
Data-Flow Analysis

Chapter 9, Section 9.2, 9.3, 9.4



Data-Flow Analysis
• Data-flow analysis is a sub-area of static program 

analysis (aka compile-time analysis)
– Used in the compiler back end for optimizations of 

three-address code and for generation of target code
– For software engineering tools: software 

understanding, restructuring, testing, verification
• Attaches to each CFG node some information that 

describes properties of the program at that point
– Based on lattice theory 

• Defines algorithms for inferring these properties
– e.g., fixed-point computation
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Example: Reaching Definitions
• A classical example of a data-flow analysis

– We will consider intraprocedural analysis: only inside a 
single procedure, based on its CFG 

• For ease of discussion, pretend that the CFG nodes 
are individual instructions, not basic blocks
– Each node defines two program points: immediately 

before and immediately after
• Goal: identify all connections between variable 

definitions (“write”) and variable uses (“read”)
– x = y + z has a definition of x and uses of y and z
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Reaching Definitions
• A definition d reaches a program point p if there exists a CFG 

path that
– starts at the program point immediately after d
– ends at p
– does not contain a definition of d (i.e., d is not “killed”)

• The CFG path may be impossible (infeasible) at run time
– Any compile-time analysis has to be conservative, so we consider 

all paths in the CFG
• For a CFG node n

– IN[n] is the set of definitions that reach the program point 
immediately before n

– OUT[n] is the set of definitions that reach the program point 
immediately after n

– Reaching definitions analysis computes IN[n] and OUT[n]
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ENTRY

i = m-1

j = n

a = u1

i = i + 1

d1

d2

OUT[n1] = { }
IN[n2] = { }
OUT[n2] = { d1 }
IN[n3] = { d1 }
OUT[n3] = { d1, d2 } 
IN[n4] = { d1, d2 } 
OUT[n4] = { d1, d2, d3 } 
IN[n5] = { d1, d2, d3,       d5, d6, d7 } 
OUT[n5] = {       d2, d3, d4, d5, d6 } 
IN[n6] = {       d2, d3, d4, d5, d6 }  
OUT[n6] = {             d3, d4, d5, d6 }   
IN[n7] = {             d3, d4, d5, d6 }   
OUT[n7] = {             d3, d4, d5, d6 }   
IN[n8] = {             d3, d4, d5, d6 }   
OUT[n8] = {                   d4, d5, d6 }  
IN[n9] = {             d3, d4, d5, d6 }  
OUT[n9] = {             d3,       d5, d6, d7 }  
IN[n10] = {             d3,       d5, d6, d7 } 
OUT[n10] = {          d3,       d5, d6, d7 }  
IN[n11] =   {          d3,       d5, d6, d7 } 

d3

d4

j = j - 1d5

if (…)

a = u2d6

i = u3d7

if (…)

EXIT

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

Examples of relationships:
IN[n2] = OUT[n1]
IN[n5] = OUT[n4] ∪ OUT[n10]
OUT[n7] = IN[n7]
OUT[n9] = (IN[n9] – {d1,d4,d7}) ∪ {d7} 
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Formulation as a System of Equations
• For each CFG node n

– GEN[n] is a singleton set containing the definition d at n
– KILL[n] is the set of all defs of the variable written by d

• It can be proven that the “smallest” sets IN[n] and 
OUT[n] that satisfy this system are exactly the solution 
for the Reaching Definitions problem
– We will ignore: how do we know that this system has any

solutions? how about a unique smallest one?
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Iteratively Solving the System of Equations

OUT[n] = ∅ for each CFG node n
change = true
While (change) 

1. For each n other than ENTRY and EXIT
OUTold[n] = OUT[n]

2. For each n other than ENTRY
IN[n] = union of OUT[m] for all predecessors m of n

3. For each n other than ENTRY and EXIT
OUT[n] = ( IN[n] – KILL[n] ) ∪ GEN[n]

4. change = false
5. For each n other than ENTRY and EXIT

If (OUTold[n] != OUT[n]) change = true
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Worklist Algorithm
IN[n] = ∅ for all n
Put the successor of ENTRY on worklist
While (worklist is not empty) 

1. Remove any CFG node m from the worklist
2. OUT[m] = (IN[m] – KILL[m]) ∪ GEN[m]
3. For each successor n of m

old = IN[n]
IN[n] = IN[n] ∪ OUT[m]
If (old != IN[n]) add n to worklist
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This is “chaotic” iteration
• The order of  adding-to/removing-from the worklist is unspecified 

• e.g., could use stack, queue, set, etc.
• The order of processing of successor nodes is unspecified
Regardless of order, the resulting solution is always the same



A Simpler Formulation
• In practice, an algorithm will only compute IN[n]

– Ignore predecessor m if it is ENTRY
• Worklist algorithm

– IN[n] = ∅ for all n
– Put the successor of ENTRY on the worklist
– While the worklist is not empty, remove any m from the 

worklist; for each successors n of m, do
• old = IN[n]
• IN[n] = IN[n] ∪ (IN[m] – KILL[m]) ∪ GEN[m]
• If (old != IN[n]) add n to worklist
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A Few Notes
• We sometimes write

• PRES[n]: the set of all definitions “preserved” (i.e., 
not killed) by n; the complement of KILL[n]

• Efficient implementation: bitvectors
– Sets are presented by bitvectors; set intersection is 

bitwise AND; set union is bitwise OR
– GEN[n] and PRES[n] are computed once, at the very 

beginning of the analysis
– IN[n] are computed iteratively, using a worklist
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Reaching Definitions and Basic Blocks
• For space/time savings, we can solve the problem 

for basic blocks (i.e., CFG nodes are basic blocks)
– Program points are before/after basic blocks
– IN[n] is still the union of OUT[m] for predecessors m
– OUT[n] is still ( IN[n] – KILL[n] ) ∪ GEN[n]

• KILL[n] = KILL[s1] ∪ KILL[s2] ∪ … ∪ KILL[sk]
– s1, s2, …, sk are the statements in the basic blocks

• GEN[n] = GEN[sk] ∪ ( GEN[sk-1] – KILL[sk] ) ∪
( GEN[sk-2] – KILL[sk-1] – KILL[sk] ) ∪ … ∪
( GEN[s1] – KILL[s2] – KILL[s3] – … – KILL[sk] )
– GEN[n] contains any definition in the block that is 

downward-exposed (i.e., not killed by a subsequent 
definition in the block)

11



ENTRY

i = m-1

j = n

a = u1

i = i + 1

d1

d2

KILL[n2] = { d1, d2, d3, d4, d5, d6, d7 }
GEN[n2] = { d1, d2, d3 }
KILL[n3] = { d1, d2, d4, d5, d7 }
GEN[n3] = { d4, d5 }
KILL[n4] = { d3, d6 }
GEN[n4] = { d6 }
KILL[n5] = { d1, d4, d7 }
GEN[n5] = { d7 }

IN[n2] = { }
OUT[n2] = { d1, d2, d3 } 

IN[n3] = { d1, d2, d3,       d5, d6, d7 } 
OUT[n3] = {              d3, d4, d5, d6 }   

IN[n4] = {              d3, d4, d5, d6 }   
OUT[n4] = {                    d4, d5, d6 }  

IN[n5] = {             d3, d4, d5, d6 }  
OUT[n5] = {             d3,        d5, d6, d7 }  

d3

d4

j = j - 1d5

if (…)

a = u2d6

i = u3d7

if (…)

EXIT

n1

n2

n3

n4

n5

n6
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Uses of Reaching Definitions Analysis
• Def-use (du) chains

– For a given definition (i.e., write) of a variable, which statements 
read the value created by the def?

– For basic blocks: need all upward-exposed uses (use of variable 
does not have preceding def in the same basic block)

• Use-def (ud) chains 
– For a given use (i.e., read) of a variable, which statements 

performed the write of this value?
– The reverse of du-chains

• Goal: potential write-read data dependences
– Compiler optimizations
– Program understanding (e.g., slicing)
– Data-flow-based testing: coverage criteria
– Semantic checks: e.g., use of uninitialized variables
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ENTRY

i = m-1

j = n

a = u1

i = i + 1

d1

d2

Upward exposed uses: 
USES[n2] = { m@d1, n@d2, u1@d3 }
USES[n3] = { i@d4, j@d5, a@c1 }
USES[n4] = { u2@d6 }
USES[n5] = { u3@d7, j@c2, a@c2 }
Reaching definitions: 
IN[n3] = { d1, d2, d3,       d5, d6, d7 } 
IN[n4] = {              d3, d4, d5, d6 }   
IN[n5] = {              d3, d4, d5, d6 }  
Def-use chains across basic blocks: 
DU[d1] = upward exposed uses of variable i in all basic 
blocks n such that d1 ∈ IN[n]  = { i@d4 }
DU[d2] = { j@d5 }
DU[d3] = { a@c1, a@c2 }
DU[d4] = { }
DU[d5] = { j@d5, j@c2 }
DU[d6] = { a@c1, a@c2 }
DU[d7] = { i@d4 }
Def-use chains inside basic blocks: 
DU[d4] = { i@c1 }

d3

d4

j = j - 1d5

if(..i..a)

a = u2d6

i = u3d7

if(..j..a)

EXIT

n1

n2

n3

n4

n5

n6
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c1

c2

Use-def chains:
UD[m@d1]= { }
UD[n@d2]= { }
UD[u1@d3]= { }
UD[i@d4]= { d1,d7 }
UD[j@d5]= { d2,d5 }
UD[i@c1]= { d4 }
UD[a@c1]= { d3,d6 }
UD[u2@d6]= { }
UD[u3@d7]= { }
UD[j@c2]= { d5 }
UD[a@c2]= { d3,d6 }



Example: Live Variables
• A variable v is live at a program point p if there 

exists a CFG path that
– starts at p
– ends immediately before some statement that reads v
– does not contain a definition of v

• Thus, the value that v has at p could be used later
– “could” because the CFG path may be infeasible
– If v is not live at p, we say that v is dead at p

• For a CFG node n
– IN[n] is the set of variables that are live at the program 

point immediately before n
– OUT[n] is the set of variables that are live at the 

program point immediately after n
15



ENTRY

i = m-1

j = n

a = u1

i = i + 1

OUT[n1] = { m, n, u1, u2, u3 }
IN[n2] = { m, n, u1, u2, u3 }
OUT[n2] = { n, u1, i, u2, u3 }
IN[n3] = { n, u1, i, u2, u3 }
OUT[n3] = { u1, i, j, u2, u3 } 
IN[n4] = { u1, i, j, u2, u3 } 
OUT[n4] = { i, j, u2, u3 } 
IN[n5] = { i, j, u2, u3 } 
OUT[n5] = { j, u2, u3 } 
IN[n6] = { j, u2, u3 }  
OUT[n6] = { u2, u3, j }   
IN[n7] = { u2, u3, j }   
OUT[n7] = { u2, u3, j }   
IN[n8] = { u2, u3, j }   
OUT[n8] = { u3, j, u2 }  
IN[n9] = { u3, j, u2 }  
OUT[n9] = { i, j, u2, u3 }  
IN[n10] = { i, j, u2, u3 } 
OUT[n10] = { i, j, u2, u3 }  
IN[n11] =  { } 

j = j - 1

if (…)

a = u2

i = u3

if (…)

EXIT

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

Examples of relationships:

OUT[n1] = IN[n2]

OUT[n7] = IN[n8] ∪ IN[n9]

IN[n10] = OUT[n10]

IN[n2] = (OUT[n2] – {i}) ∪ {m}

16



Formulation as a System of Equations
• For each CFG node n

– GEN[n] is the set of all variables that are read by n
– KILL[n] is a singleton set containing the variable that is 

written by n (even if this variable is live immediately 
after n, it is not live immediately before n)

• The smallest sets IN[n] and OUT[n] that satisfy this 
system are exactly the solution for the Live 
Variables problem
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Iteratively Solving the System of Equations

IN[n] = ∅ for each CFG node n
change = true
While (change) 

1. For each n other than ENTRY and EXIT
INold[n] = IN[n]

2. For each n other than EXIT
OUT[n] = union of IN[m] for all successors m of n

3. For each n other than ENTRY and EXIT
IN[n] = ( OUT[n] – KILL[n] ) ∪ GEN[n]

4. change = false
5. For each n other than ENTRY and EXIT

If (INold[n] != IN[n]) change = true
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Worklist Algorithm
OUT[n] = ∅ for all n
Put the predecessors of EXIT on worklist
While (worklist is not empty) 

1. Remove any CFG node m from the worklist
2. IN[m] = (OUT[m] – KILL[m]) ∪ GEN[m]
3. For each predecessor n of m

old = OUT[n]
OUT[n] = OUT[n] ∪ IN[m]
If (old != OUT[n]) add n to worklist

19

As with the worklist algorithm for Reaching Definitions, this is 
chaotic iteration. But, regardless of order, the resulting solution is 
always the same.



A Simpler Formulation
• In practice, an algorithm will only compute OUT[n]

– Ignore successor m if it is EXIT
• Worklist algorithm

– OUT[n] = ∅ for all n
– Put the predecessors of EXIT on the worklist
– While the worklist is not empty, remove any m from the 

worklist; for each predecessor n of m, do
• old = OUT[n]
• OUT[n] = OUT[n] ∪ (OUT[m] – KILL[m]) ∪ GEN[m]
• If (old != OUT[n]) add n to worklist
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A Few Notes
• We sometimes write

– PRES[n]: the set of all variables “preserved” (i.e., not 
written) by n; the complement of KILL[n]

– Efficient implementation: bitvectors
• Comparison with Reaching Definitions

– Reaching Definitions is a forward data-flow problem 
and Live Variables is a backward data-flow problem

– Other than that, they are basically the same
• Uses of Live Variables

– Dead code elimination: e.g., when x is not live at x=y+z
– Register allocation (more later …)
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Example: Constant Propagation
• Can we guarantee that the value of a variable v at 

a program point p is always a known constant?
• Compile-time constants are useful

– Constant folding: e.g., if we know that v is always 3.14 
immediately before w = 2*v;  replace it w = 6.28
• Often due to symbolic constants

– Dead code elimination: e.g., if we know that v is always 
false at if (v) …

– Program understanding, restructuring, verification, 
testing, etc.
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Basic Ideas
• At each CFG node n, IN[n] is a map Vars → Values

– Each variable v is mapped to a value x ∈ Values
– Values = all possible constant values ∪ { nac , undef }

• Special “value” nac (not-a-constant) means that the 
variable cannot be definitely proved to be a compile-
time constant at this program point
– E.g., the value comes from user input, file I/O, network
– E.g., the value is 5 along one branch of an if statement, and 

6 along another branch of the if statement
– E.g., the value comes from some nac variable

• Special “value” undef (undefined): used temporarily 
during the analysis
– Means “we have no information about v yet”
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Formulation as a System of Equations
• OUT[ENTRY] = a map which maps each v to undef
• For any other CFG node n

– IN[n] = Merge(OUT[m]) for all predecessors m of n
– OUT[n] = Update(IN[n])

• Merging two maps: if v is mapped to c1 and c2
respectively, in the merged map v is mapped to:
– If c1 = undef, the result is c2
– Else if c2 = undef, the result is c1
– Else if c1 = nac or c2 = nac, the result it nac
– Else if c1 ≠ c2, the result is nac
– Else the result is c1 (in this case we know that c1 = c2)
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Formulation as a System of Equations
• Updating a map at an assignment v = …

– If the statement is not an assignment, OUT[n] = IN[n]
• The map does not change for any w ≠ v
• If we have v = c, where c is a constant: in OUT[n], v 

is now mapped to c
• If we have v = p + q (or similar binary operators) 

and IN[n] maps p and q to c1 and c2 respectively
– If both c1 and c2 are constants: result is c1+c2
– Else if either c1 or c2 is nac: result is nac
– Else: result is undef
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ENTRY

a = 1

b = 2

c = a+b

a=1+c

OUT[n1] = {a → undef, b → undef, c → undef, d → undef }
OUT[n2] = {a → 1, b → undef, c → undef, d → undef }
OUT[n3] = {a → 1, b → 2, c → undef, d → undef } 
OUT[n4] = {a → 1, b → 2, c → 3, d → undef }
 
OUT[n6] = {a → 4, b → 2, c → 3, d → undef }   
OUT[n7] = {a → 4, b → 7, c → 3, d → undef }   
OUT[n8] = {a → 4, b → 7, c → 3, d → 11 } 
        
OUT[n9] = {a → 5, b → 2, c → 3, d → undef }   
OUT[n10] = {a → 5, b → 6, c → 3, d → undef }

IN[n11] = {a → nac, b → nac, c → 3, d → 11 }
OUT[n11] = {a → nac, b → nac, c → 3, d → 11 }

OUT[n12] = {a → nac, b → nac, c → 3, d → 11 }

Note: in reality, d could be uninitialized at n11 and n12 (see 
Section 9.4.6 for a good discussion on this issue)

b = 4+c

a = 2+c

b = 3+c

a=a+b

b=a+c

n1

n2

n3

n4

n6 n9

n8

n12

n10

n11
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if (…) n5

n7

d = a+b

EXIT n13

Merge
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Example: Interprocedural Analysis
• CFG = procedure-level CFGs, plus (call,entry) and 

(exit,return) edges

entry

exit

. . . . . 

void P1() {
  …
  P2();
  …
}

entry

exit

. . . . . 

return
call

. . . . . 

CFG for P1
CFG for P2
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Valid Paths

entry

exit

. . . . . 

entry

exit

. . . . . 

return
call

. . . . . 

entry

exit

. . . . . 

return

call

. . . . . 

procedure p1 procedure p2 procedure p3

Valid path: every (exit,return) 
matches the corresponding (call,entry)
The blue path is not valid
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Design of Interprocedural Analysis
• Intraprocedural analysis: separately considers 

the CFG for each procedure; makes conservative 
assumptions about any calls in the CFG

• Interprocedural analysis: considers all CFGs 
together; should consider all valid CFG paths
– Option 1: do not distinguish between valid/invalid

• Calling-context-insensitive analysis: does not keep 
track of the calling context of a procedure

• Calling context example: the CFG call node that 
made the call (called “call site”)

– Option 2: calling-context-sensitive analysis
• Keeps tracks of calling context, and avoids some of 

the invalid paths
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