
Type Checking

Chapter 6, Section 6.3, 6.5



Inside the Compiler: Front End
• Lexical analyzer (aka scanner)

– Converts ASCII or Unicode to a stream of tokens
• Syntax analyzer (aka parser)

– Creates a parse tree (or AST) from the token stream
• Semantic analyzer 

– Type checking and conversions; other semantic checks
• Generator of intermediate code

– Creates lower-level intermediate representation (IR): 
e.g., three-address code
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Types in Compilers
• Type checking: at compile time, guarantee that the 

run-time behavior of the program will be correct
– The type of the operands match the type of the 

operator (e.g., in Java && requires boolean operands)
– The types of actual parameters in a function call match 

the types of the formal parameters
– Many other examples based on the type system of the 

language
• Code generation

– Allocation of memory based on types (e.g., how many 
bytes do we need for a struct with an int and a float?)

– Insert explicit type conversions
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Outline
• Useful machinery: attribute grammars
• Analysis of declarations

– Representation of types
• Type checking

– What is the type of an expression, given the types of its 
subexpressions? (synthesized attributes)

– Is there a type error in the program?
• Implicit type conversions: not in the source code, 

but must be accounted for during type checking 
and code generation
– E.g., int can be “silently promoted” to double
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Attribute Grammars
• Given a context-free grammar: for each non-terminal, 

define zero, one, or more attributes
– Called “syntax-directed definitions” in the Dragon Book

• An evaluation rule for each production
• Example: value of an expression with constants only 

E → E1 + T E.val = E1.val + T.val
| T E.val = T.val

T → T1 * F T.val = T1.val * F.val
| F T.val = F.val

F → ( E ) F.val = E.val
| const F.val = const.lexval

– Attribute val for each E, T, and F node
– Attribute lexval for each const code
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Attribute Grammars
• An attribute of a non-terminal X can be either 

synthesized or inherited (but not both)
– Synthesized attribute X.a: computed from attributes of 

X’s children (this is an oversimplification)

– Inherited attribute X.a: computed from attributes of X’s 
parent (this is an oversimplification)

• A lexval attribute for a terminal (i.e., leaf node)
– Not computed by evaluation rules, but just provided by 

the lexical analyzer (e.g., lexval for each const code)
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Back to Types: Type Expressions
• What is a type and how do we represent it inside a 

compiler? We will use type expressions for this
• A primitive type is a type expression (e.g., boolean, 

char, byte, integer, long, float, double, void)
• An array type constructor, applied to 

– non-array type (for the array elements)
– sequence of integers (for sizes of array dimensions)  

and a non-array type expression
– E.g., array(integer,10,20) to represent the type of array 

x with declaration int x[10][20];
• In our projects:

– Types.INT and Types.DOUBLE for primitive types
– No representation for array types; you need to add it
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Type Expressions
• A record type constructor, applied to a list of pairs 

(field name, type expression), is a type expression
– E.g., record { x:float, y:float, rgb:array(byte,3) } could be 

the type expression for a C struct with fields x, y for 
point coordinates and field rgb for RGB point color 

• A function type constructor →, applied to two 
type expressions, is a type expression
– E.g., suppose we have a function that takes an array of 

10 floats and returns their sum
array(float,10) → float 
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Type Expressions
• A tuple type constructor ×, applied to a list of type 

expressions
– E.g., record { x:float, y:float, rgb:array(byte,3) } × float
→ record { x:float, y:float, rgb:array(byte,3) } is a 
function taking two parameters: a record and a float

• Type expressions can naturally be represented with 
trees or DAGs (details in Dragon Book)

• From the type expression, we can determine how 
many bytes will be needed in the generated code 
– Note: there may be hardware alignment constraints – e.g., each 

integer must start at an address divisible by 4; so, for type   
record { integer, boolean, integer } padding may be needed 
between the second and the third field (unused 3 bytes)
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Declarations in Our Projects
decl → int id arrayDecl ;   | double id arrayDecl ; 
arrayDecl → [ int_const ] arrayDecl ;  | ε

AST representation: 
class Decl with fields String id, int type, List<Integer> dims

Project 3: create a symbol table and use for type checking
– Create representation for array types
– After parsing, examine all declarations and populate the symbol 

table with each id and its type
– Semantic check: (as in C) re-declarations are not allowed
– Then, examine all expressions and check them
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Type Checking
• Look at expressions to see if declared types are 

consistent with variable usage
• Many checks of the form if (type expression 1 == 

type expression 2) OK otherwise report type error
• Checking: (1) types of subexpressions OK?             

(2) decide the type of the whole expression 
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Example (subset of the language for the project)

E → id | int_const | double_const
E → id [E1] for simplicity, here we discuss only 1-dimensional arrays

E → E1+E2 | E1<E2 | E1 = E2

We will use a synthesized attribute E.type

First version of checking: strict matching of types

Second version (for the project): allow type 
conversions, similarly to C
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Attribute Grammar for Strict Type Checking
E → id

– Error if the variable is not declared
– E.type = getType(id.lexval)    // get from symbol table

E → int_const
– E.type = int

E → double_const
– E.type = double

13



Attribute Grammar for Strict Type Checking
E → id [ E1 ]

– Error if the variable is not declared
– If (getType(id.lexval) is not array(X,Y)) error
– If (E1.type is not int) error 
– E.type = X

E → E1 = E2
– If (E1.type is not int or double) error
– If (E2.type is not int or double) error
– If (E1.type is not the same as E2.type) error
– E.type = E1.type

Project 3: Also need to check that the left-hand-side of an assignment operator has 
an l-value: it can only be id or id [E1]
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Attribute Grammar for Strict Type Checking
E → E1 + E2 

– If (E1.type is not int or double) error
– If (E2.type is not int or double) error
– If (E1.type is not the same as E2.type) error
– E.type = E1.type

E → E1 < E2 
– If (E1.type is not int or double) error
– If (E2.type is not int or double) error
– If (E1.type is not the same as E2.type) error
– E.type = int

In C there are no boolean types; the result of < is an integer
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Implicit Type Conversions
• Values of one type are converted to another type

– E.g. addition: 3.0 + 4 : silently converts 4 to 4.0
– E.g. our earlier typechecking rules imply that operator +

has types int × int → int and double × double → double
– But now we also allow double × int → double and

int × double → double
• In general, whenever the type of an expression is 

not appropriate
– The compiler silently converts it to another type
– Or, if not possible: compile-time error
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Example: Conversions in Java [no need to remember this]

• Widening: converting a value into a “larger” type; 
performed silently by the compiler

• Widening primitive conversions in Java
– byte to short, int, long, float, or double
– short to int, long, float, or double
– char to int, long, float, or double
– int to long, float, or double
– long to float or double
– float to double
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Some Examples: Conversions in Java
• Assignment conversion: when the value of an 

expression is assigned to a variable, convert the 
expr. value to the type of the variable

• Call conversion: applied to each argument of a call
– The type of the argument expression is converted to 

the type of the corresponding formal parameter
• Binary numeric conversion: for +, -, *, etc.

– If either operand is double, the other is converted to 
double

– Otherwise, if either operand is float, the other is 
converted to float

– Otherwise, if either operand is long, the other is 
converted to long

– Otherwise, both are converted to int



Back to Our Simplified Language
• Let us allow implicit widening conversions from int to 

double. What will be affected?
• For all binary operators: remove “If (E1.type is not the 

same as E2.type) error“
• Old rule for E → E1 + E2 

– If (E1.type is not int or double) error
– If (E2.type is not int or double) error
– If (E1.type is not the same as E2.type) error
– E.type = E1.type 

• New rule
– First two checks are the same
– E.type = E1.type, if E2.type is integer
– E.type = double, otherwise
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How About Assignments?
• New rule for E → E1 = E2 (assignment conversion, as in C: 

right-hand-side value will be converted to the type of the left-hand 
side expression, if possible)
– If (E1.type is not int or double) error
– If (E2.type is not int or double) error
– If (E1.type is int and E2.type is double) error 
– E.type = E1.type
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Project 3
• Type checking based on this approach
• For each AST node representing an expression, 

remember its type
– E.g., add a field in class Expr and set it to E.type

• In preparation for Project 4: for each binary 
expression, create a temporary variable of the 
corresponding type
– E.g., for a = b + c + d; Project 4 will create code

_t1 = b + c;
a = _t1 + d; 
For this, we will need to determine the type of _t1, 
which is the same at the type of expression b + c21
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