
Lexical Analysis

Chapter 1, Section 1.2.1
Chapter 3, Section 3.1, 3.3, 3.4, 3.5

JFlex Manual

Inside the Compiler: Front End
• Lexical analyzer (aka scanner)

– Converts ASCII or Unicode to a stream of tokens
– Provides input to the syntax analyzer (aka parser), which

creates a parse tree from the token stream
– Usually the parser calls the scanner: getNextToken()

• Possible other scanner functionality
– Removes comments: e.g. /* … */ and // …
– Removes whitespaces: e.g., space, newline, tab
– May add identifiers to the symbol table
– May maintain information about source positions (e.g.,

file name, line number, column number) to allow more
meaningful error messages

2

Basic Definitions
• Token: token name and optional attribute value

– Token name if, no attribute: the if keyword
– Token name int_literal (integer literal), attribute is the

actual value (e.g., 144)
– The token name is an abstract symbol that is a terminal

symbol for the grammar in the parser
• Each token is defined by a pattern: e.g., token id

(identifier) is defined by the pattern “letter
followed by zero or more letters or digits”

• Lexeme: a sequence of input characters (ASCII or
Unicode) that matches the pattern
– the character sequence getPrice matches token id

3

Typical Categories of Tokens (example: Sec 6.4 of C Spec)

• One token per reserved keyword; no attribute
• One token per operator ; no attribute – e.g. plus
• One token id for all identifiers; attribute is a string

for the lexeme
– Names of variables, functions, user-defined types, …
– Alternatively, attribute could be a pointer to an entry in

the symbol table (with lexeme, type, etc.)
• One token for each type of literal; attribute is the

actual value
– E.g. (int_literal,5) or (string_literal,"Alice")

• One token per “punctuator”; no attribute
– E.g. left_parenthesis, comma, semicolon

4

Specifying Patterns for Tokens
• Formal languages: basis for the design and

implementation of programming languages
• Alphabet: finite set T of symbols
• String: finite sequence of symbols

– Empty string ε: sequence of length zero
– T* - set of all strings over T (incl. ε)
– T+ - set of all non-empty strings over T

• Language: set of strings L ⊆ T*
• Regular expressions: notation to express regular

languages
– Traditionally used to specify the token patterns

5

General Formal Grammars
• G = (N, T, S, P)

– Finite set of non-terminal symbols N
– Finite set of terminal symbols T
– Starting non-terminal symbol S ∈ N
– Finite set of productions P
– Describes a language L ⊆ T*

• Production: x → y
– x is a non-empty sequence of terminals and non-

terminals
– y is a sequence of terminals and non-terminals

• Applying a production: uxv ⇒ uyw

6

Example: Non-negative Integers
• N = { I, D }
• T = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
• S = I
• P = { I D,

I DI,
D 0,
D 1,
…,
D 9 }

7

More Common Notation
I D | DI - two production alternatives

D 0 | 1 | … | 9 - ten production alternatives

• Terminals: 0 … 9
• Starting non-terminal: I

– Shown first in the list of productions
• Examples of production applications:

step 1: I ⇒ DI step 4: D6I ⇒ D6D
step 2: DI ⇒ DDI step 5: D6D ⇒ 36D
step 3: DDI ⇒ D6I step 6: 36D ⇒ 361

8

Languages and Grammars
• String derivation

– w1 ⇒ w2 ⇒ … ⇒ wn; denoted w1 ⇒ wn
– If n>1, non-empty derivation sequence: w1 ⇒ wn

• Language generated by a grammar
– L(G) = { w ∈ T* | S ⇒ w }

• Fundamental theoretical characterization: Regular
languages ⊂ Context-free languages ⊂ Context-
sensitive languages ⊂ Unrestricted languages
– Regular languages in compilers: for lexical analysis

(a.k.a. scanning)
– Context-free languages in compilers: for syntax analysis

(a.k.a. parsing)
9

*
+

+

Regular Grammars
• Regular grammars generate regular languages

– All productions are A → wB and A → w
• A and B are non-terminals; w is a sequence of

terminals
• This is a right-regular grammar

– Or all productions are A → Bw and A → w
• Left-regular grammar

• Example: L = { anb | n > 0 } is a regular language
– S → Ab and A → a | Aa

• I D | DI and D 0 | 1 | … | 9 : is this a regular
grammar? Is the language itself regular?

10

Regular Expressions
• Instead of regular grammars, we often use regular

expressions to specify regular languages
• Background: Operations on languages

– Union: L ∪ M = all strings in L or in M
– Concatenation: LM = all ab where a in L and b in M
– L0 = { ε } and Li = Li-1L
– Closure: L* = L0 ∪ L1 ∪ L2 ∪ …
– Positive closure: L+ = L1 ∪ L2 ∪ …

• Regular expressions: notation to express languages
constructed with the help of such operations
– Example: (0|1|2|3|4|5|6|7|8|9)+

11

Regular Expressions
• Given some alphabet, a regular expression is

– The empty string ε
– Any symbol from the alphabet
– If r and s are regular expressions, so are r|s, rs, r*, r+, r?,

and (r)
– */+/? have higher precedence than concatenation,

which has higher precedence than |
– All are left-associative

12

Regular Expressions
• Each regular expression r defines a regular

language L(r)
– L(ε) = { ε }
– L(a) = { a } for alphabet symbol a
– L(r|s) = L(r) ∪ L(s)
– L(rs) = L(r)L(s)
– L(r*) = L(r)*

– L(r+) = L(r)+

– L(r?) = { ε } ∪ L(r)
– L((r)) = L(r)

• Example: what is the language defined by
0(x|X)(0|1|…|9|a|b|…|f|A|B|…|F)+

13

Specification of Regular Languages
• Equivalent formalisms

– Regular grammars
– Regular expressions
– Nondeterministic finite automata (NFA)
– Deterministic finite automata (DFA)

• In compilers:
– Regular expressions are used to specify the token

patterns
– Finite automata are used inside lexical analyzers to

recognize lexemes that match the patterns

14

Implementing a Lexical Analyzer
• Do the code generation automatically, using a

generator of lexical analyzers (a.k.a. scanner generator)

– High-level description of regular expressions and
corresponding actions

– Automatic generation of finite automata
– Sophisticated lexical analysis techniques – better that

what you can hope to achieve manually
• E.g.: lex and flex for C, JLex and JFlex for Java
• Can be used to generate

– Standalone scanners (i.e., have a “main”)
– Scanners integrated with automatically-generated

parsers (from parser generators yacc, bison, CUP, etc.)
15

Simple JFlex Example
[course web page under “Resources”]

• Standalone text substitution scanner
– Reads a name after the keyword name
– Substitutes all occurrences of "hello" with "hello

<name>!“

16

%%
%public
%class Subst
%standalone
%unicode
%{
String name;

%}
%%
"name " [a-zA-Z]+ { name = yytext().substring(5); }
[Hh] "ello" { System.out.print(yytext()+" "+name+"!"); }

Everything above %% is copied in the resulting
Java class (e.g., Java import, package, comments)

The generated Java class should be public
The generated Java class will be called Subst.java
Create a main method; no parser; unmatched text printed

Capable of handling Unicode input text (not only ASCII)

Code copied verbatim into the generated Java class

Start rules and actions

Reg expr

Returns the lexeme as String

Rules (Regular Expressions) and Actions
• The scanner picks a regular expressions that

matches the input and runs the action
• If several regular expressions match, the one with

the longest lexeme is chosen
– E.g., if one rule matches the keyword break and

another rule matches the id breaking, the id wins
• If there are several “longest” matches, the one

appearing earlier in the specification is chosen
• The action typically will create a new token for the

matched lexeme

17

Regular Expressions in JFlex
• Character (matches itself)

– Except meta characters | () { } [] < > \ . * + ? ^ $ / . " ~ !
• Escape sequence

– \n \r \t \f \b \x3F (hex ASCII) \u2BA7 (hex Unicode)
• Character classes

– [a0-3\n] is {a,0,1,2,3,\n}; [^a0-3\n] is any character not
in set; [^] is any character

– Predefined classes: e.g. [:letter:],[:digit:], . (matches all
characters except \n)

• " … " matches the exact text in double quotes
– All meta characters except \ and " lose their special

meaning inside a string
18

Regular Expressions in JFlex
• { MacroName }

– A macro can be defined earlier, in the second part of
the specification: e.g., LineTerminator = \r | \n | \r\n

– In the third part, it can be used with {LineTerminator}
• Operations on regular expressions

– a|b, ab, a*, a+, a?, !a, ~a, a{n}, a{n,m}, (a), ^a, a$, a/…,
• End of file: <<EOF>>
• Resouce: http://jflex.de/manual.html

– Read “Lexical Specifications”, subsection “Lexical rules”
– Read “A Simple Example: How to work with JFlex”

19

http://jflex.de/manual.html

Interoperability with CUP (1/2)
• CUP is a parser generator; grammar given in x.cup
• Terminal symbols of the grammar are encoded in a

CUP-generated class sym.java
public class sym {

public static final int MINUS = 4;
public static final int NUMBER = 9; … }

• The CUP-generated parser (in Parser.java) gets
from the scanner java_cup.runtime.Symbol objects
that represent tokens
– A Symbol contains a token type (from sym.java) and

optionally an Object with an attribute value, plus
source code location (start & end position)

20

Interoperability with CUP (2/2)
• Inside the lexical specification

– import java_cup.runtime.Symbol;
– Add %cup in part 2
– Return instances of Symbol

"-" { return new Symbol(sym.MINUS); }
{IntConst} { return new Symbol(sym.NUMBER,

new Integer(Integer.parseInt(yytext()))
• High-level overview of workflow

– Run JFlex to get Lexer.java
– Run CUP to get sym.java and Parser.java
– Main.java: new Parser(new Lexer(new FileReader(…)));
– Compile everything (javac Main.java)

21

Programming Project 1
• Details on web page under Projects
• simpleC – a simple subset of C
• Skeleton scanner and parser for simpleC, together

with corresponding AST generation
– AST = abstract syntax tree, a simplified parse tree

• Goal: extend the functionality to handle more
general identifiers, integer literals, floating point
literals, and binary operators

• Assignment: start working on this project today!

22

Constructing JFlex-like tools
• Well-known and investigated algorithms for

– Generating non-deterministic finite automata (NFA)
from regular expressions (Sect. 3.7.4)

– “Running” a NFA on a given string (Sect. 3.7.2)
– Generating deterministic finite automata (DFA) from

NFA (Sect. 3.7.1)
– Generating DFA from regular expressions (Sect. 3.9.5)
– Optimizing DFA to reduce number of states (Sect. 3.9.6)

• We will not cover these algorithms in this class

23

	Lexical Analysis
	Inside the Compiler: Front End
	Basic Definitions
	Typical Categories of Tokens (example: Sec 6.4 of C Spec)
	Specifying Patterns for Tokens
	General Formal Grammars
	Example: Non-negative Integers
	More Common Notation
	Languages and Grammars
	Regular Grammars
	Regular Expressions
	Regular Expressions
	Regular Expressions
	Specification of Regular Languages
	Implementing a Lexical Analyzer
	Simple JFlex Example �[course web page under “Resources”]
	Rules (Regular Expressions) and Actions
	Regular Expressions in JFlex
	Regular Expressions in JFlex
	Interoperability with CUP (1/2)
	Interoperability with CUP (2/2)
	Programming Project 1
	Constructing JFlex-like tools

