
Syntax Analysis

Chapter 1, Section 1.2.2
Chapter 4, Section 4.1, 4.2, 4.3, 4.4, 4.5

CUP Manual 



Inside the Compiler: Front End
Lexical analyzer (aka scanner)

– Provides a stream of token to the syntax analyzer (aka 
parser), which then creates a parse tree

– Usually the parser calls the scanner: getNextToken()
Syntax analyzer (aka parser)

– Based on a context-free grammar which specifies 
precisely the syntactic structure of well-formed 
programs
• Token names are terminal symbols of this grammar

– Error checking, reporting, and recovery are important 
concerns; we will not discuss them

2



Overview
Context-free grammars
Ambiguous grammars
Top-down parsing

– Essential first step: elimination of left recursion
– Predictive parsing for LL(1) grammars

Bottom-up parsing
– Example: shift-reduce parsing for LR(1) grammars

3



Context-Free Grammars
Productions: x → y 

– x is a single non-terminal: the left side
– y is has zero or more terminals and non-terminals: the 

right side of the production
– E.g. expr → expr + const

Alternative notation: Backus-Naur Form (BNF)
– E.g. <expr> ::= <expr> + <const>

Example: simple arithmetic expressions
E → E + T | E - T | T
T → T * F | T / F | F
F → ( E ) | id

4



Derivations and Parse Trees
Start with the starting non-terminal, apply 
productions until a string of terminals is derived

– Leftmost derivation: the leftmost non-terminal at each 
step is chosen for expansion

– Rightmost derivation: the rightmost non-terminal
Each derivation can be represented by a parse tree

– Leaves are terminals or non-terminals
– After a full derivation: leaves are terminals (or ε)

Parser: builds the parse tree for a given string of 
terminals
Example: using the grammar from the previous slide, 
show the parse tree for a + b * ( c + d ) * e

5



Ambiguity
Ambiguous grammar: more than one parse tree for 
some sentence

– Choice 1: make the grammar unambiguous
– Choice 2: leave the grammar ambiguous, but define some 

disambiguation rules to use during parsing
Example: the dangling-else problem

stmt → if expr then stmt
|  if expr then stmt else stmt
| other

Two parse trees for if a then if b then x=1 else x=2
– Choice 1: complex non-ambiguous version in Fig 4.10 in the 

Dragon Book (else is matched with the closest unmatched 
then); do not need to study it

– Choice 2: a “hint” to the parser (used in our projects)
6



7

Elimination of Ambiguity

expr → expr + expr | expr * expr | ( expr ) | id

Why is this grammar ambiguous?
Earlier grammar: equivalent non-ambiguous grammar 
with the “normal” precedence and associativity
 * has higher precedence than +
 both are left-associative

Recall the parse tree for a + b * ( c + d ) * e 



Top-Down Parsing
Goal: find the leftmost derivation for a given string
General solution: recursive-descent parsing

– To use this: need to eliminate any left recursion from 
the grammar

– In the general case, parsing may require backtracking
Predictive recursive-descent parsing

– LL(k) grammars: only need to look at the next k symbols 
to decide which production to apply (no backtracking)
• Important case in practice: LL(1) grammars

8



Prerequisite: Elimination of Left Recursion
Left-recursive grammar: possible A ⇒ … ⇒ Aα
Simple case (here α and β are arbitrary sequences of terminals and 
non-terminals) 

– Original grammar: A → Aα | β
– New grammar: A → βA′ and A′ → αA′ | ε

More complex case
– Original: A → Aα1 | … | Aαm | β1 | … | βn
– New: A → β1 A′ | … | βn A′ and A′ → α1 A′ | … | αm A′ | ε

Still not enough
– E.g. S is left-recursive in S → Aa | b and A → Ac | Sd | ε
– More details in Section 4.3.3 of Dragon book; we will  

not discuss in this course
9



Example with Left Recursion 
Original grammar

E → E + T | E - T | T
T → T * F | T / F | F
F → ( E ) | id

Modified grammar
E → T E′
E′ → + T E′ |  - T E′ | ε
T → F T′
T′ → * F T′ |  / F T′ | ε
F → ( E ) | id

10



Recursive-Descent Parsing
One procedure for each non-terminal
Parsing starts with a call to the procedure for the 
starting non-terminal

– Success: if at the end of this call, the entire input string 
has been processed (no leftover symbols)

void A() /* procedure for a non-terminal A */
choose some production A → X1 X2 … Xk
for (i = 1 to k)

if (Xi is non-terminal) call Xi()
else if (Xi is equal to the current input symbol) 

move to the next input symbol
otherwise report parse error 

11



A Few Issues
Choosing which production A → X1 X2 … Xk to use

– There could be many possible productions for A
– If one of the choices does not work, backtrack the 

algorithm and try another choice
– Expensive and undesirable in practice

Top-down parsing for programming languages: 
predictive recursive-descent (no backtracking)

12



LL(1) Grammars
Suitable for predictive recursive-descent parsing

– LL = “scan the input left-to-right; produce a leftmost 
derivation”; 1 = “use 1 symbol to decide”

– A left-recursive grammar cannot be LL(1)
– An ambiguous grammar cannot be LL(1)

For any A →α | β
– FIRST(α) and FIRST(β) must be disjoint sets

• FIRST(α) = terminals that could be the first symbol of 
something derived from α

– If current input symbol is in FIRST(α): use A →α
– If current input symbol is in FIRST(β): use A →β
– Otherwise report parsing error
– Only look at current input symbol to make a decision13



Some Examples of Sets FIRST
Grammar with eliminated left recursion

E → T E′
E′ → + T E′ |  - T E′ | ε
T → F T′
T′ → * F T′ |  / F T′ | ε
F → ( E ) | id

FIRST(F) = FIRST(T) = FIRST(E) = { ( , id }
FIRST(E′ ) = { + , - , ε } and FIRST(T′ ) = { * , / , ε }
FIRST( ( E ) ) = { ( } and FIRST( id ) = { id }
Use for LL(1) parsing: 
e.g. for F → ( E ) | id

14

Parser code for F 
  if (currToken==LPAREN) … 
  else if (currToken==ID) …
  else error() 



Sets FIRST
For any string α of terminals and non-terminals: 
FIRST(α) contains all terminals that could be the first 
symbol of some string derived from α

– α⇒ aβ where a is a terminal, means a ∈ FIRST(α) 
– α⇒ ε means ε ∈ FIRST(α) – some complications …

The simple cases:
– If α is just a single terminal a, FIRST(α) = { a }
– If α is a terminal a followed by anything, FIRST(α) = { a }
– If α is the empty string ε, FIRST(α) = { ε }

The more complex cases: next slide
– If α is just a single non-terminal
– If α is a non-terminal followed by something 

15

*

*



Sets FIRST (cont)
FIRST(X) for a non-terminal X : consider each 
production X → Y1 Y2 … Yn

– Any terminal in FIRST(Y1) is also in FIRST(X)
– If ε ∈ FIRST(Y1), any terminal in FIRST(Y2) is in FIRST(X)

• And if ε ∈ FIRST(Y2), any terminal in FIRST(Y3) is in 
FIRST(X), etc.

• If ε ∈ FIRST(Yi) for all i, FIRST(X) also contains ε
– If X → ε is a production, FIRST(X) contains ε

FIRST(X1X2…Xn)
– Any terminal in FIRST(X1)
– If FIRST(X1) contains ε, any terminal in FIRST(X2), etc.
– If all FIRST(Xi) contain ε, FIRST(X1X2…Xn) contains ε

16



Special Case: ε ∈ FIRST(…) 
Example: consider E′ → + T E′ |  - T E′ | ε

– FIRST(+TE′ ) = { + }, FIRST(-TE′ ) = { - }, FIRST(ε) = { ε }
– When do we choose production E′ → ε ?
– What is the actual code for the parser? 

We will not discuss in this course, but there is a 
systematic approach to handle this; leads to

17

if (currToken==PLUS) {nextToken(); T(); Eprime();}
else if (currToken==MINUS) { … }
else if (currToken==RPAREN ||
         currToken==END_INPUT) { } // do nothing      
else error() 



LL(1) Parser
• Define a predictive parsing table

– A row for a non-terminal A, a column for a terminal a
– Cell [A,a] is the production that should be applied when 

we are inside A’s parsing procedure and we see a
– If the grammar is LL(1) – only one choice per cell

18

id + - * / ( ) $

E E → T E′ E → T E′

E′ E′ → + T E′ E′ → - T E′ E′ → ε E′ → ε

T T → F T′ T → F T′

T′ T′ → ε T′ → ε T′ → * F T′ T′ → / F T′ T′ → ε T′ → ε

F F → id F → ( E )



Example: a + b * ( c + d ) * e
E a + b * ( c + d ) * e $ E → T E′
T a + b * ( c + d ) * e $ T → F T′
F a + b * ( c + d ) * e $ F → id
T′ + b * ( c + d ) * e $ T′ → ε
E′ + b * ( c + d ) * e $ E′ → + T E′
T b * ( c + d ) * e $ T → F T′
F b * ( c + d ) * e $ F → id
T′ * ( c + d ) * e $ T′ → * F T′
F ( c + d ) * e $ F → ( E )
E c + d ) * e $ E → T E′
T c + d ) * e $ T → F T′
F c + d ) * e $ F → id
…19



Instead of Procedure Calls: Explicit Stack
Top of stack: terminal or nonterminal X ; current 
input symbol: terminal a
1. Push S on top of stack
2. While stack is not empty

– If (X == a) 
Pop stack and move to the next input symbol

– Else if (X == some other terminal)  Error
– Else if (table cell [X,a] is empty) Error
– Else: table cell [X,a] contains X → Y1Y2…Yn

Pop stack
Push Yn, Push Yn-1, …, Push Y1

Exercise at home: apply to the example from the previous slide
20



Different Approach: Bottom-Up Parsing
In general, more powerful than top-down parsing

– E.g., LL(k) grammars are not as general as LR(k)
Basic idea: start at the leaves and work up

– The parse tree “grows” upwards
Shift-reduce parsing: general style of bottom-up 
parsing

– Used for parsing LR(k) grammars
– Used by automatic parser generators: given a grammar, 

it generates a shift-reduce parser for it (e.g., yacc, CUP)
• yacc = “Yet Another Compiler Compiler”
• CUP = “Constructor of Useful Parsers”

21



Reductions
Expressions again (now it is OK to be left-recursive)

E → E + T | E - T | T
T → T * F | T / F | F
F → ( E ) | id

At a reduction step, a substring matching the right 
side a production is replaced with the left size

– E.g., E + T is reduced to E because of E → E + T
Parsing is a sequence of reduction steps

(1) id * id      (2) F * id      (3) T * id
(4) T * F (5) T (6) E

This is a derivation in reverse: E ⇒ T ⇒ T * F ⇒ T * id
⇒ F * id ⇒ id * id

22



Overview of Shift-Reduce Parsing
Left-to-right scan of the input
Perform a sequence of reduction steps which 
correspond (in reverse) to a rightmost derivation

– If the grammar is not ambiguous: there exists a unique 
rightmost derivation S = γ0 ⇒ γ1 ⇒ … ⇒ γn = w

– Each step also updates the tree (adds a parent node)
At each reduction step, find a “handle”

– If γk ⇒ γk+1 is αAv ⇒αβv, then β is a handle of γk+1
• Note that v is a string of terminals

– Non-ambiguous grammar: only one handle of γk+1

23



Overview of Shift-Reduce Parsing (cont)
A stack holds grammar symbols; an input buffer 
holds the rest of the string to be parsed

– Initially: the stack is empty, the buffer contains the 
entire input string

– Successful completion: the stack contains the starting 
non-terminal, the buffer is empty

Repeat until success or error
– Shift zero or more input symbols from the buffer to the 

stack, until the top of the stack forms a handle
– Reduce the handle

24



Example of Shift-Reduce Parsing
Stack Input Action

empty id1 * id2 $ Shift

id1 * id2 $ Reduce by F → id

F * id2 $ Reduce by T → F

T * id2 $ Shift

T  * id2 $ Shift

T  * id2 $ Reduce by F → id

T  * F $ Reduce by T → T * F

T $ Reduce by E → T

E $ Accept
25



LR Parsers and Grammars
LR(k) parser: knowing the content of the stack and 
the next k input symbols is enough to decide

– LR=“scan left-to-right; produce a rightmost derivation”
– LR(k)  grammar: we can define an LR(k) parser for it

Non-LR grammar: conflicts during parsing
– Shift/reduce conflict: shift or reduce?
– Reduce/reduce conflict: several possible reductions
– Typical example: any ambiguous grammar

SLR parsers (“simple-LR”, Section 4.6), LALR parsers 
(“lookahead-LR”, Section 4.7), canonical-LR (most 
general; Section 4.7); details will not be discussed

26



CUP Parser Generator
Input: grammar specification

– Has embedded Java code to be executed during parsing
Output: a parser written in Java
Often uses a scanner produced by JFLex
Key components of the specification:

– Terminals and non-terminals
– Precedence and associativity
– Productions: terminals, non-terminals, actions

• Project 2: change the parser from Project 1
– And related changes to scanner and AST
– while loops; for loops; operators <, <=, >, >=, ==, !=

27


	Syntax Analysis
	Inside the Compiler: Front End
	Overview
	Context-Free Grammars
	Derivations and Parse Trees
	Ambiguity
	Elimination of Ambiguity
	Top-Down Parsing
	Prerequisite: Elimination of Left Recursion
	Example with Left Recursion 
	Recursive-Descent Parsing
	A Few Issues
	LL(1) Grammars
	Some Examples of Sets FIRST
	Sets FIRST
	Sets FIRST (cont)
	Special Case:   FIRST(…) 
	LL(1) Parser
	Example: a + b * ( c + d ) * e 
	Instead of Procedure Calls: Explicit Stack
	Different Approach: Bottom-Up Parsing
	Reductions
	Overview of Shift-Reduce Parsing
	Overview of Shift-Reduce Parsing (cont)
	Example of Shift-Reduce Parsing
	LR Parsers and Grammars
	CUP Parser Generator

