
Type Checking

Chapter 6, Section 6.3, 6.5

Inside the Compiler: Front End
• Lexical analyzer (aka scanner)

– Converts ASCII or Unicode to a stream of tokens
• Syntax analyzer (aka parser)

– Creates a parse tree (or AST) from the token stream
• Semantic analyzer

– Type checking and conversions; other semantic checks
• Generator of intermediate code

– Creates lower-level intermediate representation (IR):
e.g., three-address code

2

Types in Compilers
• Type checking: at compile time, guarantee that the

run-time behavior of the program will be correct
– The type of the operands match the type of the

operator (e.g., in Java && requires boolean operands)
– The types of actual parameters in a function call match

the types of the formal parameters
– Many other examples based on the type system of the

language
• Code generation

– Allocation of memory based on types (e.g., how many
bytes do we need for a struct with an int and a float?)

– Insert explicit type conversions
3

Outline
• Useful machinery: attribute grammars
• Analysis of declarations

– Representation of types
• Type checking

– What is the type of an expression, given the types of its
subexpressions? (synthesized attributes)

– Is there a type error in the program?
• Implicit type conversions: not in the source code,

but must be accounted for during type checking
and code generation
– E.g., int can be “silently promoted” to double

4

Attribute Grammars
• Given a context-free grammar: for each non-terminal,

define zero, one, or more attributes
– Called “syntax-directed definitions” in the Dragon Book

• An evaluation rule for each production
• Example: value of an expression with constants only

E → E1 + T E.val = E1.val + T.val
| T E.val = T.val

T → T1 * F T.val = T1.val * F.val
| F T.val = F.val

F → (E) F.val = E.val
| const F.val = const.lexval

– Attribute val for each E, T, and F node
– Attribute lexval for each const code

5

Attribute Grammars
• An attribute of a non-terminal X can be either

synthesized or inherited (but not both)
– Synthesized attribute X.a: computed from attributes of

X’s children (this is an oversimplification)

– Inherited attribute X.a: computed from attributes of X’s
parent (this is an oversimplification)

• A lexval attribute for a terminal (i.e., leaf node)
– Not computed by evaluation rules, but just provided by

the lexical analyzer (e.g., lexval for each const code)

6

Back to Types: Type Expressions
• What is a type and how do we represent it inside a

compiler? We will use type expressions for this
• A primitive type is a type expression (e.g., boolean,

char, byte, integer, long, float, double, void)
• An array type constructor, applied to

– non-array type (for the array elements)
– sequence of integers (for sizes of array dimensions)

and a non-array type expression
– E.g., array(integer,10,20) to represent the type of array

x with declaration int x[10][20];
• In our projects:

– Types.INT and Types.DOUBLE for primitive types
– No representation for array types; you need to add it

7

Type Expressions
• A record type constructor, applied to a list of pairs

(field name, type expression), is a type expression
– E.g., record { x:float, y:float, rgb:array(byte,3) } could be

the type expression for a C struct with fields x, y for
point coordinates and field rgb for RGB point color

• A function type constructor →, applied to two
type expressions, is a type expression
– E.g., suppose we have a function that takes an array of

10 floats and returns their sum
array(float,10) → float

8

Type Expressions
• A tuple type constructor ×, applied to a list of type

expressions
– E.g., record { x:float, y:float, rgb:array(byte,3) } × float
→ record { x:float, y:float, rgb:array(byte,3) } is a
function taking two parameters: a record and a float

• Type expressions can naturally be represented with
trees or DAGs (details in Dragon Book)

• From the type expression, we can determine how
many bytes will be needed in the generated code
– Note: there may be hardware alignment constraints – e.g., each

integer must start at an address divisible by 4; so, for type
record { integer, boolean, integer } padding may be needed
between the second and the third field (unused 3 bytes)

9

Declarations in Our Projects
decl → int id arrayDecl ; | double id arrayDecl ;
arrayDecl → [int_const] arrayDecl ; | ε

AST representation:
class Decl with fields String id, int type, List<Integer> dims

Project 3: create a symbol table and use for type checking
– Create representation for array types
– After parsing, examine all declarations and populate the symbol

table with each id and its type
– Semantic check: (as in C) re-declarations are not allowed
– Then, examine all expressions and check them

10

Type Checking
• Look at expressions to see if declared types are

consistent with variable usage
• Many checks of the form if (type expression 1 ==

type expression 2) OK otherwise report type error
• Checking: (1) types of subexpressions OK?

(2) decide the type of the whole expression

11

Example (subset of the language for the project)

E → id | int_const | double_const
E → id [E1] for simplicity, here we discuss only 1-dimensional arrays

E → E1+E2 | E1<E2 | E1 = E2

We will use a synthesized attribute E.type

First version of checking: strict matching of types

Second version (for the project): allow type
conversions, similarly to C

12

Attribute Grammar for Strict Type Checking
E → id

– Error if the variable is not declared
– E.type = getType(id.lexval) // get from symbol table

E → int_const
– E.type = int

E → double_const
– E.type = double

13

Attribute Grammar for Strict Type Checking
E → id [E1]

– Error if the variable is not declared
– If (getType(id.lexval) is not array(X,Y)) error
– If (E1.type is not int) error
– E.type = X

E → E1 = E2
– If (E1.type is not int or double) error
– If (E2.type is not int or double) error
– If (E1.type is not the same as E2.type) error
– E.type = E1.type

Project 3: Also need to check that the left-hand-side of an assignment operator has
an l-value: it can only be id or id [E1]

14

Attribute Grammar for Strict Type Checking
E → E1 + E2

– If (E1.type is not int or double) error
– If (E2.type is not int or double) error
– If (E1.type is not the same as E2.type) error
– E.type = E1.type

E → E1 < E2
– If (E1.type is not int or double) error
– If (E2.type is not int or double) error
– If (E1.type is not the same as E2.type) error
– E.type = int

In C there are no boolean types; the result of < is an integer
15

16

Implicit Type Conversions
• Values of one type are converted to another type

– E.g. addition: 3.0 + 4 : silently converts 4 to 4.0
– E.g. our earlier typechecking rules imply that operator +

has types int × int → int and double × double → double
– But now we also allow double × int → double and

int × double → double
• In general, whenever the type of an expression is

not appropriate
– The compiler silently converts it to another type
– Or, if not possible: compile-time error

17

Example: Conversions in Java [no need to remember this]

• Widening: converting a value into a “larger” type;
performed silently by the compiler

• Widening primitive conversions in Java
– byte to short, int, long, float, or double
– short to int, long, float, or double
– char to int, long, float, or double
– int to long, float, or double
– long to float or double
– float to double

18

Some Examples: Conversions in Java
• Assignment conversion: when the value of an

expression is assigned to a variable, convert the
expr. value to the type of the variable

• Call conversion: applied to each argument of a call
– The type of the argument expression is converted to

the type of the corresponding formal parameter
• Binary numeric conversion: for +, -, *, etc.

– If either operand is double, the other is converted to
double

– Otherwise, if either operand is float, the other is
converted to float

– Otherwise, if either operand is long, the other is
converted to long

– Otherwise, both are converted to int

Back to Our Simplified Language
• Let us allow implicit widening conversions from int to

double. What will be affected?
• For all binary operators: remove “If (E1.type is not the

same as E2.type) error“
• Old rule for E → E1 + E2

– If (E1.type is not int or double) error
– If (E2.type is not int or double) error
– If (E1.type is not the same as E2.type) error
– E.type = E1.type

• New rule
– First two checks are the same
– E.type = E1.type, if E2.type is integer
– E.type = double, otherwise

19

How About Assignments?
• New rule for E → E1 = E2 (assignment conversion, as in C:

right-hand-side value will be converted to the type of the left-hand
side expression, if possible)
– If (E1.type is not int or double) error
– If (E2.type is not int or double) error
– If (E1.type is int and E2.type is double) error
– E.type = E1.type

20

Project 3
• Type checking based on this approach
• For each AST node representing an expression,

remember its type
– E.g., add a field in class Expr and set it to E.type

• In preparation for Project 4: for each binary
expression, create a temporary variable of the
corresponding type
– E.g., for a = b + c + d; Project 4 will create code

_t1 = b + c;
a = _t1 + d;
For this, we will need to determine the type of _t1,
which is the same at the type of expression b + c21

	Type Checking
	Inside the Compiler: Front End
	Types in Compilers
	Outline
	Attribute Grammars
	Attribute Grammars
	Back to Types: Type Expressions
	Type Expressions
	Type Expressions
	Declarations in Our Projects
	Type Checking
	Example (subset of the language for the project)
	Attribute Grammar for Strict Type Checking
	Attribute Grammar for Strict Type Checking
	Attribute Grammar for Strict Type Checking
	Implicit Type Conversions
	Example: Conversions in Java [no need to remember this]
	Some Examples: Conversions in Java
	Back to Our Simplified Language
	How About Assignments?
	Project 3

