Syntax Analysis

Chapter 1, Section 1.2.2 Chapter 4, Section 4.1, 4.2, 4.3, 4.4, 4.5 CUP Manual

Inside the Compiler: Front End

Lexical analyzer (aka scanner)

- Provides a stream of token to the syntax analyzer (aka parser), which then creates a parse tree
- Usually the parser calls the scanner: getNextToken()

Syntax analyzer (aka parser)

- Based on a context-free grammar which specifies precisely the syntactic structure of well-formed programs
 - Token names are terminal symbols of this grammar
- Error checking, reporting, and recovery are important concerns; we will not discuss them

Overview

- **Context-free grammars**
- Ambiguous grammars
- Top-down parsing
 - Essential first step: elimination of left recursion
 - Predictive parsing for LL(1) grammars
- Bottom-up parsing
 - Example: shift-reduce parsing for LR(1) grammars

Context-Free Grammars

Productions: $x \rightarrow y$

- **x** is a single non-terminal: the left side
- y is has zero or more terminals and non-terminals: the right side of the production
- E.g. $expr \rightarrow expr + const$

Alternative notation: Backus-Naur Form (BNF)

– E.g. <expr> ::= <expr> + <const>

Example: simple arithmetic expressions

```
E \rightarrow E + T \mid E - T \mid TT \rightarrow T * F \mid T / F \mid FF \rightarrow (E) \mid id
```

Derivations and Parse Trees

Start with the starting non-terminal, apply productions until a string of terminals is derived

- Leftmost derivation: the leftmost non-terminal at each step is chosen for expansion
- Rightmost derivation: the rightmost non-terminal
- Each derivation can be represented by a parse tree
 - Leaves are terminals or non-terminals
 - After a full derivation: leaves are terminals (or ε)

Parser: builds the parse tree for a given string of terminals

Example: using the grammar from the previous slide, show the parse tree for **a** + **b** * (**c** + **d**) * **e**

Ambiguity

Ambiguous grammar: more than one parse tree for some sentence

- Choice 1: make the grammar unambiguous
- Choice 2: leave the grammar ambiguous, but define some disambiguation rules to use during parsing
- Example: the dangling-else problem

Two parse trees for **if a then if b then x=1 else x=2**

- Choice 1: complex non-ambiguous version in Fig 4.10 in the Dragon Book (else is matched with the closest unmatched then); do not need to study it
- Choice 2: a "hint" to the parser (used in our projects)

Elimination of Ambiguity

 $expr \rightarrow expr + expr | expr * expr | (expr) | id$

Why is this grammar ambiguous? Earlier grammar: equivalent non-ambiguous grammar with the "normal" precedence and associativity

- has higher precedence than +
- both are left-associative

Recall the parse tree for **a** + **b** * (**c** + **d**) * **e**

Top-Down Parsing

- Goal: find the leftmost derivation for a given string
- General solution: recursive-descent parsing
 - To use this: need to eliminate any left recursion from the grammar
 - In the general case, parsing may require backtracking
- **Predictive** recursive-descent parsing
 - LL(k) grammars: only need to look at the next k symbols to decide which production to apply (no backtracking)
 - Important case in practice: LL(1) grammars

Prerequisite: Elimination of Left Recursion

Left-recursive grammar: possible $A \Rightarrow ... \Rightarrow A\alpha$

Simple case (here α and β are arbitrary sequences of terminals and non-terminals)

- Original grammar: $A \rightarrow A\alpha \mid \beta$
- New grammar: $A \rightarrow \beta A'$ and $A' \rightarrow \alpha A' \mid \epsilon$

More complex case

- Original: $A \rightarrow A\alpha_1 \mid ... \mid A\alpha_m \mid \beta_1 \mid ... \mid \beta_n$
- New: $A \rightarrow \beta_1 A' \mid ... \mid \beta_n A' \text{ and } A' \rightarrow \alpha_1 A' \mid ... \mid \alpha_m A' \mid \epsilon$

Still not enough

- E.g. S is left-recursive in $S \rightarrow Aa \mid b$ and $A \rightarrow Ac \mid Sd \mid \epsilon$
- More details in Section 4.3.3 of Dragon book; we will not discuss in this course

Example with Left Recursion

Original grammar $E \rightarrow E + T \mid E - T \mid T$ $T \rightarrow T * F \mid T / F \mid F$

 $F \rightarrow (E) \mid id$

Modified grammar

```
E \rightarrow TE'
E' \rightarrow + TE' \mid - TE' \mid \varepsilon
T \rightarrow FT'
T' \rightarrow * FT' \mid / FT' \mid \varepsilon
F \rightarrow (E) \mid id
```

Recursive-Descent Parsing

One procedure for each non-terminal

- Parsing starts with a call to the procedure for the starting non-terminal
 - Success: if at the end of this call, the entire input string has been processed (no leftover symbols)
- void A() /* procedure for a non-terminal A */choose some production $A \rightarrow X_1 X_2 \dots X_k$ for (i = 1 to k) if (X_i is non-terminal) call X_i () else if (X_i is equal to the current input symbol) move to the next input symbol otherwise report parse error

A Few Issues

Choosing which production $A \rightarrow X_1 X_2 \dots X_k$ to use

- There could be many possible productions for A
- If one of the choices does not work, backtrack the algorithm and try another choice
- Expensive and undesirable in practice
- Top-down parsing for programming languages: predictive recursive-descent (no backtracking)

LL(1) Grammars

Suitable for predictive recursive-descent parsing

- LL = "scan the input left-to-right; produce a leftmost derivation"; 1 = "use 1 symbol to decide"
- A left-recursive grammar cannot be LL(1)
- An ambiguous grammar cannot be LL(1)

For any $A \rightarrow \alpha \mid \beta$

13

- FIRST(α) and FIRST(β) must be disjoint sets
 - FIRST(α) = terminals that could be the first symbol of something derived from α
- If current input symbol is in FIRST(α): use $A \rightarrow \alpha$
- If current input symbol is in FIRST(β): use $A \rightarrow \beta$
- Otherwise report parsing error
- Only look at current input symbol to make a decision

Some Examples of Sets FIRST Grammar with eliminated left recursion $E \rightarrow T E'$ $E' \rightarrow + TE' \mid - TE' \mid \varepsilon$ $T \rightarrow F T'$ $T' \rightarrow *FT' \mid /FT' \mid \varepsilon$ $F \rightarrow (E) \mid id$ $FIRST(F) = FIRST(T) = FIRST(E) = \{ (, id \} \}$ FIRST(E') = { + , - , ε } and FIRST(T') = { * , / , ε } FIRST((E)) = {(} and FIRST(id)) = {id} Parser code for F Use for LL(1) parsing: if (currToken==LPAREN) ... e.g. for $F \rightarrow (E)$ | id else if (currToken==ID) ... else error() 14

Sets FIRST

For any string α of terminals and non-terminals: FIRST(α) contains all terminals that could be the first symbol of some string derived from α

- $-\alpha \stackrel{*}{\Rightarrow} \alpha\beta$ where α is a terminal, means $\alpha \in \mathsf{FIRST}(\alpha)$
- $-\alpha \stackrel{*}{\Rightarrow} \epsilon$ means $\epsilon \in FIRST(\alpha)$ some complications ...

The simple cases:

- If α is just a single terminal a, FIRST(α) = { a }
- If α is a terminal *a* followed by anything, FIRST(α) = { *a* }
- If α is the empty string ε , FIRST(α) = { ε }
- The more complex cases: next slide
 - If α is just a single non-terminal
 - If $\boldsymbol{\alpha}$ is a non-terminal followed by something

Sets FIRST (cont)

FIRST(X) for a non-terminal X : consider each production $X \rightarrow Y_1 Y_2 \dots Y_n$

- Any terminal in $FIRST(Y_1)$ is also in FIRST(X)
- If $\varepsilon \in FIRST(Y_1)$, any terminal in $FIRST(Y_2)$ is in FIRST(X)
 - And if $\varepsilon \in FIRST(Y_2)$, any terminal in $FIRST(Y_3)$ is in FIRST(X), etc.
 - If $\varepsilon \in FIRST(Y_i)$ for all *i*, FIRST(X) also contains ε
- If $X \rightarrow \varepsilon$ is a production, FIRST(X) contains ε

 $FIRST(X_1X_2...X_n)$

- Any terminal in $FIRST(X_1)$
- If FIRST(X_1) contains ε , any terminal in FIRST(X_2), etc.
- If all FIRST(X_i) contain ε , FIRST($X_1X_2...X_n$) contains ε

Special Case: $\varepsilon \in FIRST(...)$

Example: consider $E' \rightarrow + TE' \mid - TE' \mid \epsilon$

- FIRST(+*TE*') = { + }, FIRST(-*TE*') = { }, FIRST(ϵ) = { ϵ }
- When do we choose production $E' \rightarrow \epsilon$?
- What is the actual code for the parser?
- We will not discuss in this course, but there is a systematic approach to handle this; leads to

LL(1) Parser

- Define a predictive parsing table
 - A row for a non-terminal A, a column for a terminal a
 - Cell [A,a] is the production that should be applied when we are inside A's parsing procedure and we see a
 - If the grammar is LL(1) only one choice per cell

	id	+	-	*	/	()	\$
Ε	$E \rightarrow T E'$					$E \rightarrow T E'$		
E′		$E' \rightarrow + TE'$	$E' \rightarrow -TE'$				$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
Т	$T \rightarrow F T'$					$T \rightarrow F T'$		
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$	$T' \rightarrow * FT'$	$T' \rightarrow / FT'$		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
F	$F \rightarrow id$					$F \rightarrow (E)$		

Example: a + b *	(c + d) * e
a + b * (c + d) * e \$	$E \rightarrow T E'$
a + b * (c + d) * e \$	$T \rightarrow F T'$
a + b * (c + d) * e \$	$F \rightarrow id$
+ b * (c + d) * e \$	$T' \rightarrow \varepsilon$
+ b * (c + d) * e \$	$E' \rightarrow + TE'$
b * (c + d) * e \$	$T \longrightarrow F T'$
b * (c + d) * e \$	$F \rightarrow id$
* (c + d) * e \$	$T' \rightarrow * F T'$
(c + d) * e \$	$F \rightarrow (E)$
c + d) * e \$	$E \rightarrow T E'$
c + d) * e \$	$T \longrightarrow F T'$
c+d)*e\$	$F \rightarrow id$

Ε Т F T' E′ Т F T' F Ε T

19 ***

F

Instead of Procedure Calls: Explicit Stack

Top of stack: terminal or nonterminal X; current input symbol: terminal a

- 1. Push *S* on top of stack
- 2. While stack is not empty
 - If (X == a)

Pop stack and move to the next input symbol

- Else if (X == some other terminal) Error
- Else if (table cell [X,a] is empty) Error
- Else: table cell [X,a] contains $X \rightarrow Y_1Y_2...Y_n$ Pop stack

Push Y_n, Push Y_{n-1}, ..., Push Y₁

Exercise at home: apply to the example from the previous slide

Different Approach: Bottom-Up Parsing

In general, more powerful than top-down parsing

- E.g., LL(k) grammars are not as general as LR(k)
- Basic idea: start at the leaves and work up
 - The parse tree "grows" upwards
- Shift-reduce parsing: general style of bottom-up parsing
 - Used for parsing LR(k) grammars
 - Used by automatic parser generators: given a grammar, it generates a shift-reduce parser for it (e.g., yacc, CUP)
 - yacc = "Yet Another Compiler Compiler"
 - CUP = "Constructor of Useful Parsers"

Reductions

Expressions again (now it is OK to be left-recursive) $E \rightarrow E + T \mid E - T \mid T$ $T \rightarrow T * F \mid T / F \mid F$ $F \rightarrow (E) \mid id$

At a reduction step, a substring matching the right side a production is replaced with the left size

- E.g., E + T is reduced to E because of $E \rightarrow E + T$

Parsing is a sequence of reduction steps

(1) id * id (2) F * id (3) T * id (4) T * F (5) T (6) E

This is a derivation in reverse: $E \Rightarrow T \Rightarrow T * F \Rightarrow T * id$ $\Rightarrow F * id \Rightarrow id * id$

Overview of Shift-Reduce Parsing

Left-to-right scan of the input

- Perform a sequence of reduction steps which correspond (in reverse) to a rightmost derivation
 - If the grammar is not ambiguous: there exists a unique rightmost derivation $S = \gamma_0 \Rightarrow \gamma_1 \Rightarrow ... \Rightarrow \gamma_n = w$
 - Each step also updates the tree (adds a parent node)
- At each reduction step, find a "handle"
 - If $\gamma_k \Rightarrow \gamma_{k+1}$ is $\alpha Av \Rightarrow \alpha \beta v$, then β is a handle of γ_{k+1}
 - Note that v is a string of terminals
 - Non-ambiguous grammar: only one handle of γ_{k+1}

Overview of Shift-Reduce Parsing (cont)

A stack holds grammar symbols; an input buffer holds the rest of the string to be parsed

- Initially: the stack is empty, the buffer contains the entire input string
- Successful completion: the stack contains the starting non-terminal, the buffer is empty

Repeat until success or error

- Shift zero or more input symbols from the buffer to the stack, until the top of the stack forms a handle
- Reduce the handle

Example of Shift-Reduce Parsing

Stack	Input	Action				
empty	$id_1 * id_2 $ \$	Shift				
id ₁	* id ₂ \$	Reduce by $F \rightarrow id$				
F	* id ₂ \$	Reduce by $T \rightarrow F$				
Т	* id ₂ \$	Shift				
T *	id ₂ \$	Shift				
7 * id ₂	\$	Reduce by $F \rightarrow id$				
T * F	\$	Reduce by $T \rightarrow T^* F$				
Т	\$	Reduce by $E \rightarrow T$				
Ε	\$	Accept				
25						

LR Parsers and Grammars

LR(*k*) parser: knowing the content of the stack and the next *k* input symbols is enough to decide

- LR="scan left-to-right; produce a rightmost derivation"
- -LR(k) grammar: we can define an LR(k) parser for it
- Non-LR grammar: conflicts during parsing
 - Shift/reduce conflict: shift or reduce?
 - Reduce/reduce conflict: several possible reductions
 - Typical example: any ambiguous grammar

SLR parsers ("simple-LR", Section 4.6), LALR parsers ("lookahead-LR", Section 4.7), canonical-LR (most general; Section 4.7); details will not be discussed

CUP Parser Generator

Input: grammar specification

- Has embedded Java code to be executed during parsing
- Output: a parser written in Java

Often uses a scanner produced by JFLex

Key components of the specification:

- Terminals and non-terminals
- Precedence and associativity
- Productions: terminals, non-terminals, actions
- Project 2: change the parser from Project 1

 And related changes to scanner and AST
 - while loops; for loops; operators <, <=, >, >=, ==, !=