Data-Flow Analysis

Chapter 9, Section 9.2, 9.3, 9.4

Data-Flow Analysis

- Data-flow analysis is a sub-area of static program analysis (aka compile-time analysis)
- Used in the compiler back end for optimizations of three-address code and for generation of target code
- For software engineering tools: software understanding, restructuring, testing, verification
- Attaches to each CFG node some information that describes properties of the program at that point - Based on lattice theory
- Defines algorithms for inferring these properties
- e.g., fixed-point computation

Example: Reaching Definitions

- A classical example of a data-flow analysis
- We will consider intraprocedural analysis: only inside a single procedure, based on its CFG
- For ease of discussion, pretend that the CFG nodes are individual instructions, not basic blocks
- Each node defines two program points: immediately before and immediately after
- Goal: identify all connections between variable definitions ("write") and variable uses ("read") $\mathbf{x}=\mathbf{y}+\mathbf{z}$ has a definition of \mathbf{x} and uses of \mathbf{y} and \mathbf{z}

Reaching Definitions

- A definition d reaches a program point p if there exists a CFG path that
- starts at the program point immediately after d
- ends at p
- does not contain a definition of d (i.e., d is not "killed")
- The CFG path may be impossible (infeasible) at run time
- Any compile-time analysis has to be conservative, so we consider all paths in the CFG
- For a CFG node n
- IN[n] is the set of definitions that reach the program point immediately before n
- OUT[n] is the set of definitions that reach the program point immediately after n
- Reaching definitions analysis computes IN[n] and OUT[n]

Formulation as a System of Equations

- For each CFG node n

$$
\left.\operatorname{IN}[n]=\bigcup_{m \in \operatorname{Predecessors}(n)} \text { OUT }[m] \quad \text { OUT[ENTRY }\right]=\varnothing
$$

$\operatorname{OUT}[n]=(\operatorname{IN}[n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]$

- GEN[n] is a singleton set containing the definition d at n
- KILL[n] is the set of all defs of the variable written by d
- It can be proven that the "smallest" sets IN[n] and OUT[n] that satisfy this system are exactly the solution for the Reaching Definitions problem
- We will ignore: how do we know that this system has any solutions? how about a unique smallest one?

Iteratively Solving the System of Equations

OUT $[n]=\varnothing$ for each CFG node n
change = true
While (change)

1. For each n other than ENTRY and EXIT

$$
\mathrm{OUT}_{\text {old }}[n]=\mathrm{OUT}[n]
$$

2. For each n other than ENTRY IN $[n]=$ union of OUT $[m]$ for all predecessors m of n
3. For each n other than ENTRY and EXIT

$$
\mathrm{OUT}[n]=(\operatorname{IN}[n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]
$$

4. \quad change $=$ false
5. For each n other than ENTRY and EXIT If ($\mathrm{OUT}_{\text {old }}[n]$!= OUT $[n]$) change $=$ true

Worklist Algorithm

$\operatorname{IN}[n]=\varnothing$ for all n
Put the successor of ENTRY on worklist
While (worklist is not empty)

1. Remove any CFG node m from the worklist
2. $\operatorname{OUT}[m]=(\operatorname{IN}[m]-\operatorname{KILL}[m]) \cup \operatorname{GEN}[m]$
3. For each successor n of m

$$
\begin{aligned}
& \text { old }=\operatorname{IN}[n] \\
& \operatorname{IN}[n]=\operatorname{IN}[n] \cup \text { OUT }[m] \\
& \text { If }(\text { old }!=\operatorname{IN}[n]) \text { add } n \text { to worklist }
\end{aligned}
$$

This is "chaotic" iteration

- The order of adding-to/removing-from the worklist is unspecified
- e.g., could use stack, queue, set, etc.
- The order of processing of successor nodes is unspecified Regardless of order, the resulting solution is always the same

A Simpler Formulation

- In practice, an algorithm will only compute $\operatorname{IN}[n]$

$$
\operatorname{IN}[n]=\bigcup_{m \in \operatorname{Predecessors}(n)}(\operatorname{IN}[m]-\operatorname{KILL}[m]) \cup \operatorname{GEN}[m]
$$

- Ignore predecessor m if it is ENTRY
- Worklist algorithm
- $\operatorname{IN}[n]=\varnothing$ for all n
- Put the successor of ENTRY on the worklist
- While the worklist is not empty, remove any m from the worklist; for each successors n of m, do
- old $=\mathrm{IN}[n]$
- IN $[n]=\operatorname{IN}[n] \cup(\operatorname{IN}[m]-\operatorname{KILL}[m]) \cup \operatorname{GEN}[m]$
- If (old != IN[n]) add n to worklist

A Few Notes

- We sometimes write

$$
\operatorname{IN}[n]=\bigcup_{m \in \operatorname{Predecessors}(n)}(\operatorname{IN}[m] \cap \operatorname{PRES}[m]) \cup \operatorname{GEN}[m]
$$

- PRES[n]: the set of all definitions "preserved" (i.e., not killed) by n; the complement of KILL[$n]$
- Efficient implementation: bitvectors
- Sets are presented by bitvectors; set intersection is bitwise AND; set union is bitwise OR
- GEN[n] and PRES[n] are computed once, at the very beginning of the analysis
- IN[n] are computed iteratively, using a worklist

Reaching Definitions and Basic Blocks

- For space/time savings, we can solve the problem for basic blocks (i.e., CFG nodes are basic blocks)
- Program points are before/after basic blocks
- $\operatorname{IN}[n]$ is still the union of OUT $[m]$ for predecessors m
- OUT $[n]$ is still ($\operatorname{IN}[n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]$
- KILL $[n]=\operatorname{KILL}\left[s_{1}\right] \cup \operatorname{KILL}\left[s_{2}\right] \cup \ldots \cup \operatorname{KILL}\left[s_{k}\right]$
$-s_{1}, s_{2}, \ldots, s_{k}$ are the statements in the basic blocks
- $\operatorname{GEN}[n]=\operatorname{GEN}\left[s_{k}\right] \cup\left(\operatorname{GEN}\left[s_{k-1}\right]-\operatorname{KILL}\left[s_{k}\right]\right) \cup$ $\left(\operatorname{GEN}\left[s_{k-2}\right]-\operatorname{KILL}\left[s_{k-1}\right]-\operatorname{KILL}\left[s_{k}\right]\right) \cup \ldots \cup$ (GEN[s $\left.\left.s_{1}\right]-\operatorname{KILL}\left[s_{2}\right]-\operatorname{KILL}\left[s_{3}\right]-\ldots-\operatorname{KILL}\left[s_{k}\right]\right)$
$-\operatorname{GEN}[n]$ contains any definition in the block that is downward-exposed (i.e., not killed by a subsequent definition in the block)

Uses of Reaching Definitions Analysis

- Def-use (du) chains
- For a given definition (i.e., write) of a variable, which statements read the value created by the def?
- For basic blocks: need all upward-exposed uses (use of variable does not have preceding def in the same basic block)
- Use-def (ud) chains
- For a given use (i.e., read) of a variable, which statements performed the write of this value?
- The reverse of du-chains
- Goal: potential write-read data dependences
- Compiler optimizations
- Program understanding (e.g., slicing)
- Data-flow-based testing: coverage criteria
- Semantic checks: e.g., use of uninitialized variables

Example: Live Variables

- A variable v is live at a program point p if there exists a CFG path that
- starts at p
- ends immediately before some statement that reads v
- does not contain a definition of v
- Thus, the value that v has at p could be used later - "could" because the CFG path may be infeasible - If v is not live at p, we say that v is dead at p
- For a CFG node n
- $\operatorname{IN}[n]$ is the set of variables that are live at the program point immediately before n
- OUT[n] is the set of variables that are live at the program point immediately after n

ENTRY	n 1	OUT[n1] $=\{\mathrm{m}, \mathrm{n}, \mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3\}$	
\downarrow		$\operatorname{IN}[\mathrm{n} 2]=\{\mathrm{m}, \mathrm{n}, \mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3\}$	
$\mathbf{i}=\mathbf{m - 1}$	n 2	OUT[n2] $=\{n, u 1, i, u 2, u 3\}$	
\downarrow		$\operatorname{IN}[\mathrm{n} 3]=\{\mathrm{n}, \mathrm{u} 1, \mathrm{i}, \mathrm{u} 2, \mathrm{u} 3\}$	
$\mathbf{j}=\mathbf{n}$	n3	$\text { OUT[n3] = \{u1, i, j, u2, u3 \} }$	
\downarrow $a=u 1$	n4	$\operatorname{IN}[\mathrm{n} 4]=\{\mathrm{u} 1, \mathrm{i}, \mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	Examples of relationships:
$\frac{\mathrm{a}}{\text { c }}$ -		OUT[n4] $=\{\mathrm{i}, \mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	
$\mathbf{i}=\mathbf{i}+\mathbf{1}$	n5	$\operatorname{IN}[\mathrm{n} 5]=\{\mathrm{i}, \mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	OUT[n1] = IN[n2]
\downarrow		$\mathrm{OUT}[\mathrm{n} 5]=\{\mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	
$\mathbf{j}=\mathbf{j} \mathbf{- 1}$	n6	$\operatorname{IN}[\mathrm{n} 6]=\{\mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	$\mathrm{OUT}[\mathrm{n} 7]=\mathrm{IN}[\mathrm{n} 8] \cup \operatorname{lN}[\mathrm{n} 9]$
		$\mathrm{OUT}[\mathrm{n} 6]=\{\mathrm{u} 2, \mathrm{u} 3, \mathrm{j}\}$	
if (...)	n7	$\operatorname{IN}[\mathrm{n} 7]=\{u 2, u 3, j\}$	$\mathrm{IN}[\mathrm{n} 10]=$ OUT[n10]
$\mathbf{a}=\mathbf{u 2} \quad \mathrm{n} 8$)	$\mathrm{OUT}[\mathrm{n} 7]=\{u 2, u 3, j\}$	
$\xrightarrow{a=42}$)	$\operatorname{IN}[\mathrm{n} 8]=\{u 2, u 3, j\}$	$\operatorname{IN}[\mathrm{n} 2]=(\mathrm{OUT}[\mathrm{n} 2]-\{i\}) \cup\{\mathrm{m}\}$
$\mathbf{i}=\mathbf{u} 3$	n9	OUT[n8] $=\{u 3, j, u 2\}$	
\downarrow	-	$\operatorname{IN}[\mathrm{n} 9]=\{\mathrm{u} 3, \mathrm{j}, \mathrm{u} 2\}$	
if (...)	n10	$\mathrm{OUT}[\mathrm{n} 9]=\{\mathrm{i}, \mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	
\downarrow		$\operatorname{IN}[\mathrm{n} 10]=\{i, j, u 2, u 3\}$	
EXIT	n11	OUT[n10] $=\{\mathrm{i}, \mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	
		$\operatorname{IN}[\mathrm{n} 11]=\{ \}$	

Formulation as a System of Equations

- For each CFG node n
$\operatorname{OUT}[n]=\bigcup_{m \in \operatorname{Successors}(n)} \mathrm{IN}[m]$

$$
\mathrm{IN}[\mathrm{EXIT}]=\varnothing
$$

$\operatorname{IN}[n]=(\mathrm{OUT}[n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]$

- GEN[n] is the set of all variables that are read by n
- KILL[n] is a singleton set containing the variable that is written by n (even if this variable is live immediately after n, it is not live immediately before n)
- The smallest sets $\mathrm{IN}[n]$ and OUT[n] that satisfy this system are exactly the solution for the Live Variables problem

Iteratively Solving the System of Equations

IN $[n]=\varnothing$ for each CFG node n
change = true
While (change)

1. For each n other than ENTRY and EXIT

$$
\mathrm{IN}_{\text {old }}[n]=\operatorname{IN}[n]
$$

2. For each n other than EXIT

$$
\text { OUT }[n]=\text { union of } \operatorname{IN}[m] \text { for all successors } m \text { of } n
$$

3. For each n other than ENTRY and EXIT

$$
\operatorname{IN}[n]=(\operatorname{OUT}[n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]
$$

4. change $=$ false
5. For each n other than ENTRY and EXIT If $\left(\mathrm{IN}_{\text {old }}[n]!=\operatorname{IN}[n]\right)$ change $=$ true

Worklist Algorithm

OUT $[n]=\varnothing$ for all n
Put the predecessors of EXIT on worklist
While (worklist is not empty)

1. Remove any CFG node m from the worklist
2. $\operatorname{IN}[m]=(\mathrm{OUT}[m]-\mathrm{KILL}[m]) \cup \operatorname{GEN}[m]$
3. For each predecessor n of m

$$
\begin{aligned}
& \text { old }=\text { OUT }[n] \\
& \text { OUT }[n]=\text { OUT }[n] \cup \operatorname{IN}[m] \\
& \text { If (old }!=\text { OUT }[n]) \text { add } n \text { to worklist }
\end{aligned}
$$

As with the worklist algorithm for Reaching Definitions, this is chaotic iteration. But, regardless of order, the resulting solution is always the same.

A Simpler Formulation

- In practice, an algorithm will only compute OUT[n]

$$
\operatorname{OUT}[n]=\bigcup_{m \in \operatorname{Successors}(n)}(\operatorname{OUT}[m]-\operatorname{KILL}[m]) \cup \operatorname{GEN}[m]
$$

- Ignore successor m if it is EXIT
- Worklist algorithm
- OUT[n] = \varnothing for all n
- Put the predecessors of EXIT on the worklist
- While the worklist is not empty, remove any m from the worklist; for each predecessor n of m, do
- old = OUT[n]
- OUT $[n]=$ OUT $[n] \cup($ OUT $[m]-\operatorname{KILL}[m]) \cup$ GEN $[m]$
- If (old != OUT[n]) add n to worklist

A Few Notes

- We sometimes write

$$
\operatorname{OUT}[n]=\bigcup_{m \in \operatorname{Successors}(n)}(\operatorname{OUT}[m] \cap \operatorname{PRES}[m]) \cup \operatorname{GEN}[m]
$$

- PRES[n]: the set of all variables "preserved" (i.e., not written) by n; the complement of KILL[n]
- Efficient implementation: bitvectors
- Comparison with Reaching Definitions
- Reaching Definitions is a forward data-flow problem and Live Variables is a backward data-flow problem
- Other than that, they are basically the same
- Uses of Live Variables
- Dead code elimination: e.g., when \mathbf{x} is not live at $\mathbf{x}=\mathbf{y}+\mathbf{z}$
- Register allocation (more later ...)

Example: Constant Propagation

- Can we guarantee that the value of a variable v at a program point p is always a known constant?
- Compile-time constants are useful
- Constant folding: e.g., if we know that v is always 3.14 immediately before $\mathbf{w}=\mathbf{2}^{*} \mathbf{v}$; replace it $\mathbf{w}=\mathbf{6 . 2 8}$
- Often due to symbolic constants
- Dead code elimination: e.g., if we know that v is always false at if (v) ...
- Program understanding, restructuring, verification, testing, etc.

Basic Ideas

- At each CFG node $n, \mathrm{IN}[n]$ is a map Vars \rightarrow Values
- Each variable v is mapped to a value $x \in$ Values
- Values = all possible constant values \cup \{nac, undef $\}$
- Special "value" nac (not-a-constant) means that the variable cannot be definitely proved to be a compiletime constant at this program point
- E.g., the value comes from user input, file I/O, network
- E.g., the value is 5 along one branch of an if statement, and 6 along another branch of the if statement
- E.g., the value comes from some nac variable
- Special "value" undef (undefined): used temporarily during the analysis
- Means "we have no information about v yet"

Formulation as a System of Equations

- OUT[ENTRY] = a map which maps each v to undef
- For any other CFG node n
- IN[n] = Merge(OUT[m]) for all predecessors m of n
- OUT[n = Update(IN[$n]$)
- Merging two maps: if v is mapped to c_{1} and c_{2} respectively, in the merged map v is mapped to:
- If $c_{1}=$ undef, the result is c_{2}
- Else if $c_{2}=$ undef, the result is c_{1}
- Else if $c_{1}=n a c$ or $c_{2}=n a c$, the result it nac
- Else if $c_{1} \neq c_{2}$, the result is nac
- Else the result is c_{1} (in this case we know that $c_{1}=c_{2}$)

Formulation as a System of Equations

- Updating a map at an assignment $\mathbf{v}=$...
- If the statement is not an assignment, OUT[n]=IN[n]
- The map does not change for any $\mathrm{w} \neq \mathrm{v}$
- If we have $\mathbf{v}=\boldsymbol{c}$, where c is a constant: in OUT[n], \mathbf{v} is now mapped to c
- If we have $\mathbf{v}=\mathbf{p}+\mathbf{q}$ (or similar binary operators) and $\operatorname{IN}[n]$ maps p and q to c_{1} and c_{2} respectively
- If both c_{1} and c_{2} are constants: result is $c_{1}+c_{2}$
- Else if either c_{1} or c_{2} is nac: result is nac
- Else: result is undef

Example: Interprocedural Analysis

- CFG = procedure-level CFGs, plus (call,entry) and (exit,return) edges

CFG for P2
CFG for P1

Valid Paths

Valid path: every (exit,return) matches the corresponding (call,entry)
The blue path is not valid

Design of Interprocedural Analysis

- Intraprocedural analysis: separately considers the CFG for each procedure; makes conservative assumptions about any calls in the CFG
- Interprocedural analysis: considers all CFGs together; should consider all valid CFG paths
- Option 1: do not distinguish between valid/invalid
- Calling-context-insensitive analysis: does not keep track of the calling context of a procedure
- Calling context example: the CFG call node that made the call (called "call site")
- Option 2: calling-context-sensitive analysis
- Keeps tracks of calling context, and avoids some of the invalid paths

