
Generation of Intermediate Code

Chapter 1, Section 1.2.4
Chapter 2, Section 2.8

Chapter 5, Section 5.1, 5.2, 5.3
Chapter 6, Section 6.1, 6.2, 6.4, 6.6

Outline
Program representations

Abstract syntax trees (ASTs)
Expression DAGs
Three-address code

Translation (to three-address code) of
Expressions
Flow-of-control statements

Projects 4 & 5: translate an AST to three-address
code

2

Abstract Syntax Trees (ASTs)
The Dragon Book calls them just “syntax trees”

– As opposed to “concrete syntax trees” = “parse trees”
– Each node represents a language construct
– Children represent the sub-constructs

Example: E → E + T
– Parse tree: node E with three children
– AST: + node with two children
– Example: Parse tree and AST for 1 + a * (2 + b) * 3

E → E + T | T
T → T * F | F
F → (E) | const | id

3

AST Construction
E → E1 + T E.node = newNode(+, E1 .node, T.node)
E → T E.node = T.node
T → T1 * F T.node = newNode(*, T1 .node, F.node)
T → F T.node = F.node
F → (E) F.node = E.node
F → const F.node = newLeaf(const, const.lexval)
F → id F.node = newLeaf(id, id.lexval)
AST construction can be done during parsing (no parse tree
built) or after it (first build parse tree, then AST)

4

Expression DAGs
Directed acyclic graph: common sub-expressions are
not replicated

– Example: a + a * (b – c) + (b – c) * d

Use a similar attribute grammar but reuse nodes
– newNode(op, left, right) checks if there already exists a

node with label op, and children left and right; returns
this node if it already exists

– newLeaf is modified in a similar way
5

+
+ *

*
−a

b c

d

Another Representation: Three-Address Code
AST is a high-level IR

– Close to the source language
– Suitable for tasks such as type checking

Three-address code is a lower-level IR
– Closer to the target language (i.e., assembly code)
– Suitable for tasks such as code generation/optimization

Basic ideas
– A small number of simple instructions: e.g. x = y op z
– A number of compiler-generated temporary variables

a = b + c + d; in source code  t = b + c; a = t + d;
– Simple flow of control – conditional and unconditional

jumps to labeled statements (no while-do, switch, …)
6

Addresses and Instructions
“Address”: a program variable, a constant, or a
compiler-generated temporary variable
Instructions

– x = y op z: binary operator op; y and z are variables,
temporaries, or constants; x is a variable or a temporary

– x = op y: unary operator op; y is a variable, a
temporary, or a constant; x is a variable or a temporary

– x = y: copy instruction; y is a variable, a temporary, or a
constant; x is a variable or a temporary

– More later: arrays, flow-of-control
– Each instruction contains at most three “addresses”

• Thus, three-address code
7

Translation of Expressions: Toy Example
A simple grammar for assignments and expressions

– Ambiguous, but it doesn’t matter – parsing is finished
S → id = E ;
E → E1 + E2
E → - E1
E → id

Two attributes
– Synthesized attribute code for S and E: sequence of

three-address instructions
– Synthesized attribute addr for E: the “address”

(program variable or temp or const) that will hold the
value of E

8

Toy Example: Translation
S → id = E ;

S.code = E.code || id.lexval "=" E.addr || is concatenation

E → E1 + E2
E.addr = newTemp()
E.code = E1.code || E2.code ||

E.addr "=" E1.addr "+" E2.addr
E → - E1

E.addr = newTemp()
E.code = E1.code || E.addr "=" "-" E1.addr

E → id
E.addr = id.lexval E.code = " "

9

Examples of Code Generation
x = y; produces three-address instruction x = y;

In a real compiler, x and y are pointers to rows in the
symbol table; here we will pretend they are just strings
(provided by id.lexval)

x = - y; produces t1 = - y; x = t1;
x = y + z; produces t1 = y + z; x = t1;
x = y + z + w; produces t1 = y + z; t2 = t1 + w; x = t2;
x = y + - z; produces t1 = - z; t2 = y + t1; x = t2;

10

More Complex Expressions & Assignments
All binary & unary operators are handled similarly
We run into more interesting issues with

– Expressions that have side effects
– Arrays

Example: E → … | E1 = E2 | E1 += E2 | id [E1]
– In C, we can write x = y = z + z: maybe it should be

translated to t1 = z + z; y = t1; x = t1; ?
– How should we translate x = y += w? How about

a[v = x += 1] = y = z += 2 + w? How about …

11

Language Features for Project 4
Will only consider expression statements and return statements

S → E ; | return E ;
E → id | intconst | doubleconst
E → id [E1] (discuss 1-dim arrays; implement multi-dim arrays)

E → E1+E2 | E1==E2 | … (+,-,*,/,%,==,!=,<,<=,>,>=)

E → E1 = E2 | E1 += E2 | … (=,+=,-=,*=,/=,%=)

12

L-values of Expressions
An expression E has an l-value if this expression can
appear on the left-hand-side of an assignment

– The type of an l-value is always “a chunk of memory”
– E.g. x is an int variable

• the value (called r-value) of expr x is some integer
• the l-value of expression x is the “chunk of memory”

(typically, 4 bytes) in which the integer resides
L-values: only for E → id | id[E1]
The semantic analyzer guarantees that the left
operand of an assignment operator has an l-value

– i.e. Project 3 has done the checking successfully
13

Modified Grammar for Project 4
E → E1 = E2 | E1 += E2 | …
becomes
E → id = E1 | id += E1 | id[E1] = E2 | id[E1] += E2 | …

Semantics of assignment operators
id = E1: result value is the new value of id
id += E1 is equivalent to (id = id + E1)
id[E1] = E2: evaluate E1 and E2 (in some unspecified order);
modify the array element; result is the new value
id[E1] += E2 is equivalent to (id[E1] = id[E1] + E2), except
that the evaluation of E1 happens only once

14

Translation
S → E ;

S.code = E.code
E → E1 + E2 (and similar binary operators -,*,/,%)

E.addr = newTemp() and E.code = E1.code || E2.code ||
E.addr "=" E1.addr "+" E2.addr But C semantics defines no order

E → E1 < E2 (and similar binary operators <=,>,>=,==,!=)

E.addr = newTemp() and E.code = E1.code || E2.code ||
E.addr "=" E1.addr “<" E2.addr But C semantics defines no order

E → id
E.addr = id.lexval E.code = " "

Note: for the project, we will assume <, >, etc. produce
integer values: 0 is false, not 0 is true (C semantics)15

Translation
E → intconst

E.addr = intconst.lexval and E.code = " " (same for doubleconst)

E → id[E1]
E.addr = newTemp()
E.code = E1.code || E.addr "=" id.lexval "[" E1.addr "]"

• Here we use x = y[z] instructions in the three-
address code

–y is an array-typed variable
–z is a variable, a temporary, or a constant
–x is a variable or a temporary

• Multi-dim arrays: x = y[u][v]…[w]
– In real compilers, need to use several instructions

16

Translation
E → id = E1

E.addr = E1.addr Here we do not need a new temp

E.code = E1.code || id.lexval "=" E1.addr
E → id[E1] = E2

E.addr = E2.addr Here we do not need a new temp

E.code = E2.code || E1.code || But C semantics defines no order

id.lexval "[" E1.addr "]" "=" E2.addr
• Here we use x[y] = z instructions

–x is an array variable
–y and z are variables, temporaries, or constants

17

Example
int a[10][20];
int x; int y; int z;
x = 1;
y = 2;
z = 3;
a[y-x][y+x] = z + 2*y;

18

int a[10][20];
int x; int y; int z;
int _t1; int _t2; int _t3;
int _t4; int _t5;
x = 1;
y = 2;
z = 3;
_t4 = 2 * y;
_t5 = z + _t4;
_t1 = y - x;
_t2 = y + x;
a[_t1][_t2] = _t5;

Example
int x; int y; int z; int w;
w = z = (x = 1) + (y = x+2);

19

int x; int y; int z; int w;
int _t1; int _t2;
x = 1;
_t1 = x + 2;
y = _t1;
_t2 = 1 + _t1;
z = _t2;
w = _t2;

Translation
E → id += E1

Treat this exactly as id = id + E1 (i.e., combination of the
rules for E → E1 + E2 and E → id = E1)
E.addr = newTemp() Here we do need a new temp

E.code = E1.code || E.addr "=" id.lexval "+" E1.addr ||
id.lexval "=" E.addr

20

Example
int x; int y; int z;
x = 1;
z = (x += 1) + (y += x+2);

21

int x; int y; int z;
int _t1; int _t2;
int _t3; int _t4;
x = 1;
_t1 = x + 1;
x = _t1;
_t2 = x + 2;
_t3 = y + _t2;
y = _t3;
_t4 = _t1 + _t3;
z = _t4;

Translation
E → id[E1] += E2

E.addr = newTemp()
E.code = E1.code ||

E.addr "=" id.lexval "[" E1.addr "]" ||
E2.code || E.addr "=" E.addr "+" E2.addr ||
id.lexval "[" E1.addr "]" "=" E.addr

22

Example
int a[10][20];
int x; int y; int z;
x = 1;
y = 2;
z = 3;
a[y-x][y+x] += z + 2*y;

23

int a[10][20];
int x; int y; int z;
int _t1; int _t2; int _t3;
int _t4; int _t5; int _t6;
x = 1; y = 2; z = 3;
_t1 = y - x;
_t2 = y + x;
_t6 = a[_t1][_t2];
_t4 = 2 * y;
_t5 = z + _t4;
_t6 = _t6 + _t5;
a[_t1][_t2] = _t6;

A Few Examples to Try at Home
x = y+z;
w = x = y+z;
a[x=y+z] = x;
a[x] = x = y+z;
x += y+z;
x += x = y+z;
a[v = x += 1] = y = z += 2 + w;

24

Flow of Control – Expressions & Statements
Boolean expressions – in C, any expression of scalar
type (in our subset of C, any int/double expr)

– Role 1: conditions of ifs and loops
– Role 2: assign to a variable

E → E1 < E2 |… <, <=, ==, !=, >, >=
S → E ; | return E; | ;
S → if (E) S1 | if (E) S1 else S2

S → while (E) S1 | for (E1; E2 ; E3) S1

S → { S1 … Sn } similarly for the whole program

25

Three-Address Instructions
New instructions

– goto L: unconditional jump to the three-address
instruction with label L

– if (address) goto L: the address contains a “boolean”
value

– But: for convenience we will use if (!address) goto L:
jump if the address contains the false “boolean” value

The labels are symbolic names
– We will just generate label names L1, L2, … using a

helper function newLabel(), in the same way we
generate temporaries with names t1, t2, … using a
helper function newTemp()

26

Translation
S → E ;

S.code = E.code
S → { S1 … Sn } similarly for the whole program

S.code = S1.code || … || Sn.code
S → if (E) S1

S.exitLabel = newLabel()
S.code =

E.code ||
"if (! " E.addr ") goto " S.exitLabel ||
S1.code ||
S.exitLabel

27

Example
int x; int y; int z;
x = 1;
y = 2;
z = 3;
if (x+y > z) z=x+y;

28

int x; int y; int z;
int _t1; int _t2; int _t3;
x = 1; y = 2; z = 3;
_t1 = x + y;
_t2 = _t1 > z;
if (!_t2) goto _l1;
_t3 = x + y;
z = _t3;
_l1:
;

Translation
S → if (E) S1 else S2

S.exitLabel = newLabel()
S.elseLabel = newLabel()
S.code =

E.code ||
"if (! " E.addr ") goto " S.elseLabel ||
S1.code ||
"goto " S.exitLabel ||
S.elseLabel ||
S2.code ||
S.exitLabel

29

Example
int x; int y; int z;
x = 1;
y = 2;
z = 3;
if (x+y > z) z=x+y;
else z=x-y;

30

int x; int y; int z;
int _t1; int _t2; int _t3; int_t4;
x = 1; y = 2; z = 3;
_t1 = x + y;
_t2 = _t1 > z;
if (!_t2) goto _l2;
_t3 = x + y;
z = _t3;
goto _l1;
_l2:
_t4 = x - y;
z = _t4;
_l1:
;

Translation
S → while (E) S1

S.startLabel = newLabel()
S.exitLabel = newLabel()
S.code =

S.startLabel ||
E.code ||
"if (! " E.addr ") goto " S.exitLabel ||
S1.code ||
"goto " S.startLabel ||
S.exitLabel

31

Example
int n; int i; int res;
n = 10;
i = 1;
res = 1;
while (i <= n) {

res *= i;
i += 1;

}

32

int n; int i; int res;
int _t1; int _t2; int _t3;
n = 10; i = 1; res = 1;
_l1:
_t1 = i <= n;
if (!_t1) goto _l2;
_t2 = res * i;
res = _t2;
_t3 = i + 1;
i = _t3;
goto _l1;
_l2:
;

	Generation of Intermediate Code
	Outline
	Abstract Syntax Trees (ASTs)
	AST Construction
	Expression DAGs
	Another Representation: Three-Address Code
	Addresses and Instructions
	Translation of Expressions: Toy Example
	Toy Example: Translation
	Examples of Code Generation
	More Complex Expressions & Assignments
	Language Features for Project 4
	L-values of Expressions
	Modified Grammar for Project 4
	Translation
	Translation
	Translation
	Example
	Example
	Translation
	Example
	Translation
	Example
	A Few Examples to Try at Home
	Flow of Control – Expressions & Statements
	Three-Address Instructions
	Translation
	Example
	Translation
	Example
	Translation
	Example

