals
	Attributes for Type Checking Solution
	Type Checking: Expressions
	Type Checking: Expressions
	Slide Number 61
	Slide Number 62
	Attributes for Type Checking Solution
	Slide Number 64
	Type Checking: Symbol Tables
	Type Checking: Symbol Tables
	Type Checking: Assignments
	Type Checking: Assignments
	Example
	Efficiency Of Type Checking
	Slide Number 71
	Slide Number 72
	Typechecking: Expressions
	Typechecking: Expressions
	Typechecking: Symbol Tables
	Typechecking: Symbol Tables
	Example
	Attribute Grammars with Side Effects
	Side Effects and Order of Evaluation
	Use Scenario 2: More Type Checking
	Context-Free Grammar
	Type Checking Goals
	Slide Number 83
	Type Checking: Expressions
	Type Checking: Symbol Tables
	Type Checking: Function Calls
	Use Scenario 3: Code Generation
	Code Generation for Expressions
	Code Generation Strategy
	Simple Code Generation
	Observations
	Example
	Code Generation for Statements
	Code Generation for Statements
	Code Generation for Statements
	Example
	Code Generation for Statements
	Example
	Summary: Attribute Grammars

