
Control-Flow Analysis

Chapter 8, Section 8.4
Chapter 9, Section 9.6

Phases of the Compilation Process
Front end

– Lexical analysis
– Syntax analysis
– Semantic analysis (e.g., type checking)
– Generation of three-address code

Middle/Back end
– Code optimization: machine-independent optimization

of three-address code
– Code generation: target code (e.g., assembly)

2

Control-Flow Graphs
Control-flow graph (CFG) for a procedure/method

– A node is a basic block: a single-entry-single-exit
sequence of three-address instructions

– An edge represents the potential flow of control from
one basic block to another

Uses of a control-flow graph
– Inside a basic block: local code optimizations; done as

part of the code generation phase (e.g., Section 8.5)
– Across basic blocks: global code optimizations; done as

part of the code optimization phase
– Other aspects of code generation: e.g., global register

allocation
3

Control-Flow Analysis
Part 1: Constructing a CFG
Part 2: Finding dominators and post-dominators
Part 3: Finding loops in a CFG

– What exactly is a loop? Cannot simply say “whatever
CFG subgraph is generated by while, do-while, and for
statements” – need a general graph-theoretic definition

Part 4: Finding control dependences in a CFG
– Needed for optimizations: cannot violate dependences
– Needed for analyses in software tools: e.g., program

slicing

4

Part 1: Constructing a CFG
Nodes: basic blocks; edges: possible control flow
Basic block: maximal sequence of consecutive three-
address instructions such that

– The flow of control can enter only through the first
instruction (i.e., no jumps to the middle of the block)

– Can exit only at the last instruction
Advantages of using basic blocks

– Reduces the cost of compile-time analysis
– Intra-BB optimizations are relatively easy

5

CFG Construction
Given: the entire sequence of instructions
First, find the leaders (starting instructions of all
basic blocks)

– The first instruction
– The target of any conditional/unconditional jump
– Any instruction that immediately follows a conditional

or unconditional jump
Next, find the basic blocks: for each leader, its basic
block contains itself and all instructions up to (but
not including) the next leader

6

Example

7

Note: this example sets array
elements a[i][j] to 0.0, for 1 <= i,j <= 10
(instructions 1-11). It then sets a[i][i]
to 1.0, for 1 <= i <= 10 (instructions 12-
17). The array accesses in instructions
7 and 15 are done with offsets
computed as described in Section
6.4.3, assuming row-major order, 8-
byte array elements, and array
indexing that starts from 1, not from 0.

First instruction
Target of 11
Target of 9

Follows 9

Follows 11

Target of 17

1. i = 1
2. j = 1
3. t1 = 10 * i
4. t2 = t1 + j
5. t3 = 8 * t2
6. t4 = t3 – 88
7. a[t4] = 0.0
8. j = j + 1
9. if (j <= 10) goto (3)
10. i = i + 1
11. if (i <= 10) goto (2)
12. i = 1
13. t5 = i – 1
14. t6 = 88 * t5
15. a[t6] = 1.0
16. i = i + 1
17. if (i <= 10) goto (13)

ENTRY

i = 1

j = 1

t1 = 10 * i
t2 = t1 + j
t3 = 8 * t2
t4 = t3 – 88
a[t4] = 0.0
j = j + 1
if (j <= 10) goto B3

i = i + 1
if (i <= 10) goto B2

i = 1

t5 = i – 1
t6 = 88 * t5
a[t6] = 1.0
i = i + 1
if (i <= 10) goto B6

EXIT

B1

B2

B3

B4

B5

B6

Artificial ENTRY and EXIT nodes are often
added for convenience.

There is an edge from Bp to Bq if it is possible
for the first instruction of Bq to be executed
immediately after the last instruction of Bp .
This is conservative: e.g., if (3.14 > 2.78) still
generates two edges. 8

Single Exit Node
Single-exit CFG

– If there are multiple exits (e.g., multiple return statements),
redirect them to the artificial EXIT node

– Use an artificial compiler-created return variable ret
– return expr; becomes ret = expr; goto exit;

It gets ugly with exceptions
– Java: e.g., throw new X() or null pointer exception
– C: setjmp and longjmp
– We will ignore these

Common assumption
– Every node is reachable from the entry node
– The exit node is reachable from every node

• Not always true: e.g., a server thread could be
while(true) …

9

Practical Considerations [relevant for Project 6]

The usual data structures for graphs can be used
– The graphs are sparse (i.e., have relatively few edges),

so an adjacency list representation is the usual choice
• Number of edges is at most 2 * number of nodes

Nodes are basic blocks; edges are between basic
blocks, not between instructions

– Inside each node, some additional data structures for
the sequence of instructions in the block (e.g., a linked
list of instructions)

– Often convenient to maintain both a list of successors
(i.e., outgoing edges) and a list of predecessors (i.e.,
incoming edges) for each basic block

10

Part 2: Dominance
• A CFG node d dominates another node n if every

path from ENTRY to n goes through d
– Implicit assumption: every node is reachable from

ENTRY (i.e., there is no dead code)
– A dominance relation dom ⊆ Nodes × Nodes: d dom n
– The relation is trivially reflexive: d dom d

• Node m is the immediate dominator of n if
– m ≠ n
– m dom n
– For any d ≠ n such d dom n, we have d dom m

• Every node has a unique immediate dominator
– Except ENTRY, which is dominated only by itself

11

ENTRY

1

2

3

4

5 6

7

8

9 10

ENTRY dom n for any n
1 dom n for any n except ENTRY
2 does not dominate any other node
3 dom 3, 4, 5, 6, 7, 8, 9, 10, EXIT
4 dom 4, 5, 6, 7, 8, 9, 10, EXIT
5 does not dominate any other node
6 does not dominate any other node
7 dom 7, 8, 9, 10, EXIT
8 dom 8, 9, 10, EXIT
9 does not dominate any other node
10 dom 10, EXIT

Immediate dominators:
1 → ENTRY 2 → 1
3 → 1 4 → 3
5 → 4 6 → 4
7 → 4 8 → 7
9 → 8 10 → 8
 EXIT → 10

EXIT12

A Few Observations
• Dominance is a transitive relation: a dom b and

b dom c means a dom c
• Dominance is an anti-symmetric relation: a dom b

and b dom a means that a and b must be the same
– Reflexive, anti-symmetric, transitive: partial order

• If a and b are two dominators of some n, either a
dom b or b dom a
– Therefore, dom is a total order for n’s dominator set
– Corollary: for any acyclic path from ENTRY to n, all

dominators of n appear along the path, always in the
same order; the last one is the immediate dominator

13

Dominator Tree

14

ENTRY

1

2 3

4

5 6 7

8

9 10

The parent of n is its immediate
dominator

The path from n to the root contains
all and only dominators of n

Constructing the dominator tree: the
classic O(Nα(N)) approach is from
T. Lengauer and R. E. Tarjan. A fast algorithm
for finding dominators in a flowgraph. ACM
Transactions on Programming Languages and
Systems, 1(1): 121–141, July 1979.

Many other algorithms: e.g., see
K. D. Cooper, T. J. Harvey and K. Kennedy. A
simple, fast dominance algorithm. Software –
Practice and Experience, 4:1–10, 2001.

EXIT

Post-Dominance
• A CFG node d post-dominates another node n if

every path from n to EXIT goes through d
– Implicit assumption: EXIT is reachable from every node
– A relation pdom ⊆ Nodes × Nodes: d pdom n
– The relation is trivially reflexive: d pdom d

• Node m is the immediate post-dominator of n if
– m ≠ n; m pdom n; ∀d≠ n. d pdom n ⇒ d pdom m
– Every n has a unique immediate post-dominator

• Post-dominance on a CFG is equivalent to
dominance on the reverse CFG (all edges reversed)

• Post-dominator tree: the parent of n is its
immediate post-dominator; root is EXIT

15

ENTRY

1

2

3

4

5 6

7

8

9 10

ENTRY does not post-dominate any other n
1 pdom ENTRY, 1, 9
2 does not post-dominate any other n
3 pdom ENTRY, 1, 2, 3, 9
4 pdom ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT pdom n for any n

Immediate post-dominators:
ENTRY → 1 1 → 3
2 → 3 3 → 4
4 → 7 5 → 7
6 → 7 7 → 8
8 → 10 9 → 1
10 → EXITEXIT16

Post-Dominator Tree

17

EXIT

10

8

7

4 5 6

1

The path from n to the root
contains all and only post-
dominators of n

Constructing the post-
dominator tree: use any
algorithm for constructing
the dominator tree; just
“pretend” that the edges are
reversed3

2

ENTRY 9

Part 3: Loops in CFGs
• Cycle: sequence of edges that starts and ends at

the same node
– Example:

• Strongly-connected (induced) subgraph: each node
in the subgraph is reachable from every other
node in the subgraph
– Example:

• Loop: informally, a strongly-connected subgraph
with a single entry point
– Not a loop:

18

2 3 4 51

2
3

5 61
4

1

2

3

Back Edges and Natural Loops
• Back edge: a CFG edge (n,h) where h dominates n
• Natural loop for a back edge (n,h)

– The set of all nodes m that can reach node n without
going through node h (trivially, this set includes h)

– Easy to see that h dominates all such nodes m
– Node h is the header of the natural loop

• Simple algorithm to find the natural loop of (n,h)
– Mark h as visited
– Perform depth-first search (or breadth-first) starting

from n, but follow the CFG edges in reverse direction
– All and only visited nodes are in the natural loop

19

ENTRY

1

2

3

4

5 6

7

8

9 10

Immediate dominators:
1 → ENTRY 2 → 1 3 → 1
4 → 3 5 → 4 6 → 4
7 → 4 8 → 7 9 → 8
10 → 8 EXIT → 10

Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1,
10 → 7

Loop(10 → 7) = { 7, 8, 10 }

Loop(7 → 4) = { 4, 5, 6, 7, 8, 10 }
 Note: Loop(10 → 7) ⊆ Loop(7 → 4)

Loop(4 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
 Note: Loop(7 → 4) ⊆ Loop(4 → 3)

Loop(8 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
 Note: Loop(8 → 3) = Loop(4 → 3)

Loop(9 → 1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
 Note: Loop(4 → 3) ⊆ Loop(9 → 1)EXIT20

Loops in the CFG
• Find all back edges; each target h of at least one

back edge defines a loop L with header(L) = h
• body(L) is the union of the natural loops of all back

edges whose target is header(L)
– Note that header(L) ∈ body(L)

• Example: this is a single
loop with header node 1

• For any two CFG loops L1 and L2
– header(L1) is different from header(L2)
– body(L1) and body(L2) are either disjoint, or one is a

proper subset of the other (nesting – inner/outer)
21

2
3

1
4

Flashback to Graph Algorithms
• Depth-first search in the CFG [Cormen et al. book]

– Set each node’s color as white
– Call DFS(ENTRY)
– DFS(n)

• Set the color of n to gray
• For each successor m: if color is white, call DFS(m)
• Set the color of n to black

• Inside DFS(n), seeing a gray successor m means
that (n,m) is a retreating edge
– Note: m could be n itself, if there is an edge (n,n)

• The order in which we consider the successors
matters: the set of retreating edges depends on it

22

Reducible Control-Flow Graphs
• For reducible CFGs, the retreating edges

discovered during DFS are all and only back edges
– The order during DFS traversal is irrelevant: all DFS

traversals produce the same set of retreating edges
• For irreducible CFGs: a DFS traversal may produce

retreating edges that are not back edges
– Each traversal may produce different retreating edges
– Example:

• No back edges
• One traversal produces the retreating edge 3 → 2
• The other one produces the retreating edge 2 → 3

23

1

2

3

Reducibility
• A number of equivalent definitions

– One of them is on the previous page
• Another definition: the graph can be reduced to a

single node with the application of the following
two rules
– Given a node n with a single predecessor m, merge n

into m; all successors of n become successors of m
– Remove an edge n n

• Try this on the graphs from the previous slides
• More details: p. 677 in the textbook

24

Reducibility
• The essence of irreducibility: a strongly-connected

subgraph with multiple possible entry points
– If the original program was written using if-then, if-

then-else, while-do, do-while, break, and continue,
the resulting CFG is always reducible

– If goto was used by the programmer, the CFG could be
irreducible (but, in practice, it typically is reducible)

• Optimizations of the intermediate code, done by
the compiler, could introduce irreducibility

• Code obfuscation: e.g., Java bytecode can be
transformed to be irreducible, making it impossible
to reverse-engineer a valid Java source program

25

Part 4: Control Dependence: Informally
• The decision made at branch node c affects

whether node n gets executed
– Thus, n is control dependent on c – the control-flow

leading to n depends on what c does
• A node n is control dependent on a node c if

– There exists an edge e1 coming out of c that definitely
causes n to execute

– There exists some edge e2 coming out of c that is the
start of some path that avoids the execution of n

• Informally: n postdominates some successor of c,
but does not postdominate c itself

26

Control Dependence: Formally
• (part 1) n is control dependent on c if

– n ≠ c
– n does not post-dominate c
– there is an edge c m such that n post-dominates m

• (part 2) n is control dependent on n if
– there exists a path (with at least one edge) from n to n

such that n post-dominates every node on the path
• this happens in the presence of loops; n is the source

node of a loop exit edge

27

ENTRY

1

2

3

4

5 6

7

8

9 10

Consider all branch nodes c: 1, 4, 7, 8, 10

ENTRY does not post-dominate any other n
1 pdom ENTRY, 1, 9
2 does not post-dominate any other n
3 pdom ENTRY, 1, 2, 3, 9
4 pdom ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT pdom n for any n

2 is control dependent on 1
3, 4, 5, 6 are control dependent on 4
4, 7 are control dependent on 7
9, 1, 3, 4, 7, 8 are control dependent on 8
7, 8, 10 are control dependent on 10

EXIT28

Finding All Control Dependences
• Consider all CFG edges (c,x) such that x does not

post-dominate c (therefore, c is a branch node)
• Traverse the post-dominator tree bottom-up

– n = x
– while (n != parent of c in the post-dominator tree)

• report that n is control dependent on c
• n = parent of n in the post-dominator tree

– Example: for CFG edge (8,9) from the previous slide,
traverse and report 9, 1, 3, 4, 7, 8 (stop before 10)

29

Why Does This Work? [no need to study this proof]

• Given: edge (c,x) such that x does not post-
dominate c

• For any traversed node n ≠ c, we know that
– n does not post-dominate c

• This is why we stop before the parent of c
– n does post-dominate x: thus, if we follow the (c,x)

edge, we are guaranteed to execute n
– Easy to show that this is equivalent to part 1 of the

definition of control dependence given earlier
• If we traverse c itself, this means that c post-

dominates x (thus, part 2 of the definition holds)
30

	Control-Flow Analysis
	Phases of the Compilation Process
	Control-Flow Graphs
	Control-Flow Analysis
	Part 1: Constructing a CFG
	CFG Construction
	Example
	Slide Number 8
	Single Exit Node
	Practical Considerations [relevant for Project 6]
	Part 2: Dominance
	Slide Number 12
	A Few Observations
	Dominator Tree
	Post-Dominance
	Slide Number 16
	Post-Dominator Tree
	Part 3: Loops in CFGs
	Back Edges and Natural Loops
	Slide Number 20
	Loops in the CFG
	Flashback to Graph Algorithms
	Reducible Control-Flow Graphs
	Reducibility
	Reducibility
	Part 4: Control Dependence: Informally
	Control Dependence: Formally
	Slide Number 28
	Finding All Control Dependences
	Why Does This Work? [no need to study this proof]

