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Outline
Program representations

Abstract syntax trees (ASTs)
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Three-address code

Translation (to three-address code) of 
Expressions
Flow-of-control statements

Projects 4 & 5: translate an AST to three-address 
code
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Abstract Syntax Trees (ASTs)
The Dragon Book calls them just “syntax trees”

– As opposed to “concrete syntax trees” = “parse trees”
– Each node represents a language construct
– Children represent the sub-constructs

Example: E → E + T
– Parse tree: node E with three children
– AST: + node with two children
– Example: Parse tree and AST for 1 + a * ( 2 + b ) * 3

E → E + T | T
T → T * F | F
F → ( E ) | const | id
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AST Construction
E → E1 + T E.node = newNode(+, E1 .node, T.node)
E → T E.node = T.node
T → T1 * F T.node = newNode(*, T1 .node, F.node)
T → F T.node = F.node
F → ( E ) F.node = E.node
F → const F.node = newLeaf(const, const.lexval)
F → id F.node = newLeaf(id, id.lexval)
AST construction can be done during parsing (no parse tree 
built) or after it (first build parse tree, then AST)
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Expression DAGs
Directed acyclic graph: common sub-expressions are 
not replicated

– Example: a + a * (b – c) + (b – c) * d

Use a similar attribute grammar but reuse nodes
– newNode(op, left, right) checks if there already exists a 

node with label op, and children left and right; returns 
this node if it already exists

– newLeaf is modified in a similar way
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Another Representation: Three-Address Code
AST is a high-level IR

– Close to the source language
– Suitable for tasks such as type checking

Three-address code is a lower-level IR
– Closer to the target language (i.e., assembly code)
– Suitable for tasks such as code generation/optimization

Basic ideas
– A small number of simple instructions: e.g. x = y op z
– A number of compiler-generated temporary variables

a = b + c + d; in source code  t = b + c; a = t + d; 
– Simple flow of control – conditional and unconditional 

jumps to labeled statements (no while-do, switch, …) 
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Addresses and Instructions
“Address”: a program variable, a constant, or a 
compiler-generated temporary variable
Instructions

– x = y op z: binary operator op; y and z are variables, 
temporaries, or constants; x is a variable or a temporary 

– x = op y: unary operator op; y is a variable, a 
temporary, or a constant; x is a variable or a temporary

– x = y: copy instruction; y is a variable, a temporary, or a 
constant; x is a variable or a temporary

– More later: arrays, flow-of-control
– Each instruction contains at most three “addresses”

• Thus, three-address code
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Translation of Expressions: Toy Example
A simple grammar for assignments and expressions

– Ambiguous, but it doesn’t matter – parsing is finished
S → id = E ;
E → E1 + E2
E → - E1
E → id

Two attributes
– Synthesized attribute code for S and E: sequence of 

three-address instructions
– Synthesized attribute addr for E: the “address” 

(program variable or temp or const) that will hold the 
value of E
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Toy Example: Translation
S → id = E ;

S.code = E.code || id.lexval "=" E.addr || is concatenation

E → E1 + E2
E.addr = newTemp()
E.code = E1.code || E2.code ||

E.addr "="  E1.addr "+" E2.addr
E → - E1

E.addr = newTemp()
E.code = E1.code || E.addr "=" "-" E1.addr

E → id
E.addr = id.lexval E.code = " "
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Examples of Code Generation
x = y; produces three-address instruction x = y; 

In a real compiler, x and y are pointers to rows in the 
symbol table; here we will pretend they are just strings 
(provided by id.lexval)

x = - y; produces t1 = - y; x = t1;
x = y + z; produces t1 = y + z; x = t1;
x = y + z + w; produces t1 = y + z; t2 = t1 + w; x = t2;
x = y + - z; produces t1 = - z; t2 = y + t1; x = t2;
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More Complex Expressions & Assignments
All binary & unary operators are handled similarly
We run into more interesting issues with

– Expressions that have side effects
– Arrays

Example: E → … | E1 = E2 | E1 += E2 | id [ E1 ]
– In C, we can write x = y = z + z: maybe it should be 

translated to t1 = z + z; y = t1; x = t1; ?
– How should we translate x = y += w? How about         

a[v = x += 1] = y = z += 2 + w? How about …
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Language Features for Project 4
Will only consider expression statements and return statements

S → E ;  |  return E  ;
E → id | intconst | doubleconst
E → id [E1] (discuss 1-dim arrays; implement multi-dim arrays)

E → E1+E2 | E1==E2 | …  (+,-,*,/,%,==,!=,<,<=,>,>=)

E → E1 = E2 | E1 += E2 | … (=,+=,-=,*=,/=,%=)
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L-values of Expressions
An expression E has an l-value if this expression can 
appear on the left-hand-side of an assignment

– The type of an l-value is always “a chunk of memory”
– E.g. x is an int variable

• the value (called r-value) of expr x is some integer
• the l-value of expression x is the “chunk of memory” 

(typically, 4 bytes) in which the integer resides 
L-values: only for E → id | id[E1]
The semantic analyzer guarantees that the left 
operand of an assignment operator has an l-value

– i.e. Project 3 has done the checking successfully
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Modified Grammar for Project 4
E → E1 = E2 | E1 += E2 | … 
becomes
E → id = E1 | id += E1 | id[E1] = E2 | id[E1] += E2 | … 

Semantics of assignment operators 
id = E1: result value is the new value of id 
id += E1 is equivalent to (id = id + E1)
id[E1] = E2: evaluate E1 and E2 (in some unspecified order); 
modify the array element; result is the new value
id[E1] += E2 is equivalent to (id[E1] = id[E1] + E2), except 
that the evaluation of E1 happens only once
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Translation
S → E ; 

S.code = E.code
E → E1 + E2 (and similar binary operators -,*,/,%)

E.addr = newTemp() and E.code = E1.code || E2.code || 
E.addr "=" E1.addr "+" E2.addr But C semantics defines no order

E → E1 < E2 (and similar binary operators <=,>,>=,==,!=)

E.addr = newTemp() and E.code = E1.code || E2.code || 
E.addr "=" E1.addr “<" E2.addr But C semantics defines no order

E → id
E.addr = id.lexval E.code = " "

Note: for the project, we will assume <, >, etc. produce 
integer values: 0 is false, not 0 is true (C semantics)15



Translation
E → intconst

E.addr = intconst.lexval and E.code = " " (same for doubleconst)

E → id[E1]
E.addr = newTemp()
E.code = E1.code || E.addr "=" id.lexval "[" E1.addr "]"

• Here we use x = y[z] instructions in the three-
address code

–y is an array-typed variable
–z is a variable, a temporary, or a constant
–x is a variable or a temporary

• Multi-dim arrays: x = y[u][v]…[w]
– In real compilers, need to use several instructions
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Translation
E → id = E1

E.addr = E1.addr    Here we do not need a new temp

E.code = E1.code || id.lexval "=" E1.addr
E → id[E1] = E2

E.addr = E2.addr     Here we do not need a new temp

E.code = E2.code || E1.code || But C semantics defines no order

id.lexval "[" E1.addr "]" "=" E2.addr
• Here we use x[y] = z instructions

–x is an array variable
–y and z are variables, temporaries, or constants 
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Example
int a[10][20];
int x; int y; int z;
x = 1; 
y = 2; 
z = 3;
a[y-x][y+x] = z + 2*y;
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int a[10][20];
int x; int y; int z;
int _t1; int _t2; int _t3; 
int _t4; int _t5; 
x = 1; 
y = 2; 
z = 3;
_t4 = 2 * y;
_t5 = z + _t4;
_t1 = y - x;
_t2 = y + x;
a[_t1][_t2] = _t5;



Example
int x; int y; int z; int w;
w = z = (x = 1) + (y = x+2);
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int x; int y; int z; int w;
int _t1; int _t2;
x = 1;
_t1 = x + 2;
y = _t1;
_t2 = 1 + _t1;
z = _t2;
w = _t2;



Translation
E → id += E1

Treat this exactly as id = id + E1 (i.e., combination of the 
rules for E → E1 + E2 and E → id = E1)
E.addr = newTemp() Here we do need a new temp

E.code = E1.code || E.addr "=" id.lexval "+" E1.addr || 
id.lexval "=" E.addr
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Example
int x; int y; int z; 
x = 1;
z = (x += 1) + (y += x+2);
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int x; int y; int z; 
int _t1; int _t2; 
int _t3; int _t4;
x = 1;
_t1 = x + 1;
x = _t1;
_t2 = x + 2;
_t3 = y + _t2;
y = _t3;
_t4 = _t1 + _t3;
z = _t4;



Translation
E → id[E1] += E2

E.addr = newTemp()
E.code = E1.code || 

E.addr "=" id.lexval "[" E1.addr "]" ||
E2.code || E.addr "=" E.addr "+" E2.addr || 
id.lexval "[" E1.addr "]" "=" E.addr
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Example
int a[10][20];
int x; int y; int z;
x = 1; 
y = 2; 
z = 3;
a[y-x][y+x] += z + 2*y;
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int a[10][20];
int x; int y; int z;
int _t1; int _t2; int _t3; 
int _t4; int _t5; int _t6;
x = 1; y = 2; z = 3;
_t1 = y - x;
_t2 = y + x;
_t6 = a[_t1][_t2];
_t4 = 2 * y;
_t5 = z + _t4;
_t6 = _t6 + _t5;
a[_t1][_t2] = _t6;



A Few Examples to Try at Home
x = y+z;
w = x = y+z;
a[x=y+z] = x;
a[x] = x = y+z;
x += y+z;
x += x = y+z;
a[v = x += 1] = y = z += 2 + w;
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Flow of Control – Expressions & Statements
Boolean expressions – in C, any expression of scalar 
type (in our subset of C, any int/double expr)

– Role 1: conditions of ifs and loops
– Role 2: assign to a variable

E → E1 < E2 |…      <, <=, ==, !=, >, >= 
S → E ; | return E; | ;
S → if (E) S1 | if (E) S1 else S2 

S → while (E) S1 | for (E1; E2 ; E3) S1 

S → { S1 … Sn }      similarly for the whole program
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Three-Address Instructions
New instructions

– goto L: unconditional jump to the three-address 
instruction with label L

– if (address) goto L: the address contains a “boolean” 
value

– But: for convenience we will use if (!address) goto L: 
jump if the address contains the false “boolean” value

The labels are symbolic names
– We will just generate label names L1, L2, … using a 

helper function newLabel(), in the same way we 
generate temporaries with names t1, t2, … using a 
helper function newTemp()
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Translation
S → E ;

S.code = E.code
S → { S1 … Sn }      similarly for the whole program

S.code = S1.code || … || Sn.code
S → if (E) S1 

S.exitLabel = newLabel() 
S.code = 

E.code || 
"if (! " E.addr ") goto " S.exitLabel || 
S1.code ||
S.exitLabel
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Example
int x; int y; int z;
x = 1; 
y = 2; 
z = 3;
if (x+y > z) z=x+y;
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int x; int y; int z;
int _t1; int _t2; int _t3; 
x = 1; y = 2; z = 3;
_t1 = x + y;
_t2 = _t1 > z;
if (!_t2) goto _l1;
_t3 = x + y;
z = _t3;
_l1:
;



Translation
S → if (E) S1 else S2 

S.exitLabel = newLabel() 
S.elseLabel = newLabel() 
S.code = 

E.code || 
"if (! " E.addr ") goto " S.elseLabel || 
S1.code ||
"goto " S.exitLabel ||
S.elseLabel ||
S2.code ||
S.exitLabel
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Example
int x; int y; int z;
x = 1; 
y = 2; 
z = 3;
if (x+y > z) z=x+y;
else z=x-y;
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int x; int y; int z;
int _t1; int _t2; int _t3; int_t4; 
x = 1; y = 2; z = 3;
_t1 = x + y;
_t2 = _t1 > z;
if (!_t2) goto _l2;
_t3 = x + y;
z = _t3;
goto _l1;
_l2:
_t4 = x - y;
z = _t4;
_l1:
;



Translation
S → while (E) S1  

S.startLabel = newLabel() 
S.exitLabel = newLabel() 
S.code = 

S.startLabel ||
E.code || 
"if (! " E.addr ") goto " S.exitLabel || 
S1.code ||
"goto " S.startLabel ||
S.exitLabel
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Example
int n; int i; int res;
n = 10; 
i = 1; 
res = 1;
while (i <= n) {

res *= i;
i += 1;

}
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int n; int i; int res;
int _t1; int _t2; int _t3;
n = 10; i = 1; res = 1;
_l1:
_t1 = i <= n;
if (!_t1) goto _l2;
_t2 = res * i;
res = _t2;
_t3 = i + 1;
i = _t3;
goto _l1;
_l2:
;
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