Syntax Analysis

Chapter 1, Section 1.2.2
Chapter 4, Section 4.1, 4.2, 4.3, 4.4, 4.5
CUP Manual

Inside the Compiler: Front End

Lexical analyzer (aka scanner)
— Provides a stream of token to the syntax analyzer (aka
parser), which then creates a parse tree
— Usually the parser calls the scanner: getNextToken()

Syntax analyzer (aka parser)

— Based on a context-free grammar which specifies
precisely the syntactic structure of well-formed
programs

* Token names are terminal symbols of this grammar

— Error checking, reporting, and recovery are important

concerns; we will not discuss them

Overview
Context-free grammars
Ambiguous grammars

Top-down parsing
— Essential first step: elimination of left recursion
— Predictive parsing for LL(1) grammars

Bottom-up parsing
— Example: shift-reduce parsing for LR(1) grammars

Context-Free Grammars

Productions: x >y
— X is a single non-terminal: the left side
— vy is has zero or more terminals and non-terminals: the
right side of the production
— E.g. expr > expr + const

Alternative notation: Backus-Naur Form (BNF)
— E.g. <expr> ::= <expr> + <const>

Example: simple arithmetic expressions
ES>E+T|E-T|T
T>T*F|T/F|F
F—>(E) | id

Derivations and Parse Trees

Start with the starting non-terminal, apply

productions until a string of terminals is derived
— Leftmost derivation: the leftmost non-terminal at each
step is chosen for expansion
— Rightmost derivation: the rightmost non-terminal

Each derivation can be represented by a parse tree
— Leaves are terminals or non-terminals
— After a full derivation: leaves are terminals (or g)

Parser: builds the parse tree for a given string of
terminals

Example: using the grammar from the previous slide,
show the parse treefora+b *(c+d) *e

Ambiguity

Ambiguous grammar: more than one parse tree for
some sentence

— Choice 1: make the grammar unambiguous

— Choice 2: leave the grammar ambiguous, but define some
disambiguation rules to use during parsing

Example: the dangling-else problem
stmt — if expr then stmt

| if expr then stmt else stmt
| other

Two parse trees for if a then if b then x=1 else x=2

— Choice 1: complex non-ambiguous version in Fig 4.10 in the
Dragon Book (else is matched with the closest unmatched
then); do not need to study it

— Choice 2: a “hint” to the parser (used in our projects)

6

Elimination of Ambiguity

expr — expr + expr | expr * expr | (expr) | id

Why is this grammar ambiguous?
Earlier grammar: equivalent non-ambiguous grammar
with the “normal” precedence and associativity

= * has higher precedence than +

= both are left-associative

Recall the parse treefora+b *(c+d) *e

Top-Down Parsing
Goal: find the leftmost derivation for a given string

General solution: recursive-descent parsing
— To use this: need to eliminate any left recursion from
the grammar
— In the general case, parsing may require backtracking

Predictive recursive-descent parsing
— LL(k) grammars: only need to look at the next k symbols
to decide which production to apply (no backtracking)
* Important case in practice: LL(1) grammars

-
Prerequisite: Elimination of Left Recursion
Left-recursive grammar: possible A = ... = A«

Simple Case (here o and 3 are arbitrary sequences of terminals and
non-terminals)

— Original grammar: A > Ao | B

— New grammar: A —> BA"and A’ > 0A’ | €

More complex case
— Original: A > Ao,y | ... | Ao, | By | .| B,
—New:A—> B A | .. |B,AandA" > oA | ... |a, A | e

Still not enough
— E.g. Sis left-recursive inS— Aa|band A —> Ac | Sd | €
— More details in Section 4.3.3 of Dragon book; we will
not discuss in this course

Example with Left Recursion
Original grammar
E>E+T|E-T|T
T>T*F|T/F|F

F—>(E)|id
Modified grammar

E>TE’

E’—> +TE’| -TE’ | ¢

IT—>FT’

T"—> *FT’| [FT' |¢
F—>(E)|id

Recursive-Descent Parsing

One procedure for each non-terminal

Parsing starts with a call to the procedure for the

starting non-terminal
— Success: if at the end of this call, the entire input string
has been processed (no leftover symbols)

void A() /* procedure for a non-terminal A */
choose some production A = X, X, ... X
for (i =1 to k)
if (X, is non-terminal) call X,()
else if (X is equal to the current input symbol)
move to the next input symbol
otherwise report parse error

11

A Few lIssues

Choosing which production A — X, X, ... X, to use
— There could be many possible productions for A
— If one of the choices does not work, backtrack the
algorithm and try another choice
— Expensive and undesirable in practice

Top-down parsing for programming languages:
predictive recursive-descent (no backtracking)

LL(1) Grammars

Suitable for predictive recursive-descent parsing
— LL = “scan the input left-to-right; produce a leftmost
derivation”; 1 = “use 1 symbol to decide”
— A left-recursive grammar cannot be LL(1)
— An ambiguous grammar cannot be LL(1)

ForanyA—> o |
— FIRST(at) and FIRST([3) must be disjoint sets
* FIRST(a) = terminals that could be the first symbol of
something derived from o
— If current input symbol is in FIRST(a): use A > o
— If current input symbol is in FIRST([3): use A — 3
— Otherwise report parsing error

s — Only look at current input symbol to make a decision
D EEEGGEGEERERRERERS

Some Examples of Sets FIRST
Grammar with eliminated left recursion

E—>TE’

E’—> +TE’| -TE’ | ¢
T>FT’

T"—> *FT’ | [FT | ¢
F—>(E) | id

FIRST(F) = FIRST(T) = FIRST(E) = { (, id }
FIRST(E”) ={+,-,€}and FIRST(T")={*,/, €}
FIRST((E)) ={(}and FIRST(id) ={id }

Use for LL(1) parsing: Pesef odeforF ey .

e.g. for F— (E) | id else if (currToken==ID) ..

14 else error ()
D EEEGGEGEERERRERERS

N
Sets FIRST

For any string a of terminals and non-terminals:
FIRST(o) contains all terminals that could be the first

symbol of some string derived from o
— o. = af} where a is a terminal, means a € FIRST(a)
— oo = g means g€ € FIRST(a) — some complications ...

The simple cases:

— If o is just a single terminal a, FIRST(a) ={ a }

— If v is a terminal a followed by anything, FIRST(a) ={ a }
— If ot is the empty string g, FIRST(a) = { € }

The more complex cases: next slide

— If o is just a single non-termina
— If ovis a non-terminal followed by something

15
D EEEGGEGEERERRERERS

Sets FIRST (cont)

FIRST(X) for a non-terminal X : consider each

production X = Y, Y,.. Y,
— Any terminal in FIRST(Y;) is also in FIRST(X)
— If € € FIRST(Y,), any terminal in FIRST(Y,) is in FIRST(X)
* And if € € FIRST(Y,), any terminal in FIRST(Y;) is in
FIRST(X), etc.
* If € € FIRST(Y;) for all i, FIRST(X) also contains &
— If X —> € is a production, FIRST(X) contains €

FIRST(XX,...X)
— Any terminal in FIRST(X,)
— If FIRST(X,) contains g, any terminal in FIRST(X,), etc.
— If all FIRST(X:) contain g, FIRST(X,X,...X,) contains €

16

Special Case: € € FIRST(...)
Example: considerE” — +TE’ | -TE’ | €
— FIRST(+TE”) ={+}, FIRST(-TE”)={-}, FIRST(g) ={ €}
— When do we choose production E” > g ?
— What is the actual code for the parser?
We will not discuss in this course, but there is a
systematic approach to handle this; leads to

if (currToken==PLUS) {nextToken(); T(); Eprime() ;}
else if (currToken==MINUS) { .. }
else if (currToken==RPAREN | |

currToken==END INPUT) { } // do nothing

else error ()

LL(1) Parser

* Define a predictive parsing table
— A row for a non-terminal A, a column for a terminal a
— Cell [A,a] is the production that should be applied when
we are inside A’s parsing procedure and we see a
— If the grammar is LL(1) — only one choice per cell

1 N N AN (O O

E E—>TE’ E>TE’
E’ E'"—> +TE" E">-TE’ E"—>¢ E'—>¢
T TH>FT’ T>FT’
T’ T’ —>¢ T"— ¢ T">*FT’" T'> [FT’ T"—>e T >¢
F F—id F—>(E)

Example:a+b*(c+d) *e

E atb*(c+d)*eS$ E—>TE’

T a+tb*(c+d)*eS$ T>FT’

F a+b*(c+d)*e$ F—id

T’ +b*(c+d)*e$ T"—>¢

E’ +b*(c+d)*eS$S E’—> +TE’

T b*(c+d)*e$ T>FT’
b*(c+d)*e$ F—id

T’ *(c+d)*e$ T">*FT’

F (c+d)*e$ F—>(E)

E c+d)*e$S E—>TE’

T c+d)*eS$ T>FT’

F c+d)*e$S F— id

19 [XX]
D EEEGGEGEERERRERERS

Instead of Procedure Calls: Explicit Stack

Top of stack: terminal or nonterminal X ; current
input symbol: terminal a

1. Push S on top of stack

2. While stack is not empty
— If (X == q)
Pop stack and move to the next input symbol
— Else if (X == some other terminal) Error
— Else if (table cell [X,a] is empty) Error

— Else: table cell [X,a] contains X —> Y,Y,...Y,
Pop stack

PushY ,PushY, ,, .., PushY,

Exercise at home: apply to the example from the previous slide
20

Different Approach: Bottom-Up Parsing

In general, more powerful than top-down parsing
— E.g., LL(k) grammars are not as general as LR(k)

Basic idea: start at the leaves and work up
— The parse tree “grows” upwards

Shift-reduce parsing: general style of bottom-up
parsing
— Used for parsing LR(k) grammars
— Used by automatic parser generators: given a grammat,
it generates a shift-reduce parser for it (e.g., yacc, CUP)
 yacc = “Yet Another Compiler Compiler”
* CUP = “Constructor of Useful Parsers”

Reductions

Expressions again (now it is OK to be left-recursive)
E>E+T|E-T|T
T>T*F|T/F|F
F>(E)]|id
At a reduction step, a substring matching the right
side a production is replaced with the left size

—E.g., E+ Tisreduced to E because of ES> E+ T
Parsing is a sequence of reduction steps

(1)id*id (2)F*id (3)T*id

(4) T*F (5) T (6) E
This is a derivationinreverse: E=>T=>T*F=>T%*id
= F*id=id *id

22

-
Overview of Shift-Reduce Parsing

Left-to-right scan of the input

Perform a sequence of reduction steps which

correspond (in reverse) to a rightmost derivation
— If the grammar is not ambiguous: there exists a unique

rightmost derivation S=y, =27, = ..=>7,=w
— Each step also updates the tree (adds a parent node)

At each reduction step, find a “handle”

— Ify, = V., is 0Av = afv, then 3 is a handle of y, 4
* Note that v is a string of terminals
— Non-ambiguous grammar: only one handle of y,,,

Overview of Shift-Reduce Parsing (cont)

A stack holds grammar symbols; an input buffer

holds the rest of the string to be parsed
— Initially: the stack is empty, the buffer contains the
entire input string
— Successful completion: the stack contains the starting
non-terminal, the buffer is empty

Repeat until success or error
— Shift zero or more input symbols from the buffer to the
stack, until the top of the stack forms a handle
— Reduce the handle

Example of Shift-Reduce Parsing

empty id, *id, S
id, *id, $

F *id, S

T *id, S

T * id, S

T *id, S

T*F $

T S

E S

Shift

Reduce by F— id
Reduce by T—> F
Shift

Shift

Reduce by F— id
Reduceby T—>T*F
Reduce by E—>T
Accept

LR Parsers and Grammars

LR(k) parser: knowing the content of the stack and

the next k input symbols is enough to decide
— LR=“scan left-to-right; produce a rightmost derivation”
— LR(k) grammar: we can define an LR(k) parser for it

Non-LR grammar: conflicts during parsing
— Shift/reduce conflict: shift or reduce?
— Reduce/reduce conflict: several possible reductions
— Typical example: any ambiguous grammar
SLR parsers (“simple-LR”, Section 4.6), LALR parsers
(“lookahead-LR”, Section 4.7), canonical-LR (most

general; Section 4.7); details will not be discussed

26

CUP Parser Generator

Input: grammar specification
— Has embedded Java code to be executed during parsing

Output: a parser written in Java
Often uses a scanner produced by JFLex

Key components of the specification:
— Terminals and non-terminals
— Precedence and associativity
— Productions: terminals, non-terminals, actions

* Project 2: change the parser from Project 1
— And related changes to scanner and AST
— while loops; for loops; operators <, <=, >, >=, ==, |=

27

	Syntax Analysis
	Inside the Compiler: Front End
	Overview
	Context-Free Grammars
	Derivations and Parse Trees
	Ambiguity
	Elimination of Ambiguity
	Top-Down Parsing
	Prerequisite: Elimination of Left Recursion
	Example with Left Recursion
	Recursive-Descent Parsing
	A Few Issues
	LL(1) Grammars
	Some Examples of Sets FIRST
	Sets FIRST
	Sets FIRST (cont)
	Special Case:   FIRST(…)
	LL(1) Parser
	Example: a + b * (c + d) * e
	Instead of Procedure Calls: Explicit Stack
	Different Approach: Bottom-Up Parsing
	Reductions
	Overview of Shift-Reduce Parsing
	Overview of Shift-Reduce Parsing (cont)
	Example of Shift-Reduce Parsing
	LR Parsers and Grammars
	CUP Parser Generator

