
Abstract Interpretation

Simple Language (from the programming projects)

<expr> ::= const | id [only consider integer vars/consts; in the project also do float]

 | <expr> + <expr> | <expr> - <expr>

 | <expr> * <expr> | <expr> / <expr>

 | (<expr>)

<cond> ::= true | false | <expr> < <expr> [also <=, >, >=, ==, !=]

 | <cond> && <cond> | <cond> || <cond>

 | ! <cond> | (<cond>)

2

Abstract Memory State (we will just say “Abstract State”)

Abstract state: a map σa from vars to abstract values
A summarization of many possible concrete states

σa : Vars → { Neg, Zero, Pos, AnyInt }
Vars is the set of all variable names in the program

In a concrete (non-abstract) state σ we map to { 0, -1, 1, -2, 2, … }
Here we use an abstraction of this set of concrete values
 σa(id) = Neg: represents all concrete states with σ(id) < 0
 σa(id) = Zero: represents all concrete states with σ(id) = 0
 σa(id) = Pos: represents all concrete states with σ(id) > 0
 σa(id) = AnyInt: represents all concrete states

For illustration, we will use this abstraction to prove the absence
of “division by zero” errors statically, without running the program

3

Abstract Evaluation
Abstract evaluation relation for arithmetic
expressions: triples <ae, σa>  va

 ae is a parse subtree derived from <expr>
 σa is an abstract state
 va is an abstract value∈{ Neg, Zero, Pos, AnyInt }
Meaning of <ae, σa>  va : the evaluation of ae from any
concrete state σ abstracted by σa, if it completes successfully,
will produce a concrete value v abstracted by va

Example: <x+y+1, [x↦Pos, y↦Pos]>  Pos

Example: <x*y-1, [x↦Zero, y↦Pos]>  Neg
4

Evaluation for Arithmetic Expressions
Syntax: id | const | <expr> + <expr> | …

<id, σa>  σa(id)

va = va1 +a va2
<ae1, σa>  va1 <ae2, σa>  va2

 <ae1+ae2, σa >  va

Here we use abstract addition operator +a working on abstract values

<const, σa>  Pos

5

if const.lexval is a positive integer; similarly for Zero and Neg

static error if σa(id) is undefined; use of uninitialized variable

Evaluation for Arithmetic Expressions

6

+a Neg Zero Pos AnyInt

Neg Neg Neg AnyInt AnyInt

Zero Zero Pos AnyInt

Pos Pos AnyInt

AnyInt AnyInt

-a Neg Zero Pos AnyInt

Neg

Zero

Pos

AnyInt

first
operand

Let’s try this first ourselves; don’t look at next slide yet

second operand

Evaluation for Arithmetic Expressions

7

+a Neg Zero Pos AnyInt

Neg Neg Neg AnyInt AnyInt

Zero Zero Pos AnyInt

Pos Pos AnyInt

AnyInt AnyInt

-a Neg Zero Pos AnyInt

Neg AnyInt Neg Neg AnyInt

Zero Pos Zero Neg AnyInt

Pos Pos Pos AnyInt AnyInt

AnyInt AnyInt AnyInt AnyInt AnyInt

first
operand

second operand

Evaluation for Arithmetic Expressions

8

*a Neg Zero Pos AnyInt

Neg

Zero

Pos

AnyInt

/a Neg Zero Pos AnyInt

Neg

Zero

Pos

AnyInt

first
operand

Let’s try this first ourselves; don’t look at next slide yet

second operand

Semantics of concrete /: treat as reals, then round toward zero

Evaluation for Arithmetic Expressions

9

*a Neg Zero Pos AnyInt

Neg Pos Zero Neg AnyInt

Zero Zero Zero Zero

Pos Pos AnyInt

AnyInt AnyInt

/a Neg Zero Pos AnyInt

Neg AnyInt AnyInt

Zero Zero Zero

Pos AnyInt AnyInt

AnyInt AnyInt AnyInt

first
operand

second operand

Abstract operation is undefined: cannot guarantee the
absence of run-time division-by-zero error

Example:
Pos /a Pos
5 / 3 = 1
2/ 3 = 0
To represent
both outcomes
we use AnyInt

Integers vs Floats

10

/a Neg Zero Pos AnyFloat

Neg Pos Neg

Zero Zero Zero

Pos Neg Pos

AnyFloat AnyFloat AnyFloat

first
operand

second operand

/a Neg Zero Pos AnyInt

Neg AnyInt AnyInt

Zero Zero Zero

Pos AnyInt AnyInt

AnyInt AnyInt AnyInt

first
operand

second operand

Division Example

11

int x = 3; [x↦Pos]
int z = -x; [x↦Pos, z↦Neg]
int w = x - z + 5; [x↦Pos, z↦Neg, w↦Pos]
w = w / x; [x↦Pos, z↦Neg, w↦AnyInt]
x = x / w; static checking error: w may be 0 [but not really…]

We could choose to be less conservative: only complain if
we are sure that the second operand is zero

/a Neg Zero Pos AnyInt

Neg AnyInt AnyInt AnyInt

Zero Zero Zero Zero

Pos AnyInt AnyInt AnyInt

AnyInt AnyInt AnyInt AnyInt

first
operand

second operand

Integers vs Floats: Less Conservative

12

/a Neg Zero Pos AnyFloat

Neg Pos Neg AnyFloat

Zero Zero Zero Zero

Pos Neg Pos AnyFloat

AnyFloat AnyFloat AnyFloat AnyFloat

first
operand

second operand

/a Neg Zero Pos AnyInt

Neg AnyInt AnyInt AnyInt

Zero Zero Zero Zero

Pos AnyInt AnyInt AnyInt

AnyInt AnyInt AnyInt AnyInt

first
operand

second operand

Trade-Offs in Algorithm Design
More conservative version: if it does not report an
error, we are guaranteed that every execution will not
have div-by-zero error

Less conservative version: if it does report an error,
we are guaranteed that every execution will have an
div-by-zero error

– This will avoid false warnings, but will also miss some
programs with run-time div-by-zero errors

This is an example of a typical trade-off in the design
of static checking algorithms
13

Evaluation for Boolean Expressions

14

<cond> ::= true | false | <expr> < <expr> [also <=, >, >=, ==, !=]

 | <cond> && <cond> | <cond> || <cond>

 | ! <cond> | (<cond>)

Concrete: <be, σ>  v
 v is a value from { true, false }

Abstract: <be, σa>  AnyBool
For now, keep it simple: statically, assume that at run time,
both true and false are possible. Do not look inside these
expressions and do not check. We will revisit this later.

Statements: <s, σa > σ′a

<ae, σa >  va

<id=ae, σa>  σa [id↦va]

<skip, σa>  σa

<s1, σa>  σa1 <s2, σa>  σa2

<if (be) s1 else s2, σa>  σ′a

15

σ′a = merge(σa1,σa2)

<s1, σa>  σa1

<if (be) s1, σa>  σ′a

σ′a = merge(σa,σa1)

Merging of Abstract States

16

merge Neg Zero Pos AnyInt

Neg Neg AnyInt AnyInt AnyInt

Zero Zero AnyInt AnyInt

Pos Pos AnyInt

AnyInt AnyInt

Do it variable-by-variable:
1) If the variable is defined in both abstract states: use this table

2) If the variable is defined in only one abstract state: undefined
in the merged state [this will allow us to catch uninitialized variables; details later]

3) If the variable is undefined in both abstract states: remains
undefined in the merged state

Example of Merging

17

merge Neg Zero Pos AnyInt

Neg Neg AnyInt AnyInt AnyInt

Zero Zero AnyInt AnyInt

Pos Pos AnyInt

AnyInt AnyInt

 resulting state:
x = 1; [x↦Pos]
y = -2; [x↦Pos, y↦Neg]
if (…)
 z = x+1; [x↦Pos, y↦Neg, z↦Pos]
else
 z = x-y; [x↦Pos, y↦Neg, z↦Pos]
 [x↦Pos, y↦Neg, z↦Pos]

Example of Merging

18

merge Neg Zero Pos AnyInt

Neg Neg AnyInt AnyInt AnyInt

Zero Zero AnyInt AnyInt

Pos Pos AnyInt

AnyInt AnyInt

 resulting state:
x = 1; [x↦Pos]
y = -2; [x↦Pos, y↦Neg]
if (…)
 z = x+1; [x↦Pos, y↦Neg, z↦Pos]
else
 z = x+y; [x↦Pos, y↦Neg, z↦AnyInt]
 [x↦Pos, y↦Neg, z↦AnyInt]

Loops: < while (be) s, σa > σ′a

19

We abstract the loop condition as “don’t know; could be true
or false’’; need to consider all possible executions of the loop
 0 iterations: σ′a = σa
 1 iteration: if <s, σa>  σa1 , then σ′a = σa1
 2 iterations: if <s, σa1>  σa2, then σ′a = σa2 and so on
σ′a = merge(σa, σa1, σa2, σa3, …): infinite number of σak
But: σ′a can be computed in a finite number of steps

σ′a0 = σa
σ′a1 = merge(σ′a0, σa1)
σ′a2 = merge(σ′a1, σa2)
σ′a3 = merge(σ′a2, σa3) and so on
This converges: after a while we have σ′ak = σ′a(k-1) [details omitted]

Interpreter for the Abstract Semantics
If we implement an interpreter, we get a static checker for
division-by-zero errors and use-before-initialization errors

20

Code implementation (e.g., for the programming projects)

AbstractValue abs_eval(TreeNode n, AbstractState s) { …
 if (n is a plus expression) return
 abs_plus(abs_eval(left subexpr, s), abs_eval(right subexpr, s));
}
or, in a more object-oriented style
class BinaryExpr {
 AbstractValue abs_eval(AbstractState s) { …
 if (this is a plus expression)
 return abs_plus(expr1.abs_eval(s), expr2.abs_eval(s));
 }
}

Interpreter for the Abstract Semantics

21

Code implementation for if-then-else
 abs_exec(TreeNode n, AbstractState s) {
 AbstractState s2 = s.copy(); // create a new table and copy all data
 abs_exec(then part, s); // updates s
 abs_exec(else part, s2); // updates s2
 abs_merge(s, s2); // merge s2 into s; changes s
}
Code implementation for while loop
AbstractState abs_exec(TreeNode n, AbstractState as) {
 // in a loop, abs_exec(body, current state) and
 // merge the current state σak into the result state σ′ak. stop after
 // convergence is seen with σ′ak = σ′a(k-1) and then return σ′ak
}

Project 4
Goal: modify Project 3 to do checking for possible
division by zero and use of uninitialized vars [but not inside
conditional expressions; will do in Project 5]

Code changes will be minimal: if you have code to do
real interpretation, it is not hard to change it to do
abstract interpretation

– State now contains abstract values
– Expressions are evaluated using the abstract operators
– If-then, if-then-else, and while-loops are changed as

described in the last few slides

22

Project 4
Implementation detail: Integers vs Floats
Use more refined versions of the abstract values: set
{ NegInt, ZeroInt, PosInt, AnyInt, NegFloat, ZeroFloat,
PosFloat, AnyFloat }

– Easier to handle division (has different semantics for ints vs
floats)

– Printing for testing/debugging/grading: print one of those 8
strings [e.g., not Neg, NEG, Neg_Int, NEGINT, … but exactly NegInt]

Printing:
– For statement print expr; abstractly evaluate the expression

and then println its abstract value [one of those 8 strings]
– Do not print the program
– Do not print the abstract state

23

Project 4
Static checking

Check 1: division by zero – report error if the second
operand of division is ZeroInt, AnyInt, ZeroFloat, AnyFloat
[this is the “more conservative” approach from earlier; could result in
false warnings a.k.a. false positives]

Check 2: use of uninitialized variable – error if a variable is
used in an expression but there is no value for the variable in
the abstract state

24

Uninitialized Variables
Example 1:
int x; int y = x;
when we try abs_eval(x) we will not find x in state

Example 2:
int x; if (…) { x = 1; } else {x = -2; } int y = x;
state after true branch [x↦Pos], state after false branch [x↦Neg], state
after merge [x↦AnyInt], checking is fine for int y = x;

Example 3:
int x; int z = 2; if (…) { x = 1; } else { … } int y = x;
state after true branch [x↦Pos, z↦Pos], state after false branch
[z↦Pos], state after merge [z↦Pos], error for int y = x;

Todo: at home, try an example with a while-loop
25

Project 5: Boolean Expressions Refined

26

<cond> ::= true | false | <expr> < <expr> [also <=, >, >=, ==, !=]

 | <cond> && <cond> | <cond> || <cond>

 | ! <cond> | (<cond>)

Abstract: <be, σa>  va where va∈ { True, False, AnyBool }

&&a True False AnyBool

True True False AnyBool

False False False

AnyBool AnyBool

Similarly for || and !

Short-Circuit Evaluation

27

Abstract: <be, σa>  va where va∈ { True, False, AnyBool }

Our abstract evaluation should “simulate” what happens in
concrete evaluations. For example, consider &&

Case 1: first operand evaluates to True [i.e., in all concrete
executions, the first operand will evaluate to true and the second
operand will definitely be evaluated]. So, in Project 5, evaluate
the second operand and use its value as the result of &&

Case 2: first operand evaluates to False [i.e., in all concrete
executions, the first operand will evaluate to false and the second
operand will definitely not be evaluated]. So, in Project 5, do not
evaluate the second operand and just produce False

Short-Circuit Evaluation

28

Case 3: first operand evaluates to AnyBool [i.e., in some
concrete executions, the first operand could possibly evaluate to true
and in those cases the second operand will be evaluated]. So, in
Project 5, evaluate abstractly the second operand and then
produce AnyBool &&a that value

Operator ||: do something similar, but suitable for OR

Comparisons
<cond> ::= … | <expr> < <expr> [also <=, >, >=, ==, !=]

<a Neg Zero Pos AnyInt

Neg AnyBool True True AnyBool

Zero False False True AnyBool

Pos False False AnyBool AnyBool

AnyInt AnyBool AnyBool AnyBool AnyBool

==a Neg Zero Pos AnyInt

Neg AnyBool False False AnyBool

Zero True False AnyBool

Pos AnyBool AnyBool

AnyInt AnyBool

In reality, will have comparisons for { NegInt, ZeroInt, PosInt, AnyInt} and
separately for { NegFloat, ZeroFloat, PosFloat, AnyFloat}, since we assume that
the input program successfully passed typechecking

If-Then-Else with Dead Code Errors

30

Code implementation for if-then-else
 abs_exec(TreeNode n, AbstractState s) {
 AbstractBool cond = abs_eval(condition, s);
 // case 1: statically guaranteed to be true; else part is dead code
 if (cond == True) { terminate with static error (dead code) }
 // case 2: statically guaranteed to be false; then part is dead code
 if (cond == False) { terminate with static error (dead code) }
 // case 3: do not know statically because cond == AnyBool
 AbstractState s2 = s.copy();
 abs_exec(then part, s); // updates s
 abs_exec(else part, s2); // updates s2
 abs_merge(s, s2); // merge s2 into s; changes s
}

If-Then with Dead Code Error

31

Code implementation for if-then
 abs_exec(TreeNode n, AbstractState s) {
 AbstractBool cond = abs_eval(condition, s);
 // case 1: statically guaranteed to be false; then part is dead code
 if (cond == False) { terminate with static error (dead code) }
 // case 2: statically guaranteed to be true; no merging needed
 if (cond == True) { abs_exec(then part, s); return; }
 // case 3: do not know statically because cond == AnyBool
 AbstractState s2 = s.copy();
 abs_exec(then part, s2); // updates s2
 abs_merge(s, s2); // merge s2 into s; changes s
}

While-Do with Dead Code Error

32

Code implementation for while-do loop
 abs_exec(TreeNode n, AbstractState s) {
 AbstractBool cond = abs_eval(condition, s);
 // case 1: statically guaranteed to be false; loop body is dead code
 if (cond == False) { terminate with static error (dead code) }
 // case 2: statically guaranteed to be true; at least one iteration;
 // modify the state for one iteration and continue with general case
 if (cond == True) { abs_exec(loop body, s); }
 // general case: process exactly how you did in Project 4;
 // do not re-evaluate the loop condition
 …
}

Why Case 2?
Example:
int x; int y = 0;
while (y < 100) { x = y; y = y+1; }
print x;
Project 3: successful completion, x is 99
Project 4: x is uninitialized in the abstract state immediately before the
loop; the analysis thinks that there could be zero iterations of the loop
and complains about uninitialized x at the print
Project 5: since ZeroInt <a PosInt, case 2 applies. The state is changed
to include an initial value for x. Then the loop is processed as usual,
starting from that modified state. The final value for x is AnyInt.
Project 5 without case 2: same as Project 4.
Food for thought: what would happen if we had int y = 1; instead?

33

Uninitialized Variables
Example 1:
int x; int y = x;
when we try abs_eval(x) we will not find x in state

Example 2:
int x = readint; int z; if (x > 0) { … } else { z = 1; } int y = z;
error reported for uninitialized z

Example 3:
int p = 1; int q = 2; int z; if (p<q) { z = 3; } else { … } int y = z;
error reported for uninitialized z, but at run time there is no error

Example 4:
int p = readint; int q = 1; int r; while(q<p) { q = q+1; r = q*q; } int y = r;

34

Uninitialized Variables in Java
Example 1: int x; int y = x;
Result: both our checker and javac complain

Example 2:
int x = readint; int z;
if (x > 0) { x = 0; } else { z = 1; }
int y = z;
vs.
int x = (new Scanner(System.in)).nextInt();
int z;
if (x > 0) { x = 0; } else { z = 1; }
int y = z;
Result: both our checker and javac complain

35

Uninitialized Variables in Java
Example 3:
int x = 1; int y = 2; int z = x + y;
int w;
if (z > 0) { w = 3; }
int v = w;
Result: javac incorrectly complains; our checker correctly accepts

Example 4: let us add “final” (write-once) in the Java code
final int x = 1; final int y = 2; final int z = x + y;
int w;
if (z > 0) { w = 3; }
int v = w;
Result: javac correctly accepts; our checker correctly accepts

36

Uninitialized Variables in Java
Example 5:
final int x = 1; final int y = 2; int z = x + y; int w;
if (z > 0) { w = 3; }
int v = w;
int p; z = -z;
if (z > 0) { p = 4; }
int q = p;
Result: javac complains about w and p; our checker complains about p

Example 6:
final int x = 1; final int y = 2; int w;
if (x < y) { w = 3; }
int v = w;
Result: javac correctly accepts; our checker incorrectly complains

37

	Abstract Interpretation
	Simple Language (from the programming projects)
	Abstract Memory State (we will just say “Abstract State”)
	Abstract Evaluation
	Evaluation for Arithmetic Expressions
	Evaluation for Arithmetic Expressions
	Evaluation for Arithmetic Expressions
	Evaluation for Arithmetic Expressions
	Evaluation for Arithmetic Expressions
	Integers vs Floats
	Division Example
	Integers vs Floats: Less Conservative
	Trade-Offs in Algorithm Design
	Evaluation for Boolean Expressions
	Statements: <s, σa > σa
	Merging of Abstract States
	Example of Merging
	Example of Merging
	Loops: < while (be) s, σa > σa
	Interpreter for the Abstract Semantics
	Interpreter for the Abstract Semantics
	Project 4
	Project 4
	Project 4
	Uninitialized Variables
	Project 5: Boolean Expressions Refined
	Short-Circuit Evaluation
	Short-Circuit Evaluation
	Comparisons
	If-Then-Else with Dead Code Errors
	If-Then with Dead Code Error
	While-Do with Dead Code Error
	Why Case 2?
	Uninitialized Variables
	Uninitialized Variables in Java
	Uninitialized Variables in Java
	Uninitialized Variables in Java

