Control-Flow Analysis

Chapter 8, Section 8.4 Chapter 9, Section 9.6

Phases of the Compilation Process

Front end

- Lexical analysis
- Syntax analysis
- Semantic analysis (e.g., type checking)
- Generation of three-address code

Middle/Back end

- Code optimization: machine-independent optimization of three-address code
- Code generation: target code (e.g., assembly)

Control-Flow Graphs

Control-flow graph (CFG) for a procedure/method

- A node is a basic block: a single-entry-single-exit sequence of three-address instructions
- An edge represents the potential flow of control from one basic block to another

Uses of a control-flow graph

- Inside a basic block: local code optimizations; done as part of the code generation phase (e.g., Section 8.5)
- Across basic blocks: global code optimizations; done as part of the code optimization phase
- Other aspects of code generation: e.g., global register allocation

Control-Flow Analysis

- Part 1: Constructing a CFG
- Part 2: Finding dominators and post-dominators
- Part 3: Finding loops in a CFG
 - What exactly is a loop? Cannot simply say "whatever
 CFG subgraph is generated by *while*, *do-while*, and *for* statements" need a general graph-theoretic definition
- Part 4: Finding control dependences in a CFG
 - Needed for optimizations: cannot violate dependences
 - Needed for analyses in software tools: e.g., program slicing

Part 1: Constructing a CFG

Nodes: basic blocks; edges: possible control flow

- Basic block: maximal sequence of consecutive threeaddress instructions such that
 - The flow of control can enter only through the first instruction (i.e., no jumps to the middle of the block)
 - Can exit only at the last instruction
- Advantages of using basic blocks
 - Reduces the cost of compile-time analysis
 - Intra-BB optimizations are relatively easy

CFG Construction

Given: the entire sequence of instructions

- First, find the leaders (starting instructions of all basic blocks)
 - The first instruction
 - The target of any conditional/unconditional jump
 - Any instruction that immediately follows a conditional or unconditional jump

Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader

Example

1. <i>i</i> = 1	First instruction
2. <i>j</i> = 1	Target of 11
3. t1 = 10 * i	Target of 9
4. t2 = t1 + j	
5. t3 = 8 * t2	
6. $t4 = t3 - 88$	
7. a[t4] = 0.0	
8. j = j + 1	
9. if (j <= 10) goto (3)	
10. $i = i + 1$	Follows 9
11. if (i <= 10) goto (2)	
12. <i>i</i> = 1	Follows 11
13. $t5 = i - 1$	Target of 17
14. t6 = 88 * t5	
15. a[t6] = 1.0	
16. i=i+1	
17. if (i <= 10) goto (13)	

Note: this example sets array elements a[i][j] to 0.0, for 1 <= i,j <= 10 (instructions 1-11). It then sets a[i][i] to 1.0, for 1 <= i <= 10 (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets computed as described in Section 6.4.3, assuming row-major order, 8byte array elements, and array indexing that starts from 1, not from 0.

Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from B_p to B_q if it is possible for the first instruction of B_q to be executed immediately after the last instruction of B_p . This is conservative: e.g., **if (3.14 > 2.78)** still generates two edges.

Single Exit Node

Single-exit CFG

- If there are multiple exits (e.g., multiple return statements), redirect them to the artificial EXIT node
- Use an artificial compiler-created return variable *ret*
- return expr; becomes ret = expr; goto exit;
- It gets ugly with exceptions
 - Java: e.g., throw new X() or null pointer exception
 - C: setjmp and longjmp
 - We will ignore these
- **Common assumption**
 - Every node is reachable from the entry node
 - The exit node is reachable from every node
 - Not always true: e.g., a server thread could be *while(true) ...*

Practical Considerations [relevant for Project 6]

The usual data structures for graphs can be used

- The graphs are sparse (i.e., have relatively few edges), so an adjacency list representation is the usual choice
 - Number of edges is at most 2 * number of nodes
- Nodes are basic blocks; edges are between basic blocks, not between instructions
 - Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
 - Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block

Part 2: Dominance

- A CFG node *d* dominates another node *n* if every path from ENTRY to *n* goes through *d*
 - Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
 - A dominance relation dom \subseteq Nodes × Nodes: d dom n
 The relation is trivially reflexive: d dom d
- Node *m* is the immediate dominator of *n* if
 - *− m ≠ n*
 - m dom n
 - For any $d \neq n$ such d dom n, we have d dom m
- Every node has a unique immediate dominator
 - Except ENTRY, which is dominated only by itself

ENTRY *dom n* for any *n* 1 *dom n* for any *n* except ENTRY 2 does not dominate any other node 3 *dom* 3, 4, 5, 6, 7, 8, 9, 10, EXIT 4 *dom* 4, 5, 6, 7, 8, 9, 10, EXIT 5 does not dominate any other node 6 does not dominate any other node 7 *dom* 7, 8, 9, 10, EXIT 8 *dom* 8, 9, 10, EXIT 9 does not dominate any other node 10 *dom* 10, EXIT

Immediate dominators:

$1 \rightarrow ENTRY$	$2 \rightarrow 1$
$3 \rightarrow 1$	$4 \rightarrow 3$
$5 \rightarrow 4$	$6 \rightarrow 4$
$7 \rightarrow 4$	$8 \rightarrow 7$
$9 \rightarrow 8$	$10 \rightarrow 8$
	EXIT ightarrow 10

A Few Observations

- Dominance is a transitive relation: *a dom b* and *b dom c* means *a dom c*
- Dominance is an anti-symmetric relation: a dom b and b dom a means that a and b must be the same – Reflexive, anti-symmetric, transitive: partial order
- If a and b are two dominators of some n, either a dom b or b dom a
 - Therefore, *dom* is a **total order** for *n*'s dominator set
 - Corollary: for any acyclic path from ENTRY to n, all dominators of n appear along the path, always in the same order; the last one is the immediate dominator

The parent of *n* is its immediate dominator

The path from *n* to the root contains all and only dominators of *n*

Constructing the dominator tree: the classic $O(N\alpha(N))$ approach is from *T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM Transactions on Programming Languages and Systems, 1(1): 121–141, July 1979.*

Many other algorithms: e.g., see K. D. Cooper, T. J. Harvey and K. Kennedy. A simple, fast dominance algorithm. Software – Practice and Experience, 4:1–10, 2001.

Post-Dominance

- A CFG node *d* post-dominates another node *n* if every path from *n* to EXIT goes through *d*
 - Implicit assumption: EXIT is reachable from every node
 - A relation $pdom \subseteq$ Nodes × Nodes: d pdom n
 - The relation is trivially reflexive: *d pdom d*
- Node m is the immediate post-dominator of n if
 m ≠ n; m pdom n; ∀d≠n. d pdom n ⇒ d pdom m
 Every n has a unique immediate post-dominator
- Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)
- Post-dominator tree: the parent of n is its immediate post-dominator; root is EXIT

ENTRY does not post-dominate any other *n* 1 pdom ENTRY, 1, 9 2 does not post-dominate any other *n* 3 *pdom* ENTRY, 1, 2, 3, 9 4 pdom ENTRY, 1, 2, 3, 4, 9 5 does not post-dominate any other *n* 6 does not post-dominate any other *n* 7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9 8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9 9 does not post-dominate any other *n* 10 *pdom* ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 EXIT pdom n for any n

Immediate post-dominators:

$ENTRY \rightarrow 1$	$1 \rightarrow 3$
$2 \rightarrow 3$	$3 \rightarrow 4$
$4 \rightarrow 7$	$5 \rightarrow 7$
$6 \rightarrow 7$	$7 \rightarrow 8$
$8 \rightarrow 10$	$9 \rightarrow 1$
$10 \longrightarrow EVIT$	

Post-Dominator Tree

The path from *n* to the root contains all and only post-dominators of *n*

Constructing the postdominator tree: use any algorithm for constructing the dominator tree; just "pretend" that the edges are reversed

Part 3: Loops in CFGs

- Cycle: sequence of edges that starts and ends at the same node
 Example:
- Strongly-connected (induced) subgraph: each node in the subgraph is reachable from every other node in the subgraph
 - Example: $1 \rightarrow 2 \qquad 3 \qquad 5 \rightarrow 6$
- Loop: informally, a strongly-connected subgraph with a single entry point

 Not a loop:
 1

3

Back Edges and Natural Loops

- Back edge: a CFG edge (n,h) where h dominates n
- Natural loop for a back edge (n,h)
 - The set of all nodes *m* that can reach node *n* without going through node *h* (trivially, this set includes *h*)
 - Easy to see that *h* dominates all such nodes *m*
 - Node *h* is the header of the natural loop
- Simple algorithm to find the natural loop of (*n*,*h*)
 - Mark *h* as visited
 - Perform depth-first search (or breadth-first) starting from n, but follow the CFG edges in reverse direction
 - All and only visited nodes are in the natural loop

Immediate dominators:

$1 \rightarrow \text{ENTRY}$	$2 \rightarrow 1$	$3 \rightarrow 1$
$4 \rightarrow 3$	$5 \rightarrow 4$	$6 \rightarrow 4$
$7 \rightarrow 4$	$8 \rightarrow 7$	$9 \rightarrow 8$
$10 \rightarrow 8$	EXIT ightarrow 10	

Back edges: $4 \rightarrow 3$, $7 \rightarrow 4$, $8 \rightarrow 3$, $9 \rightarrow 1$, $10 \rightarrow 7$

 $Loop(10 \rightarrow 7) = \{ 7, 8, 10 \}$

 $Loop(7 \rightarrow 4) = \{ 4, 5, 6, 7, 8, 10 \}$ Note: $Loop(10 \rightarrow 7) \subseteq Loop(7 \rightarrow 4)$

 $Loop(\mathbf{4} \rightarrow \mathbf{3}) = \{3, 4, 5, 6, 7, 8, 10\}$ Note: $Loop(\mathbf{7} \rightarrow \mathbf{4}) \subseteq Loop(\mathbf{4} \rightarrow \mathbf{3})$

Loop $(8 \rightarrow 3) = \{3, 4, 5, 6, 7, 8, 10\}$ Note: Loop $(8 \rightarrow 3) = Loop(4 \rightarrow 3)$

Loop($9 \rightarrow 1$) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } Note: Loop($4 \rightarrow 3$) ⊆ Loop($9 \rightarrow 1$)

Loops in the CFG

- Find all back edges; each target h of at least one back edge defines a loop L with header(L) = h
- body(L) is the union of the natural loops of all back edges whose target is *header(L)* – Note that *header(L)* ∈ body(L)
- Example: this is a single loop with header node 1

- For any two CFG loops L₁ and L₂
 - $-header(L_1)$ is different from $header(L_2)$
 - $body(L_1)$ and $body(L_2)$ are either disjoint, or one is a proper subset of the other (nesting inner/outer)

Flashback to Graph Algorithms

- Depth-first search in the CFG [Cormen et al. book]
 - Set each node's color as white
 - Call DFS(ENTRY)
 - DFS(*n*)
 - Set the color of *n* to *gray*
 - For each successor *m*: if color is *white*, call DFS(*m*)
 - Set the color of *n* to *black*
- Inside DFS(n), seeing a gray successor m means that (n,m) is a retreating edge

 Note: m could be n itself, if there is an edge (n,n)
- The order in which we consider the successors matters: the set of retreating edges depends on it

Reducible Control-Flow Graphs

- For reducible CFGs, the retreating edges discovered during DFS are all and only back edges
 - The order during DFS traversal is irrelevant: all DFS traversals produce the same set of retreating edges
- For irreducible CFGs: a DFS traversal may produce retreating edges that are not back edges

1

– Each traversal may produce different retreating edges

2

3

- Example:
 - No back edges
 - One traversal produces the retreating edge $3 \rightarrow 2$
 - The other one produces the retreating edge $2\rightarrow 3$

Reducibility

- A number of equivalent definitions
 One of them is on the previous page
- Another definition: the graph can be reduced to a single node with the application of the following two rules
 - Given a node *n* with a single predecessor *m*, merge *n* into *m*; all successors of *n* become successors of *m* Remove an edge n → n
- Try this on the graphs from the previous slides
- More details: p. 677 in the textbook

Reducibility

- The essence of irreducibility: a strongly-connected subgraph with multiple possible entry points
 - If the original program was written using if-then, ifthen-else, while-do, do-while, break, and continue, the resulting CFG is always reducible
 - If goto was used by the programmer, the CFG could be irreducible (but, in practice, it typically is reducible)
- Optimizations of the intermediate code, done by the compiler, could introduce irreducibility
- Code obfuscation: e.g., Java bytecode can be transformed to be irreducible, making it impossible to reverse-engineer a valid Java source program

Part 4: Control Dependence: Informally

- The decision made at branch node *c* affects whether node *n* gets executed
 - Thus, n is control dependent on c the control-flow leading to n depends on what c does
- A node *n* is control dependent on a node *c* if
 - There exists an edge e₁ coming out of c that definitely causes n to execute
 - There exists some edge e_2 coming out of c that is the start of some path that avoids the execution of n
- Informally: n postdominates some successor of c, but does not postdominate c itself

Control Dependence: Formally

• (part 1) *n* is control dependent on *c* if

 $-n \neq c$

- n does not post-dominate c
- there is an edge $c \rightarrow m$ such that *n* post-dominates *m*
- (part 2) *n* is control dependent on *n* if
 - there exists a path (with at least one edge) from n to n such that n post-dominates every node on the path
 - this happens in the presence of loops; n is the source node of a loop exit edge

Consider all branch nodes c: 1, 4, 7, 8, 10

ENTRY does not post-dominate any other *n* 1 *pdom* ENTRY, 1, 9 2 does not post-dominate any other *n* 3 *pdom* ENTRY, 1, 2, 3, 9 4 pdom ENTRY, 1, 2, 3, 4, 9 5 does not post-dominate any other *n* 6 does not post-dominate any other *n* 7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9 8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9 9 does not post-dominate any other *n* 10 *pdom* ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 EXIT pdom n for any n

2 is control dependent on 1
3, 4, 5, 6 are control dependent on 4
4, 7 are control dependent on 7
9, 1, 3, 4, 7, 8 are control dependent on 8
7, 8, 10 are control dependent on 10

Finding All Control Dependences

- Consider all CFG edges (*c*,*x*) such that *x* does not post-dominate *c* (therefore, *c* is a branch node)
- Traverse the post-dominator tree bottom-up -n = x
 - while (n != parent of c in the post-dominator tree)
 - report that *n* is control dependent on *c*
 - *n* = parent of *n* in the post-dominator tree
 - Example: for CFG edge (8,9) from the previous slide, traverse and report 9, 1, 3, 4, 7, 8 (stop before 10)

Why Does This Work? [no need to study this proof]

- Given: edge (*c*,*x*) such that *x* does not postdominate *c*
- For any traversed node *n* ≠ *c*, we know that
 n does not post-dominate *c*
 - This is why we stop before the parent of *c*
 - *n* does post-dominate *x:* thus, if we follow the (*c*,*x*) edge, we are guaranteed to execute *n*
 - Easy to show that this is equivalent to part 1 of the definition of control dependence given earlier
- If we traverse *c* itself, this means that *c* postdominates *x* (thus, part 2 of the definition holds)