Control-Flow Analysis

Chapter 8, Section 8.4
Chapter 9, Section 9.6




Phases of the Compilation Process

Front end
— Lexical analysis
— Syntax analysis
— Semantic analysis (e.g., type checking)
— Generation of three-address code

Middle/Back end
— Code optimization: machine-independent optimization
of three-address code
— Code generation: target code (e.g., assembly)




Control-Flow Graphs

Control-flow graph (CFG) for a procedure/method
— A node is a basic block: a single-entry-single-exit
sequence of three-address instructions
— An edge represents the potential flow of control from
one basic block to another

Uses of a control-flow graph
— Inside a basic block: local code optimizations; done as
part of the code generation phase (e.g., Section 8.5)
— Across basic blocks: global code optimizations; done as
part of the code optimization phase
— Other aspects of code generation: e.g., global register
allocation

3
D EEEGGEGEERERRERERS



Control-Flow Analysis
Part 1: Constructing a CFG
Part 2: Finding dominators and post-dominators

Part 3: Finding loops in a CFG
— What exactly is a loop? Cannot simply say “whatever
CFG subgraph is generated by while, do-while, and for
statements” — need a general graph-theoretic definition

Part 4: Finding control dependences in a CFG
— Needed for optimizations: cannot violate dependences
— Needed for analyses in software tools: e.g., program
slicing




-
Part 1: Constructing a CFG

Nodes: basic blocks; edges: possible control flow

Basic block: maximal sequence of consecutive three-

address instructions such that
— The flow of control can enter only through the first
instruction (i.e., no jumps to the middle of the block)

— Can exit only at the last instruction

Advantages of using basic blocks
— Reduces the cost of compile-time analysis
— Intra-BB optimizations are relatively easy




CFG Construction
Given: the entire sequence of instructions

First, find the leaders (starting instructions of all

basic blocks)
— The first instruction
— The target of any conditional/unconditional jump

— Any instruction that immediately follows a conditional
or unconditional jump

Next, find the basic blocks: for each leader, its basic
block contains itself and all instructions up to (but
not including) the next leader




1

=
[=1

t1=10%i
t2=t1+]j
t3=8*1t2

t4 =13 -88
a[t4] = 0.0
j=j+1

if (j <= 10) goto (3)

©®ONOU P WNK

10. i=i+1
11. if (i <= 10) goto (2)

12. i=1

13. t5=i-1

14. t6 =88 * t5

15. a[t6] =1.0

16. i=i+1

17. if (i <= 10) goto (13)

Example

First instruction
Target of 11
Target of 9

Follows 9

Follows 11

Target of 17

Note: this example sets array
elements a[i][j] to 0.0, for 1 <=1i,j <= 10
(instructions 1-11). It then sets a[i][i]
to 1.0, for 1 <=i<=10 (instructions 12-
17). The array accesses in instructions
7 and 15 are done with offsets
computed as described in Section
6.4.3, assuming row-major order, 8-
byte array elements, and array
indexing that starts from 1, not from O.



Bl

B2

B3

B4

ENTRY

t1=10%i
t2=1t1+j
t3=8*12

t4 =13 -88
a[t4] = 0.0
j=j+1

if (j <= 10) goto B3

i=i+1
if (i <= 10) goto B2

BS |i=1

t5=i-1

t6 =88 * t5

B6 | a[t6] = 1.0
i=i+1l

if (i <= 10) goto B6

EXIT

Artificial ENTRY and EXIT nodes are often
added for convenience.

There is an edge from B to B, if it is possible
for the first instruction of B, to be executed
immediately after the last instruction of B,.
This is conservative: e.g., if (3.14 > 2.78) still
generates two edges.



Single Exit Node

Single-exit CFG
— If there are multiple exits (e.g., multiple return statements),
redirect them to the artificial EXIT node
— Use an artificial compiler-created return variable ret
— return expr; becomes ret = expr; goto exit;

It gets ugly with exceptions
— Java: e.g., throw new X() or null pointer exception
— C: setjmp and longjmp
— We will ignore these

Common assumption
— Every node is reachable from the entry node
— The exit node is reachable from every node
* Not always true: e.g., a server thread could be
while(true) ...

9
D EEEGGEGEERERRERERS



Practical Considerations [relevant for Project 6]

The usual data structures for graphs can be used
— The graphs are sparse (i.e., have relatively few edges),
so an adjacency list representation is the usual choice
 Number of edges is at most 2 * number of nodes

Nodes are basic blocks; edges are between basic

blocks, not between instructions
— Inside each node, some additional data structures for
the sequence of instructions in the block (e.g., a linked
list of instructions)
— Often convenient to maintain both a list of successors
(i.e., outgoing edges) and a list of predecessors (i.e.,
incoming edges) for each basic block

10



Part 2: Dominance

* A CFG node d dominates another node n if every

path from ENTRY to n goes through d

— Implicit assumption: every node is reachable from
ENTRY (i.e., there is no dead code)

— A dominance relation dom — Nodes x Nodes: d dom n

— The relation is trivially reflexive: d dom d

e Node mis the immediate dominator of n if
— M Zn
—mdomn

— For any d #n such d dom n, we have d dom m

* Every node has a unique immediate dominator
— Except ENTRY, which is dominated only by itself

11
D EEEGGEGEERERRERERS



12

ENTRY

EXIT

ENTRY dom n forany n

1 dom n for any n except ENTRY

2 does not dominate any other node
3dom3,4,5,6,7,8,9, 10, EXIT
4dom4,5,6,7,8,9, 10, EXIT

5 does not dominate any other node
6 does not dominate any other node
7dom7,8,9, 10, EXIT

8 dom 8, 9, 10, EXIT

9 does not dominate any other node
10 dom 10, EXIT

Immediate dominators:

1 —> ENTRY 2—>1

3—>1 4 —>3

554 6—>4

7 —>4 8—>7

9—>8 10> 8
EXIT —> 10




e
A Few Observations

* Dominance is a transitive relation: a dom b and
b dom ¢ means a dom ¢

* Dominance is an anti-symmetric relation: a dom b

and b dom a means that a and b must be the same
— Reflexive, anti-symmetric, transitive: partial order

* If a and b are two dominators of some n, either a

dom b or b dom a

— Therefore, dom is a total order for n’s dominator set

— Corollary: for any acyclic path from ENTRY to n, all
dominators of n appear along the path, always in the
same order; the last one is the immediate dominator

13



14

ENTRY

Dominator Tree

10

EXIT

The parent of n is its immediate
dominator

The path from n to the root contains
all and only dominators of n

Constructing the dominator tree: the

classic O(No(N)) approach is from

T. Lengauer and R. E. Tarjan. A fast algorithm
for finding dominators in a flowgraph. ACM
Transactions on Programming Languages and
Systems, 1(1): 121-141, July 1979.

Many other algorithms: e.g., see

K. D. Cooper, T. J. Harvey and K. Kennedy. A
simple, fast dominance algorithm. Software —
Practice and Experience, 4:1-10, 2001.




Post-Dominance

* A CFG node d post-dominates another node n if

every path from n to EXIT goes through d

— Implicit assumption: EXIT is reachable from every node
— A relation pdom < Nodes x Nodes: d pdom n

— The relation is trivially reflexive: d pdom d

* Node m is the immediate post-dominator of n if

—m #n; mpdom n;, ¥d#n. d pdomn = d pdom m
— Every n has a unique immediate post-dominator

* Post-dominance on a CFG is equivalent to
dominance on the reverse CFG (all edges reversed)

* Post-dominator tree: the parent of nis its
immediate post-dominator; root is EXIT

15
D EEEGGEGEERERRERERS



16

ENTRY

EXIT

ENTRY does not post-dominate any other n
1 pdom ENTRY, 1, 9

2 does not post-dominate any other n

3 pdom ENTRY, 1, 2, 3,9

4 pdom ENTRY, 1, 2,3,4,9

5 does not post-dominate any other n

6 does not post-dominate any other n

7 pdom ENTRY, 1, 2,3,4,5,6,7,9

8 pdom ENTRY, 1, 2,3,4,5,6,7,8,9

9 does not post-dominate any other n

10 pdom ENTRY, 1, 2, 3,4,5,6,7,8,9, 10

EXIT pdom n for any n
Immediate post-dominators:
ENTRY —> 1 1—->3
2—>3 3—>4

4 —7 57
6—>7 7—>38
8—>10 9->1

10 - EXIT




Post-Dominator Tree

EXIT
10 The path from n to the root
contains all and only post-
8 dominators of n
Constructing the post-
4 dominator tree: use any
algorithm for constructing
4 5 6 the dominator tree; just
“pretend” that the edges are
3 reversed

ENTRY 9

17




Part 3: Loops in CFGs
* Cycle: sequence of edges that starts and ends at

the same node o

— Example: 1 2 3 4 5

e Strongly-connected (induced) subgraph: each node
in the subgraph is reachable from every other
node in the subgraph
— Example: A T 3 L

1 2 < . >){ 5 6

* Loop: informally, a strongly-connected subgraph
with a single entry point

2
— Not a loop: 1 < ()
18 3




Back Edges and Natural Loops
* Back edge: a CFG edge (n,h) where h dominates n

* Natural loop for a back edge (n,h)
— The set of all nodes m that can reach node n without
going through node h (trivially, this set includes h)
— Easy to see that h dominates all such nodes m
— Node h is the header of the natural loop

e Simple algorithm to find the natural loop of (n,h)
— Mark h as visited
— Perform depth-first search (or breadth-first) starting
from n, but follow the CFG edges in reverse direction
— All and only visited nodes are in the natural loop

19




20

ENTRY

EXIT

Immediate dominators:

1 — ENTRY 2—>1 351
4 —>3 5514 6—>4
/]—>14 8—7 9->8
10> 8 EXIT — 10

Back edges: 4 —>3,7—>4,8—>3,9->1,
10> 7

Loop(10—>7)={7,8,10}

Loop(7 —>4)={4,5,6,7,8,10}
Note: Loop(10 — 7) < Loop(7 — 4)

Loop(4 —>3)={3,4,5,6,7,8,10}
Note: Loop(7 = 4) < Loop(4 — 3)

Loop(8 >3)={3,4,5,6,7,8,10}
Note: Loop(8 — 3) = Loop(4 — 3)

Loop(9—>1)={1,2,3,4,5,6,7,8,9,10}
Note: Loop(4 — 3) < Loop(9 —> 1)




Loops in the CFG

* Find all back edges; each target h of at least one
back edge defines a loop L with header(L) = h

e body(L) is the union of the natural loops of all back

edges whose target is header(L)
— Note that header(L) € body(L)

 Example: this is a single T
loop with header node 1 N 4

* For any two CFG loops L, and L,
— header(L,) is different from header(L,)
— body(L,) and body(L,) are either disjoint, or one is a
proper subset of the other (nesting — inner/outer)

21




-
Flashback to Graph Algorithms

* Depth-first search in the CFG [Cormen et al. book]
— Set each node’s color as white
— Call DFS(ENTRY)
— DFS(n)
* Set the color of n to gray
* For each successor m: if color is white, call DFS(m)

* Set the color of n to black
* |nside DFS(n), seeing a gray successor m means

that (n,m) is a retreating edge
— Note: m could be n itself, if there is an edge (n,n)

* The order in which we consider the successors
matters: the set of retreating edges depends on it

22
D EEEGGEGEERERRERERS



Reducible Control-Flow Graphs

* For reducible CFGs, the retreating edges

discovered during DFS are all and only back edges
— The order during DFS traversal is irrelevant: all DFS
traversals produce the same set of retreating edges

* Forirreducible CFGs: a DFS traversal may produce

retreating edges that are not back edges
— Each traversal may produce different retreating edges

— Example: 2
e
* No back edges 3

* One traversal produces the retreating edge 3 — 2
* The other one produces the retreating edge 2 — 3

23




Reducibility

* A number of equivalent definitions
— One of them is on the previous page

* Another definition: the graph can be reduced to a

single node with the application of the following

two rules

— Given a node n with a single predecessor m, merge n
into m; all successors of n become successors of m

— Remove an edge n 2 n

* Try this on the graphs from the previous slides
 More details: p. 677 in the textbook

24




Reducibility

* The essence of irreducibility: a strongly-connected

subgraph with multiple possible entry points
— If the original program was written using if-then, if-
then-else, while-do, do-while, break, and continue,
the resulting CFG is always reducible
— If goto was used by the programmer, the CFG could be
irreducible (but, in practice, it typically is reducible)
* Optimizations of the intermediate code, done by

the compiler, could introduce irreducibility

* Code obfuscation: e.g., Java bytecode can be
transformed to be irreducible, making it impossible
to reverse-engineer a valid Java source program

25




Part 4: Control Dependence: Informally

* The decision made at branch node c affects

whether node n gets executed

— Thus, n is control dependent on ¢ — the control-flow
leading to n depends on what ¢ does

 Anode nis control dependent on a node c if

— There exists an edge e, coming out of ¢ that definitely
causes n to execute

— There exists some edge e, coming out of ¢ that is the
start of some path that avoids the execution of n

* Informally: n postdominates some successor of c,
but does not postdominate c itself

26




Control Dependence: Formally

* (part 1) nis control dependent on c if
—n #cC
— n does not post-dominate ¢
— there is an edge ¢ 2 m such that n post-dominates m

* (part 2) nis control dependent on n if
— there exists a path (with at least one edge) from n to n
such that n post-dominates every node on the path
* this happens in the presence of loops; n is the source
node of a loop exit edge

27




28

ENTRY

EXIT

Consider all branch nodesc: 1, 4,7, 8, 10

ENTRY does not post-dominate any other n
1 pdom ENTRY, 1, 9

2 does not post-dominate any other n

3 pdom ENTRY, 1, 2, 3,9

4 pdom ENTRY, 1, 2,3,4,9

5 does not post-dominate any other n

6 does not post-dominate any other n

7 pdom ENTRY, 1, 2, 3,4,5,6,7,9

8 pdom ENTRY, 1, 2,3,4,5,6,7,8,9

9 does not post-dominate any other n

10 pdom ENTRY, 1, 2, 3,4,5,6,7,8,9, 10
EXIT pdom n for any n

2 is control dependenton 1

3,4,5, 6 are control dependent on 4

4, 7 are control dependent on 7
9,1,3,4,7, 8 are control dependent on 8
7, 8, 10 are control dependent on 10




Finding All Control Dependences

e Consider all CFG edges (c,x) such that x does not
post-dominate ¢ (therefore, cis a branch node)

* Traverse the post-dominator tree bottom-up
—n=x
— while (n != parent of c in the post-dominator tree)
* report that n is control dependent on ¢
* n = parent of n in the post-dominator tree
— Example: for CFG edge (8,9) from the previous slide,
traverse and report 9, 1, 3, 4, 7, 8 (stop before 10)

29




Why Does This Work? [no need to study this proof]

* Given: edge (c,x) such that x does not post-
dominate ¢

* For any traversed node n #c¢, we know that
— n does not post-dominate ¢
* This is why we stop before the parent of ¢
— n does post-dominate x: thus, if we follow the (c,x)
edge, we are guaranteed to execute n
— Easy to show that this is equivalent to part 1 of the
definition of control dependence given earlier

* |f we traverse c itself, this means that ¢ post-
dominates x (thus, part 2 of the definition holds)

30




	Control-Flow Analysis
	Phases of the Compilation Process
	Control-Flow Graphs
	Control-Flow Analysis
	Part 1: Constructing a CFG
	CFG Construction
	Example
	Slide Number 8
	Single Exit Node
	Practical Considerations [relevant for Project 6]
	Part 2: Dominance
	Slide Number 12
	A Few Observations
	Dominator Tree
	Post-Dominance
	Slide Number 16
	Post-Dominator Tree
	Part 3: Loops in CFGs
	Back Edges and Natural Loops
	Slide Number 20
	Loops in the CFG
	Flashback to Graph Algorithms
	Reducible Control-Flow Graphs
	Reducibility
	Reducibility
	Part 4: Control Dependence: Informally
	Control Dependence: Formally
	Slide Number 28
	Finding All Control Dependences
	Why Does This Work? [no need to study this proof]

