
Abstract Interpretation



Simple Language (from the programming projects)

<expr> ::= const  | id  [only consider integer vars/consts; in the project also do float] 

                | <expr> + <expr> | <expr> - <expr>

             | <expr> * <expr> | <expr> / <expr>

                | ( <expr> )

<cond> ::= true  | false | <expr> < <expr>  [also <=, >, >=, ==, !=]

                | <cond> && <cond> | <cond> || <cond> 

             | ! <cond> | ( <cond> )
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Abstract Memory State (we will just say “Abstract State”)

Abstract state: a map σa from vars to abstract values
A summarization of many possible concrete states

σa : Vars → { Neg, Zero, Pos, AnyInt } 
Vars is the set of all variable names in the program

In a concrete (non-abstract) state σ we map to { 0, -1, 1, -2, 2, … }
Here we use an abstraction of this set of concrete values
 σa(id) = Neg: represents all concrete states with σ(id) < 0
 σa(id) = Zero: represents all concrete states with σ(id) = 0
 σa(id) = Pos: represents all concrete states with σ(id) > 0
 σa(id) = AnyInt: represents all concrete states

For illustration, we will use this abstraction to prove the absence   
of “division by zero” errors statically, without running the program

3



Abstract Evaluation
Abstract evaluation relation for arithmetic 
expressions: triples <ae, σa>  va 

 ae is a parse subtree derived from <expr>
 σa is an abstract state
 va is an abstract value∈{ Neg, Zero, Pos, AnyInt }
Meaning of <ae, σa>  va : the evaluation of ae from any 
concrete state σ abstracted by σa, if it completes successfully, 
will produce a concrete value v abstracted by va

Example: <x+y+1, [x↦Pos, y↦Pos]>  Pos 

Example: <x*y-1, [x↦Zero, y↦Pos]>  Neg
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Evaluation for Arithmetic Expressions
Syntax: id | const | <expr> + <expr> | …

<id, σa>  σa(id)

va  = va1  +a  va2 
<ae1, σa>  va1  <ae2, σa>  va2

             <ae1+ae2, σa >  va 

Here we use abstract addition operator +a  working on abstract values

<const, σa>  Pos
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if const.lexval is a positive integer; similarly for Zero and Neg

static error if σa(id) is undefined; use of uninitialized variable



Evaluation for Arithmetic Expressions
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+a Neg Zero Pos AnyInt

Neg Neg Neg AnyInt AnyInt

Zero Zero Pos AnyInt

Pos Pos AnyInt

AnyInt AnyInt

-a Neg Zero Pos AnyInt

Neg

Zero

Pos

AnyInt

first
operand

Let’s try this first ourselves; don’t look at next slide yet

second operand



Evaluation for Arithmetic Expressions
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+a Neg Zero Pos AnyInt

Neg Neg Neg AnyInt AnyInt

Zero Zero Pos AnyInt

Pos Pos AnyInt

AnyInt AnyInt

-a Neg Zero Pos AnyInt

Neg AnyInt Neg Neg AnyInt

Zero Pos Zero Neg AnyInt

Pos Pos Pos AnyInt AnyInt

AnyInt AnyInt AnyInt AnyInt AnyInt

first
operand

second operand



Evaluation for Arithmetic Expressions
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*a Neg Zero Pos AnyInt

Neg

Zero

Pos

AnyInt

/a Neg Zero Pos AnyInt

Neg

Zero

Pos

AnyInt

first
operand

Let’s try this first ourselves; don’t look at next slide yet

second operand

Semantics of concrete /: treat as reals, then round toward zero



Evaluation for Arithmetic Expressions
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*a Neg Zero Pos AnyInt

Neg Pos Zero Neg AnyInt

Zero Zero Zero Zero

Pos Pos AnyInt

AnyInt AnyInt

/a Neg Zero Pos AnyInt

Neg AnyInt AnyInt

Zero Zero Zero

Pos AnyInt AnyInt

AnyInt AnyInt AnyInt

first
operand

second operand

Abstract operation is undefined: cannot guarantee the 
absence of run-time division-by-zero error 

Example: 
Pos /a Pos
5 / 3 = 1
2/ 3 = 0
To represent 
both outcomes 
we use AnyInt



Integers vs Floats
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/a Neg Zero Pos AnyFloat

Neg Pos Neg

Zero Zero Zero

Pos Neg Pos

AnyFloat AnyFloat AnyFloat

first
operand

second operand

/a Neg Zero Pos AnyInt

Neg AnyInt AnyInt

Zero Zero Zero

Pos AnyInt AnyInt

AnyInt AnyInt AnyInt

first
operand

second operand



Division Example

11

int x = 3;  [x↦Pos] 
int z = -x;  [x↦Pos, z↦Neg] 
int w = x - z + 5;      [x↦Pos, z↦Neg, w↦Pos]
w = w / x;  [x↦Pos, z↦Neg, w↦AnyInt]
x = x / w;           static checking error: w may be 0 [but not really…]

We could choose to be less conservative: only complain if 
we are sure that the second operand is zero

/a Neg Zero Pos AnyInt

Neg AnyInt AnyInt AnyInt

Zero Zero Zero Zero

Pos AnyInt AnyInt AnyInt

AnyInt AnyInt AnyInt AnyInt

first
operand

second operand



Integers vs Floats: Less Conservative

12

/a Neg Zero Pos AnyFloat

Neg Pos Neg AnyFloat

Zero Zero Zero Zero

Pos Neg Pos AnyFloat

AnyFloat AnyFloat AnyFloat AnyFloat

first
operand

second operand

/a Neg Zero Pos AnyInt

Neg AnyInt AnyInt AnyInt

Zero Zero Zero Zero

Pos AnyInt AnyInt AnyInt

AnyInt AnyInt AnyInt AnyInt

first
operand

second operand



Trade-Offs in Algorithm Design
More conservative version: if it does not report an 
error, we are guaranteed that every execution will not 
have div-by-zero error

Less conservative version: if it does report an error, 
we are guaranteed that every execution will have an 
div-by-zero error

– This will avoid false warnings, but will also miss some 
programs with run-time div-by-zero errors

This is an example of a typical trade-off in the design 
of static checking algorithms
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Evaluation for Boolean Expressions
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<cond> ::= true  | false | <expr> < <expr>  [also <=, >, >=, ==, !=]

                | <cond> && <cond> | <cond> || <cond> 

             | ! <cond> | ( <cond> )

Concrete: <be, σ>  v
 v is a value from { true, false }

Abstract: <be, σa>  AnyBool
For now, keep it simple: statically, assume that at run time, 
both true and false are possible. Do not look inside these 
expressions and do not check. We will revisit this later.



Statements: <s, σa > σ′a

<ae, σa >  va

<id=ae, σa>  σa [id↦va]

<skip, σa>  σa 

<s1, σa>  σa1     <s2, σa>  σa2 

<if (be) s1 else s2, σa>  σ′a
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σ′a = merge(σa1,σa2)

<s1, σa>  σa1

<if (be) s1, σa>  σ′a 

σ′a = merge(σa,σa1)



Merging of Abstract States
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merge Neg Zero Pos AnyInt

Neg Neg AnyInt AnyInt AnyInt

Zero Zero AnyInt AnyInt

Pos Pos AnyInt

AnyInt AnyInt

Do it variable-by-variable:
1) If the variable is defined in both abstract states: use this table

2) If the variable is defined in only one abstract state: undefined 
in the merged state [this will allow us to catch uninitialized variables; details later] 

3) If the variable is undefined in both abstract states: remains 
undefined in the merged state



Example of Merging
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merge Neg Zero Pos AnyInt

Neg Neg AnyInt AnyInt AnyInt

Zero Zero AnyInt AnyInt

Pos Pos AnyInt

AnyInt AnyInt

  resulting state:
x = 1;   [x↦Pos]  
y = -2;   [x↦Pos, y↦Neg] 
if (…) 
    z = x+1;  [x↦Pos, y↦Neg, z↦Pos] 
else 
    z = x-y;   [x↦Pos, y↦Neg, z↦Pos]
   [x↦Pos, y↦Neg, z↦Pos]



Example of Merging
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merge Neg Zero Pos AnyInt

Neg Neg AnyInt AnyInt AnyInt

Zero Zero AnyInt AnyInt

Pos Pos AnyInt

AnyInt AnyInt

  resulting state:
x = 1;   [x↦Pos]  
y = -2;   [x↦Pos, y↦Neg] 
if (…) 
    z = x+1;  [x↦Pos, y↦Neg, z↦Pos] 
else 
    z = x+y;   [x↦Pos, y↦Neg, z↦AnyInt]
   [x↦Pos, y↦Neg, z↦AnyInt]



Loops: < while (be) s, σa > σ′a
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We abstract the loop condition as “don’t know; could be true 
or false’’; need to consider all possible executions of the loop
 0 iterations: σ′a = σa
 1 iteration: if <s, σa>  σa1 , then σ′a = σa1
 2 iterations: if <s, σa1>  σa2, then σ′a = σa2  and so on
σ′a = merge(σa, σa1, σa2, σa3, …): infinite number of σak
But: σ′a can be computed in a finite number of steps

σ′a0 = σa 
σ′a1 = merge(σ′a0, σa1)
σ′a2 = merge(σ′a1, σa2)
σ′a3 = merge(σ′a2, σa3) and so on
This converges: after a while we have σ′ak = σ′a(k-1) [details omitted]



Interpreter for the Abstract Semantics
If we implement an interpreter, we get a static checker for 
division-by-zero errors and use-before-initialization errors
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Code implementation (e.g., for the programming projects)

AbstractValue abs_eval(TreeNode n, AbstractState s) { … 
   if (n is a plus expression) return 
       abs_plus(abs_eval(left subexpr, s), abs_eval(right subexpr, s)); 
}
or, in a more object-oriented style
class BinaryExpr { 
   AbstractValue abs_eval(AbstractState s) { …
      if (this is a plus expression)
        return abs_plus(expr1.abs_eval(s), expr2.abs_eval(s));
   }
}



Interpreter for the Abstract Semantics
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Code implementation for if-then-else
 abs_exec(TreeNode n, AbstractState s) {
   AbstractState s2 = s.copy(); // create a new table and copy all data
   abs_exec(then part, s); // updates s
   abs_exec(else part, s2); // updates s2
   abs_merge(s, s2); // merge s2 into s; changes s
}
Code implementation for while loop
AbstractState abs_exec(TreeNode n, AbstractState as) {
   // in a loop, abs_exec(body, current state) and 
  // merge the current state σak into the result state σ′ak. stop after 
  // convergence is seen with σ′ak = σ′a(k-1)  and then return σ′ak
}



Project 4
Goal: modify Project 3 to do checking for possible 
division by zero and use of uninitialized vars [but not inside 
conditional expressions; will do in Project 5]

Code changes will be minimal: if you have code to do 
real interpretation, it is not hard to change it to do 
abstract interpretation

– State now contains abstract values
– Expressions are evaluated using the abstract operators
– If-then, if-then-else, and while-loops are changed as 

described in the last few slides
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Project 4
Implementation detail: Integers vs Floats
Use more refined versions of the abstract values: set       
{ NegInt, ZeroInt, PosInt, AnyInt, NegFloat, ZeroFloat, 
PosFloat, AnyFloat } 

– Easier to handle division (has different semantics for ints vs 
floats)

– Printing for testing/debugging/grading: print one of those 8 
strings [e.g., not Neg, NEG, Neg_Int, NEGINT, … but exactly NegInt]

Printing: 
– For statement print expr; abstractly evaluate the expression 

and then println its abstract value [one of those 8 strings]
– Do not print the program
– Do not print the abstract state
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Project 4
Static checking

Check 1: division by zero – report error if the second 
operand of division is ZeroInt, AnyInt, ZeroFloat, AnyFloat 
[this is the “more conservative” approach from earlier;  could result in 
false warnings a.k.a. false positives]

Check 2: use of uninitialized variable – error if a variable is 
used in an expression but there is no value for the variable in 
the abstract state
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Uninitialized Variables
Example 1:
int x; int y = x; 
when we try abs_eval(x) we will not find x in state

Example 2:
int x; if (…) { x = 1; } else {x = -2; } int y = x;
state after true branch [x↦Pos], state after false branch [x↦Neg], state 
after merge [x↦AnyInt], checking is fine for int y = x;

Example 3:
int x; int z = 2; if (…) { x = 1; } else { … } int y = x;
state after true branch [x↦Pos, z↦Pos], state after false branch 
[z↦Pos], state after merge [z↦Pos], error for int y = x;

Todo: at home, try an example with a while-loop
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Project 5: Boolean Expressions Refined
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<cond> ::= true  | false | <expr> < <expr>  [also <=, >, >=, ==, !=]

                | <cond> && <cond> | <cond> || <cond> 

             | ! <cond> | ( <cond> )

Abstract: <be, σa>  va where va∈ { True, False, AnyBool }

&&a True False AnyBool

True True False AnyBool

False False False

AnyBool AnyBool

Similarly for || and !



Short-Circuit Evaluation
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Abstract: <be, σa>  va where va∈ { True, False, AnyBool }

Our abstract evaluation should “simulate” what happens in 
concrete evaluations. For example, consider && 

Case 1: first operand evaluates to True [i.e., in all concrete 
executions, the first operand will evaluate to true and the second 
operand will definitely be evaluated]. So, in Project 5, evaluate 
the second operand and use its value as the result of &&

Case 2: first operand evaluates to False [i.e., in all concrete 
executions, the first operand will evaluate to false and the second 
operand will definitely not be evaluated]. So, in Project 5, do not 
evaluate the second operand and just produce False



Short-Circuit Evaluation
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Case 3: first operand evaluates to AnyBool [i.e., in some 
concrete executions, the first operand could possibly evaluate to true 
and in those cases the second operand will be evaluated]. So, in 
Project 5, evaluate abstractly the second operand and then 
produce AnyBool &&a that value

Operator ||: do something similar, but suitable for OR



Comparisons
<cond> ::= … | <expr> < <expr>  [also <=, >, >=, ==, !=]

<a Neg Zero Pos AnyInt

Neg AnyBool True True AnyBool

Zero False False True AnyBool

Pos False False AnyBool AnyBool

AnyInt AnyBool AnyBool AnyBool AnyBool

==a Neg Zero Pos AnyInt

Neg AnyBool False False AnyBool

Zero True False AnyBool

Pos AnyBool AnyBool

AnyInt AnyBool

In reality, will have comparisons for { NegInt, ZeroInt, PosInt, AnyInt} and 
separately for { NegFloat, ZeroFloat, PosFloat, AnyFloat}, since we assume that
the input program successfully passed typechecking



If-Then-Else with Dead Code Errors
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Code implementation for if-then-else
 abs_exec(TreeNode n, AbstractState s) {
   AbstractBool cond = abs_eval(condition, s);
   // case 1: statically guaranteed to be true; else part is dead code
   if (cond == True) { terminate with static error (dead code) }
   // case 2: statically guaranteed to be false; then part is dead code
   if (cond == False) { terminate with static error (dead code) }
   // case 3: do not know statically because cond == AnyBool 
   AbstractState s2 = s.copy();
   abs_exec(then part, s); // updates s
   abs_exec(else part, s2); // updates s2
   abs_merge(s, s2); // merge s2 into s; changes s
}



If-Then with Dead Code Error
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Code implementation for if-then
 abs_exec(TreeNode n, AbstractState s) {
   AbstractBool cond = abs_eval(condition, s);
   // case 1: statically guaranteed to be false; then part is dead code
   if (cond == False) { terminate with static error (dead code) }
   // case 2: statically guaranteed to be true; no merging needed
   if (cond == True) { abs_exec(then part, s); return; }
   // case 3: do not know statically because cond == AnyBool 
   AbstractState s2 = s.copy();
   abs_exec(then part, s2); // updates s2
   abs_merge(s, s2); // merge s2 into s; changes s
}



While-Do with Dead Code Error
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Code implementation for while-do loop
 abs_exec(TreeNode n, AbstractState s) {
   AbstractBool cond = abs_eval(condition, s);
   // case 1: statically guaranteed to be false; loop body is dead code
   if (cond == False) { terminate with static error (dead code) }
   // case 2: statically guaranteed to be true; at least one iteration;
   // modify the state for one iteration and continue with general case 
   if (cond == True) { abs_exec(loop body, s); }
   // general case: process exactly how you did in Project 4;
   // do not re-evaluate the loop condition
   …
}



Why Case 2?
Example:
int x; int y = 0;
while (y < 100) { x = y; y = y+1; }
print x;
Project 3: successful completion, x is 99
Project 4: x is uninitialized in the abstract state immediately before the 
loop; the analysis thinks that there could be zero iterations of the loop 
and complains about uninitialized x at the print
Project 5: since ZeroInt <a PosInt, case 2 applies. The state is changed 
to include an initial value for x. Then the loop is processed as usual, 
starting from that modified state. The final value for x is AnyInt.
Project 5 without case 2: same as Project 4.
Food for thought: what would happen if we had int y = 1; instead? 
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Uninitialized Variables
Example 1:
int x; int y = x; 
when we try abs_eval(x) we will not find x in state

Example 2:
int x = readint; int z; if (x > 0) { … } else { z = 1; } int y = z;
error reported for uninitialized z

Example 3:
int p = 1; int q = 2; int z; if (p<q) { z = 3; } else { … } int y = z;
error reported for uninitialized z, but at run time there is no error

Example 4:
int p = readint; int q = 1; int r; while(q<p) { q = q+1; r = q*q; }  int y = r;
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Uninitialized Variables in Java
Example 1: int x; int y = x; 
Result: both our checker and javac complain

Example 2: 
int x = readint; int z; 
if (x > 0) { x = 0; } else { z = 1; } 
int y = z;
vs.
int x = (new Scanner(System.in)).nextInt(); 
int z; 
if (x > 0) { x = 0; } else { z = 1; } 
int y = z;
Result: both our checker and javac complain
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Uninitialized Variables in Java
Example 3: 
int x = 1; int y = 2; int z = x + y;
int w;
if (z > 0) { w = 3; }
int v = w;
Result: javac incorrectly complains; our checker correctly accepts

Example 4: let us add “final” (write-once) in the Java code 
final int x = 1; final int y = 2; final int z = x + y;
int w;
if (z > 0) { w = 3; }
int v = w;
Result: javac correctly accepts; our checker correctly accepts
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Uninitialized Variables in Java
Example 5: 
final int x = 1; final int y = 2; int z = x + y; int w; 
if (z > 0) { w = 3; } 
int v = w;
int p; z = -z; 
if (z > 0) { p = 4; } 
int q = p;
Result: javac complains about w and p; our checker complains about p

Example 6:
final int x = 1; final int y = 2; int w;
if (x < y) { w = 3; }
int v = w;
Result: javac correctly accepts; our checker incorrectly complains
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