
Compiler Optimizations

Chapter 8, Section 8.5
Chapter 9, Section 9.1.7

Local vs. Global Optimizations
• Local: inside a single basic block

– Simple forms of common subexpression elimination,
dead code elimination, strength reduction, etc.

– May sometimes require the results of a dataflow
analysis (e.g., Live Variables analysis)

• Global: intraprocedurally, across basic blocks
– Code motion, more complex common subexpression

elimination, etc.
• Interprocedural optimizations: across procedure

boundaries
– Tricky; not used often
– Sometimes we do procedure inlining and use

intraprocedural optimizations
2

Part 1: Local Optimizations
• Based on a DAG representation of a basic block
• DAG nodes are

– The initial values of variables (before the basic block)
– Nodes labeled with operations – e.g. +, –, etc.

• DAG construction
– Traverse the sequence of instructions in the basic block
– Maintain a mapping: variable v DAG node that

corresponds to the last write to this variable
– Construct new nodes only when necessary

a = b + c
b = a – d
c = b + c
d = a – d

3 b0 c0

+

–

d0a

b,d
+c

Common Subexpression Elimination
• In the previous example, we identified the

common subexpression a – d
– This can be used to optimize the code – eventually we

will reassemble the basic block from this DAG
• Reverse topological sort traversal; if a node has

multiple variables, write to one of them and then
copy to the others; ignore vars that are not live

• Is b live at the end of the basic block?
a = b + c a = b + c
d = a – d d = a – d
b = d c = d + c
c = d + c
if b is live if b is not live

4

Common Subexpression Elimination
• This approach does not always find all

redundancies
a = b + c
b = b – d
c = c + d
e = b + c

There are no common subexpressions here, but in fact
a and e both have the value b0+c0

5

b0 c0

+ –

d0

a +cb

+e

Dead Code Elimination
• Assumes the output of Live Variables analysis (aka

liveness analysis)
• Consider the DAG together with the map of DAG

node that have the last write of a variable
• If a DAG node has zero incoming edges, and has

zero writes of live variables, it can be eliminated
– And this may enable other removals
– Example (from before): suppose that e and c are not

live at the exit of the basic block
• First we can remove the node for e
• Then, the node for c

6
b0 c0

+ –

d0

a +cb

+e

Algebraic Identities
• Arithmetic

x + 0 = 0 + x = x x *1 = 1 * x = x
x – 0 = x x / 1 = x

• Strength reduction: replace a more expensive
operator with a cheaper one

2 * x = x + x x / 2 = 0.5 * x
• Constant folding: evaluate expressions at compile

time and use the result
x = 2*3.14 is replaced with x = 6.28 (e.g., due to
symbolic constants with #define in C, final in Java, etc.)

• Commutativity
– E.g. a = x*y and b = y*x have a common subexpression

7

Local vs. Global Optimizations
• Local: inside a single basic block

– Simple forms of common subexpression elimination,
dead code elimination, strength reduction, etc.

– May sometimes require the results of a dataflow
analysis (e.g., Live Variables analysis)

• Global: intraprocedurally, across basic blocks
– Code motion, more complex common subexpression

elimination, etc.
• Interprocedural optimizations: across procedure

boundaries
– Tricky; not used often
– Sometimes we do procedure inlining and use

intraprocedural optimizations
8

Part 2: Loop-Invariant Computations
• Motivation: again, avoid redundancy
a = … All instructions whose
b = … right-hand side operands have
c = … reaching definitions that are
start loop only from outside the loop
…
d = a + b But, this also applies transitively …
e = c + d Need an algorithm to compute
… the set Inv of all loop-invariant
end loop instructions

9

Complete Definition and Algorithm
• Add an instruction to Inv if each operand on the

right-hand side satisfies one of the following
– It is a constant: e.g., -5 or 3.1415
– All its reaching definitions are from outside of the loop

• After this initialization, repeat until no further
changes to Inv are possible
– Find an instruction that is not in Inv but each operand

on the right-hand side satisfies one of the following
• It is a constant
• All its reaching definitions from outside of the loop
• It has exactly one reaching definition, and that

definition is already in Inv
– Add this instruction to Inv
– Note: use the ud-chains to find all reaching defs

10

The Last Condition
• A right-hand side operand has exactly one reaching

def, and that def is already in Inv
• Why not two reaching defs, both already in Inv?

if (…) a = 5; else a = 6;
b = a+1;

– Even though each definition of a is in Inv, the value of b
is not guaranteed to be the same for each iteration

• But: not every loop-invariant computation (i.e.,
member of Inv) can be moved out of the loop
– for (…) { a = 1; … if (…) break; … b = a+1; … }
– a = 1; b = a+1; for (…) { … if (…) break; … }

11

Conditions for the Actual Code Motion
• Given: a loop-invariant instruction from Inv
• Condition 1: the basic block that contains the

instruction must dominate all exits of the loop
– i.e., all nodes that are sources of loop-exit edges
– This means that it is impossible to exit the loop before

the instruction is executed
• And thus, it is safe to move this instruction before

the loop header
• Condition 2: to move instruction a = …, this must

be the only assignment to a in the loop
– for (…) { a = 1; … if (…) { … a = 2; … } … b = a+1; … }
– a = 1; for (…) { … if (…) { … a = 2; … } … b = a+1; … }

12

Conditions for the Actual Code Motion
• Condition 3: to move instruction a = …, every use

of a in the loop must be reached only by this
definition of a
– Condition 2 ensures that there does not exist another

definition of a in the loop; Condition 3 guarantees that
even if there are definitions of a outside of the loop,
they do not reach any use of a in the loop

– a = 1; for (…) { … b = a+1; … a = 2; … }
– a = 1; a = 2; for (…) { … b = a+1; … }

• Given the subset of instructions from Inv that
satisfy the three conditions from above, we can
now modify the three-address code

13

Complications with Arrays
• Reaching definitions and ud-chains for arrays:

– Any x[y] = z is treated as a “definition” of the entire
array x (really, a possible def for each array element)

– Any x = y[z] is treated as a “use” of the entire array y
(really, a possible use for each array element)

– This is very approximate ... (better approaches exist)
• Various issues

a[x] = y
a[z] = w
u=a[v]

– Both definitions of a are reaching for the use of a
• Unless we can prove that z is always equal to x

14

Code Transformation
• First, create a preheader for the loop

– Original CFG

– Modified CFG

• Next, consider all instructions in Inv, in the order in
which they were added to Inv
– Each instruction that satisfies the three conditions is

added at the end of the preheader, and removed from
its basic block

15

3
4

6 71
5

2

3
4

6 73’
5

2

1

Problem for While/For Loops
S → while (E) S1

S.startLabel = newLabel()
S.exitLabel = newLabel()
S.code =

S.startLabel ||
E.code ||
"if (! " E.addr ") goto " S.exitLabel ||
S1.code ||
"goto " S.startLabel ||
S.exitLabel

16

Example
while (i <= n) {

x = 3*4;
res *= x;
i += 1;

}
…

17

_l1:
_t1 = i <= n;
if (!_t1) goto _l2;
x = 3*4;
_t2 = res * x; res = _t2;
_t3 = i + 1; i = _t3;
goto _l1;
_l2: …

Condition 1: the basic block that contains the instruction
must dominate all exits of the loop – violated!

The Fix

18

_l1:
_t1 = i <= n;
if (!_t1) goto _l2;
x = 3*4;
_t2 = res * x; res = _t2;
_t3 = i + 1; i = _t3;
goto _l1;
_l2: …

_t1 = i <= n;
if (!_t1) goto _l2;
_l1:
x = 3*4;
_t2 = res * x; res = _t2;
_t3 = i + 1; i = _t3;

_t1 = i <= n;
if (!_t1) goto _l2;

goto _l1;
_l2: …

Conceptually …

while (i <= n) {
x = 3*4;
res *= x;
i += 1;

}
…

19

if (i <=n)
do {
x = 3*4;
res *= x;
i += 1;

} while (i<=n)
…

if (i <=n)
x = 3*4;
do {
res *= x;
i += 1;

} while (i<=n)
…

Part 3: Other Global Optimizations
• We have already have seen one simple form of

code motion for loop-invariant computations
• Common subexpression elimination
• Copy propagation
• Dead code elimination
• Elimination of induction variables

– Variables that essentially count the number of
iterations around a loop

• Partial redundancy elimination
– Powerful generalization of code motion and common

subexpression elimination (Section 9.5)

20

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Code fragment from quicksort:
i = m-1; j = n; v = a[n];
while(1) {

do i = i+1; while (a[i] < v);
do j = j–1; while (a[j] > v);
if (i>=j) break;
x=a[i]; a[i] = a[j]; a[j] = x;

}
x=a[i]; a[i] = a[n]; a[n] = x;

21

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=4*i
t8=4*j
t9=a[t8]
a[t7]=t9
t10=4*j
a[t10]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Common subexpression elimination

Local redundancy in B5:
t7=4*i : value already available in t6
t10=4*j : value already available in t8

22

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=4*i
t8=4*j
t9=a[t8]
a[t7]=t9
t10=4*j
a[t10]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Common subexpression elimination

Optimization:
t7=4*i becomes t7=t6
t10=4*j becomes t10=t8

23

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=t6
t8=4*j
t9=a[t8]
a[t7]=t9
t10=t8
a[t10]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Copy propagation (details later)

t7=t6 is a copy instruction; can we
replace t7 with t6?
t10=t8 is a copy instruction; can we
replace t10 with t8?

24

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=t6
t8=4*j
t9=a[t8]
a[t7]=t9
t10=t8
a[t10]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Copy propagation (details later)

a[t7]=t9 becomes a[t6]=t9
a[t10]=x becomes a[t8]=t9

25

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=t6
t8=4*j
t9=a[t8]
a[t6]=t9
t10=t8
a[t8]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Dead code elimination

t7 is dead at the end of B5
(remember Live Variables data-flow
analysis?) and is not used inside B5;
so, t7=t6 is dead code

t10 is dead at the end of B5 and is not
used inside B5; so, t10=t8 is dead
code

26

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=t6
t8=4*j
t9=a[t8]
a[t6]=t9
t10=t8
a[t8]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

27

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

28

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6

Common subexpression elimination

Local redundancy in B6:
t12=4*i : value already available in t11
t15=4*n : value already available in t13
Same optimizations as was done for B5

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

29

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=t14
a[t13]=x

true

B5 B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Common subexpression elimination

Global redundancy in B5:
t6=4*i : value already available in t2
t8=4*j : value already available in t4

30

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=t14
a[t13]=x

true

B5 B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Common subexpression elimination,
copy propagation, dead code
elimination:

x=a[t6] becomes x=a[t2]
a[t6]=t9 becomes a[t2]=t9
t9=a[t8] becomes t9=a[t4]
a[t8]=x becomes a[t4]=x
t6 and t8 are eliminated

31

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=t14
a[t13]=x

true

B5 B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

32

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

x=a[t2]
t9=a[t4]
a[t2]=t9
a[t4]=x
goto

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=t14
a[t13]=x

true

B5 B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

33

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

x=a[t2]
t9=a[t4]
a[t2]=t9
a[t4]=x
goto

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=t14
a[t13]=x

true

B5 B6

Common subexpression elimination,
copy propagation, dead code
elimination:

x=a[t11] becomes x=a[t2]
a[t11]=t14 becomes a[t2]=t14
t14=a[t13] becomes t14=a[t1]
a[t13]=x becomes a[t1]=x
t11 and t13 are eliminated

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

34

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

x=a[t2]
t9=a[t4]
a[t2]=t9
a[t4]=x
goto

x=a[t2]
t14=a[t1]
a[t2]=t14
a[t1]=x

true

B5 B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

35

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

x=a[t2]
t9=a[t4]
a[t2]=t9
a[t4]=x
goto

x=a[t2]
t14=a[t1]
a[t2]=t14
a[t1]=x

true

B5 B6

Additional common subexpressions?

x=a[t2] : value already available in t3

a[t4]=x becomes a[t4]=t3
a[t1]=x becomes a[t1]=t3
x is eliminated

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

36

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t9=a[t4]
a[t2]=t9
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

37

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t9=a[t4]
a[t2]=t9
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6

Additional common subexpressions?

t9=a[t4] : value already available in t5

a[t2]=t9 becomes a[t2]=t5
t9 is eliminated

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

38

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

39

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6

Additional common subexpressions?

t14=a[t1] : value already available in v?
Not really …

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

40

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5
B6

Induction variables
Induction variables in B2:
Each time i is assigned, its value increases by 1
Each time t2 is assigned, its value increases by 4

Induction variables in B3:
Each time j is assigned, its value decreases by 1
Each time t4 is assigned, its value decreases by 4

i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

41

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5
B6

Strength reduction: use +/- instead of *
Induction variables in B2:
Can replace t2=4*i with t2=t2+4

Induction variables in B3:
Can replace t4=4*j with t4=t4-4

i=m-1
j=n
t1= 4*n
v=a[t1]
t2=4*i
t4=4*j

i=i+1
t2=t2+4
t3=a[t2]
if (t3<v)

B1

true

Elimination of induction variables

After initialization, i and j are used only in B4
Can replace i>=j with t2>=t4 in B4
After this, i=i+1 and j=j-1 become dead code
and can be eliminated

In general, if there are two or more
induction variables in the same loop, it may
be possible to eliminate all but one of them

42

B2

j=j-1
t4=t4-4
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6

i=m-1
j=n
t1= 4*n
v=a[t1]
t2=4*i
t4=4*j

t2=t2+4
t3=a[t2]
if (t3<v)

B1

true

Final program after all optimizations

Original program: for the worst-case input,
~ 18*(n-m) instructions would be executed in
the outer loop, with ~ 6*(n-m) multiplications

Optimized program: for the worst-case input,
~ 10*(n-m) instructions would be executed in
the outer loop, without any multiplications

43

B2

t4=t4-4
t5=a[t4]
if (t5>v)

B3 true
if (t2>=t4)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6

(start detour) Another Dataflow Analysis
• Copy propagation: for x = y, replace subsequent

uses of x with y, as long as x and y have not
changed along the way
– Creates opportunities for dead code elimination: e.g.,

after copy propagation we may find that x is not live

44

b=a
c=4*b
if (c>b)

e=a+b

B1

true

B3

EXIT

d=b+2

ENTRY

B2

b=a
c=4*a
if (c>a)

e=a+a

B1

true

B3

EXIT

d=a+2

ENTRY

B2

1) Dead code
elimination: b=a

2) Strength
reduction: e=a+a
use left shift
instead of
addition

Formulation as a System of Equations
• For each CFG node n (assume nodes = instructions)

– IN[n] is a set of copy instructions x=y such that nether x
nor y is assigned along any path from x=y to n

– GEN[n] is
• A singleton set containing the copy instruction, when

n is indeed a copy instruction
• The empty set, otherwise

– KILL[n]: if n assigns to x, kill every y=x and x=y
– Note that we must use intersection of OUT[m]

45

I)(rsPredecesso
][OUT][IN

nm
mn

∈
=

][GEN])[KILL][IN(][OUT nnnn ∪−=

∅=]ENTRY[OUT

Worklist Algorithm (end detour)
IN[n] = the set of all copy instructions, for all n
Put the successor of ENTRY on worklist
While (worklist is not empty)

1. Remove a CFG node m from the worklist
2. OUT[m] = (IN[m] – KILL[m]) ∪ GEN[m]
3. For each successor n of m

old = IN[n]
IN[n] = IN[n] ∩ OUT[m]
If (old != IN[n]) add n to worklist

46

In Reaching Definitions, we initialized IN[n] to the empty set; here
we cannot do this, because of IN[n] = IN[n] ∩ OUT[m]
• Here the “merge” operation is set intersection
•In Reaching Definitions, “merge” is set union

Part 4: Loop Optimizations
• Loops are important for performance
• Parallelization

– May need scalar expansion
• Loop peeling
• Loop unrolling
• Loop fusion
• Many more [CSE 5441 - Introduction to Parallel Computing]

– Loop permutation (interchange)
– Loop distribution (fission)
– Loop tiling
– Loop skewing
– Index set splitting (generalization of peeling)

47

Loop Parallelization
• When all iterations of a loop are independent of

each other

• Needs some form of loop dependence analysis,
which often involves reasoning about arrays

• May require enabling pre-transformations to make
it parallel (e.g., scalar expansion or privatization)

Scalar expansion example

48

for (i = 0 ; i < 4096 ; i++)
c[i] = a[i] + b[i];

for (i = 0 ; i < 4096 ; i++) {
t = a[i] + b[i];
c[i] = t*t; }

double tx[4096];
for (i = 0 ; i < 4096 ; i++) {

tx[i] = a[i] + b[i];
c[i] = tx[i]*tx[i]; }

t = tx[4095];

Loop Peeling
• Goal: extract the first (or last) iteration

– E.g. wraparound variables for cylindrical coordinates

• Peel-off the first iteration, then do induction variable
analysis and copy propagation

49

j = N;
for (i = 0 ; i < N ; i++) {

b[i] = (a[i] + a[j]) / 2;
j = i; } // assume j is not live here

b[0] = (a[0] + a[N]) / 2;
b[1] = (a[1] + a[0]) / 2;
b[2] = (a[2] + a[1]) / 2
...

j = N;
if (N>=1) {

b[0] = (a[0] + a[j]) / 2;
j = 0;
for (i = 1 ; i < N ; i++) {

b[i] = (a[i] + a[j]) / 2;
j = i; } }

if (N>=1) {
b[0] = (a[0] + a[N]) / 2;
for (i = 1 ; i < N ; i++) {

b[i] = (a[i] + a[i-1]) / 2; } }
// now we can do unrolling

Loop Unrolling
• Loop unrolling: extend the body

– Reduces the “control overhead” of the loop: makes the
loop exit test (i < 4096) execute less frequently

– Hardware advantages: instruction-level parallelism;
fewer pipeline stalls

– Issue: loop bound may not be a multiple of unroll factor
– Problem: high unroll factors may degrade performance

due to register pressure and spills (more later)
50

for (i = 0 ; i < 4096 ; i++)
c[i] = a[i] + b[i];

for (i = 0 ; i < 4095 ; i +=2) {
c[i] = a[i] + b[i];
c[i+1] = a[i+1] + b[i+1];

} // unroll factor of 2

Loop Fusion
• Merge two loops with compatible bounds

– Reduces the loop control overhead (i.e., loop exit test)
– May improve cache use (e.g. the reuse of c[k] above) –

especially producer/consumer loops [↓capacity misses]
– Fewer parallelizable loops and increased work per loop:

reduces parallelization overhead (cost of spawn/join)
– If the loop bounds are “±1 off” – use peeling
– Not always legal – need loop dependence analysis

51

for (i = 0 ; i < N ; i++)
c[i] = a[i] + b[i];

for (j = 0 ; j < N ; j++)
d[j] = c[j] * 2;

for (k = 0 ; k < N ; k++) {
c[k] = a[k] + b[k];
d[k] = c[k] * 2;

}

	Compiler Optimizations
	Local vs. Global Optimizations
	Part 1: Local Optimizations
	Common Subexpression Elimination
	Common Subexpression Elimination
	Dead Code Elimination
	Algebraic Identities
	Local vs. Global Optimizations
	Part 2: Loop-Invariant Computations
	Complete Definition and Algorithm
	The Last Condition
	Conditions for the Actual Code Motion
	Conditions for the Actual Code Motion
	Complications with Arrays
	Code Transformation
	Problem for While/For Loops
	Example
	The Fix
	Conceptually …
	Part 3: Other Global Optimizations
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	(start detour) Another Dataflow Analysis
	Formulation as a System of Equations
	Worklist Algorithm (end detour)
	Part 4: Loop Optimizations
	Loop Parallelization
	Loop Peeling
	Loop Unrolling
	Loop Fusion

