Lexical Analysis

Chapter 1, Section 1.2.1
Chapter 3, Section 3.1, 3.3, 3.4, 3.5
JFlex Manual

Inside the Compiler: Front End

* Lexical analyzer (aka scanner)
— Converts ASCII or Unicode to a stream of tokens
— Provides input to the syntax analyzer (aka parser), which
creates a parse tree from the token stream
— Usually the parser calls the scanner: getNextToken()

* Possible other scanner functionality
— Removes comments: e.g. /* ... */and // ...
— Removes whitespaces: e.g., space, newline, tab
— May add identifiers to the symbol table
— May maintain information about source positions (e.g.,
file name, line number, column number) to allow more
meaningful error messages

2

Basic Definitions

* Token: token name and optional attribute value
— Token name if, no attribute: the i £ keyword

— Token name int_literal (integer literal), attribute is the
actual value (e.g., 144)

— The token name is an abstract symbol that is a terminal
symbol for the grammar in the parser
* Each token is defined by a pattern: e.g., token id
(identifier) is defined by the pattern “letter
followed by zero or more letters or digits”

* Lexeme: a sequence of input characters (ASCII or

Unicode) that matches the pattern
— the character sequence getPrice matches token id

Typical Categories of Tokens (example: sec 6.4 of ¢ speq)
* One token per reserved keyword; no attribute
* One token per operator ; no attribute — e.g. plus
* One token id for all identifiers; attribute is a string

for the lexeme
— Names of variables, functions, user-defined types, ...

— Alternatively, attribute could be a pointer to an entry in
the symbol table (with lexeme, type, etc.)

* One token for each type of literal; attribute is the

actual value
— E.g. (int_literal,5) or (string_literal,"Alice")

* One token per “punctuator”; no attribute
— E.g. left_parenthesis, comma, semicolon

4

Specifying Patterns for Tokens

* Formal languages: basis for the design and
implementation of programming languages

* Alphabet: finite set T of symbols

e String: finite sequence of symbols
— Empty string €: sequence of length zero
— T* - set of all strings over T (incl. €)
— T* - set of all non-empty strings over T

* Language: set of strings Lc T*

* Regular expressions: notation to express regular

languages
— Traditionally used to specify the token patterns

5

General Formal Grammars
* G=(N,T,S,P)

— Finite set of non-terminal symbols N
— Finite set of terminal symbols T

— Starting non-terminal symbol S € N
— Finite set of productions P

— Describes a language Lc T*

* Production: x—>vy
— X is a non-empty sequence of terminals and non-
terminals
— vy is a sequence of terminals and non-terminals

* Applying a production: uxv = uyw

Example: Non-negative Integers
* N={I,D}
° T={OI 11213I41516I71819}

+ S=|
+ P={ 1D,
- DI,
D 2 0,
D 2 1,

D>9 }

More Common Notation
| > D | DI - two production alternatives

D>0|1]..]9 - ten production alternatives

e Terminals:0...9

e Starting non-terminal: |
— Shown first in the list of productions

* Examples of production applications:
step 1: 1 = DI step 4: D6l = D6D
step 2: DI = DDI step 5: D6D = 36D
step 3: DDl = D6l step 6: 36D = 361

Languages and Grammars

e String derivation
¥
—W; > W, =>..=>W,; denoted w;, => w,
— If n>1, non-empty derivation sequence: w, => w,_

* Language generated by a grammar
—L(G)={weT*| Séw}

* Fundamental theoretical characterization: Regular

languages c Context-free languages — Context-

sensitive languages — Unrestricted languages

— Regular languages in compilers: for lexical analysis
(a.k.a. scanning)

— Context-free languages in compilers: for syntax analysis
(a.k.a. parsing)

Regular Grammars

* Regular grammars generate regular languages
— All productions are A—>wB and A > w
* A and B are non-terminals; w is a sequence of
terminals
* This is a right-regular grammar
— Or all productions are A—>Bwand A > w
e Left-regular grammar

* Example:L={a"b | n>0}is aregularlanguage
—S—>Aband A—>a | Aa

e |>D|DlandD—>0]|1]..]|9:isthisaregular
grammar? Is the language itself regular?

10

Regular Expressions

* |nstead of regular grammars, we often use regular
expressions to specify regular languages

e Background: Operations on languages
— Union: LU M = all stringsin L or in M
— Concatenation: LM = all ab whereainLand bin M
—1%={g}and L' = L*IL
— Closure: L' = LU L1U 12U ...
— Positive closure: L* = 11U L2 U ...

* Regular expressions: notation to express languages

constructed with the help of such operations
— Example: (0]1]2]|3]4|5|6|7|8]9)*

11

Regular Expressions

* Given some alphabet, a regular expression is

— The empty string €

— Any symbol from the alphabet

— If r and s are regular expressions, so arer|s, rs, r’, r¥, r?,
and (r)

— */*/? have higher precedence than concatenation,
which has higher precedence than |

— All are left-associative

12

Regular Expressions

* Each regular expression r defines a regular
language L(r)
—L(e)={¢}
— L(a) ={ a } for alphabet symbol a
— L(r|s) = L(r) U L(s)
— L(rs) = L(r)L(s)
—L(r) = L(r)"
— L(r*) = L(r)*
— L(r?)={e}u L(r)
— L((r)) = L(r)
 Example: what is the language defined by
) O(x|X)(0]1]...]9]a|b]...|f|A]|B]...|F)*

Specification of Regular Languages

* Equivalent formalisms
— Regular grammars
— Regular expressions
— Nondeterministic finite automata (NFA)
— Deterministic finite automata (DFA)

* |[n compilers:
— Regular expressions are used to specify the token
patterns
— Finite automata are used inside lexical analyzers to
recognize lexemes that match the patterns

14

Implementing a Lexical Analyzer

* Do the code generation automatically, using a

generatOr of lexical analyzers (a.k.a. scanner generator)

— High-level description of regular expressions and
corresponding actions

— Automatic generation of finite automata

— Sophisticated lexical analysis techniques — better that
what you can hope to achieve manually

 E.g.: lex and flex for C, JLex and JFlex for Java

 Can be used to generate
— Standalone scanners (i.e., have a “main”)
— Scanners integrated with automatically-generated
. parsers (from parser generators yacc, bison, CUP, etc.)

Simp

e JFlex Example

[course web page under “Resources”]

e Standalone text su

ostitution scanner

— Reads a name after the keyword name
— Substitutes all occurrences of "hello" with "hello

<name>!“
Everything above %% is

copied in the resulting

Java class (e.g., Java import, package, comments)

%%

%public ¢mmmm The generated Java class should be public

%class Subst {mmmm The generated Java class will be called Subst.java
%standalone — Create a main method; no parser; unmatched text printed
%unicode €@ Capable of handling Unicode input text (not only ASCII)

%{

String name; — Code copied verbatim into the generated Java class
%} |
049, €@ Start rules and actions Returns the lexeme as String

"name " [a-zA-Z]+ €@ Reg expr
[Hh] "ello"

16

{ name = yytext().substring(5); }
{ System.out.print(yytext()+" "+name+"!"); }

Rules (Regular Expressions) and Actions
 The scanner picks a regular expressions that
matches the input and runs the action
* |f several regular expressions match, the one with

the longest lexeme is chosen
— E.g., if one rule matches the keyword break and

another rule matches the id breaking, the id wins

* |f there are several “longest” matches, the one
appearing earlier in the specification is chosen

* The action typically will create a new token for the
matched lexeme

17

Regular Expressions in JFlex

* Character (matches itself)
— Except meta characters | () {}[]<>\.*+?AS/."~1

* Escape sequence
—\n \r \t \f \b \x3F (hex ASCII) \u2BA7 (hex Unicode)

e Character classes
— [a0-3\n] is {a,0,1,2,3,\n}; [*a0-3\n] is any character not
in set; [] is any character
— Predefined classes: e.g. [:letter:],[:digit:], . (matches all
characters except \n)

e " .." matches the exact text in double quotes

— All meta characters except \ and " lose their special

. meaning inside a string
=

Regular Expressions in JFlex

 { MacroName }
— A macro can be defined earlier, in the second part of
the specification: e.g., LineTerminator =\r | \n | \r\n
— In the third part, it can be used with {LineTerminator}

* Operations on regular expressions
—a|b, ab, a*, a+, a?, la, ~a, a{n}, a{n,m}, (a), "3, a$, a/...,
* End of file: <<EOF>>

* Resouce: http://iflex.de/manual.html
— Read “Lexical Specifications”, subsection “Lexical rules”
— Read “A Simple Example: How to work with JFlex”

19

http://jflex.de/manual.html

Interoperability with CUP (1/2)
* CUP is a parser generator; grammar given in x.cup

* Terminal symbols of the grammar are encoded in a

CUP-generated class sym.java

public class sym {
public static final int MINUS = 4;
public static final int NUMBER = 9; ... }

 The CUP-generated parser (in Parser.java) gets

from the scanner java_cup.runtime.Symbol objects

that represent tokens

— A Symbol contains a token type (from sym.java) and
optionally an Object with an attribute value, plus
source code location (start & end position)

20

Interoperability with CUP (2/2)

* |nside the lexical specification
— import java_cup.runtime.Symbol;
— Add %cup in part 2
— Return instances of Symbol
"t { return new Symbol(sym.MINUS); }
{IntConst} {return new Symbol(sym.NUMBER,
new Integer(Integer.parselnt(yytext()))

* High-level overview of workflow
— Run JFlex to get Lexer.java
— Run CUP to get sym.java and Parser.java
— Main.java: new Parser(new Lexer(new FileReader(...)));
— Compile everything (javac Main.java)

21

-
Programming Project 1
* Details on web page under Projects

* simpleC —a simple subset of C

e Skeleton scanner and parser for simpleC, together
with corresponding AST generation
— AST = abstract syntax tree, a simplified parse tree

* Goal: extend the functionality to handle more
general identifiers, integer literals, floating point
literals, and binary operators

e Assignment: start working on this project today!

22

Constructing JFlex-like tools

* Well-known and investigated algorithms for

— Generating non-deterministic finite automata (NFA)
from regular expressions (Sect. 3.7.4)

— “Running” a NFA on a given string (Sect. 3.7.2)

— Generating deterministic finite automata (DFA) from
NFA (Sect. 3.7.1)

— Generating DFA from regular expressions (Sect. 3.9.5)

— Optimizing DFA to reduce number of states (Sect. 3.9.6)

* We will not cover these algorithms in this class

23

	Lexical Analysis
	Inside the Compiler: Front End
	Basic Definitions
	Typical Categories of Tokens (example: Sec 6.4 of C Spec)
	Specifying Patterns for Tokens
	General Formal Grammars
	Example: Non-negative Integers
	More Common Notation
	Languages and Grammars
	Regular Grammars
	Regular Expressions
	Regular Expressions
	Regular Expressions
	Specification of Regular Languages
	Implementing a Lexical Analyzer
	Simple JFlex Example �[course web page under “Resources”]
	Rules (Regular Expressions) and Actions
	Regular Expressions in JFlex
	Regular Expressions in JFlex
	Interoperability with CUP (1/2)
	Interoperability with CUP (2/2)
	Programming Project 1
	Constructing JFlex-like tools

