
Compiler Optimizations

Chapter 8, Section 8.5
Chapter 9, Section 9.1.7



Local vs. Global Optimizations
• Local: inside a single basic block

– Simple forms of common subexpression elimination, 
dead code elimination, strength reduction, etc.

– May sometimes require the results of a dataflow 
analysis (e.g., Live Variables analysis)

• Global: intraprocedurally, across basic blocks
– Code motion, more complex common subexpression

elimination, etc.
• Interprocedural optimizations: across procedure 

boundaries
– Tricky; not used often
– Sometimes we do procedure inlining and use  

intraprocedural optimizations
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Part 1: Local Optimizations
• Based on a DAG representation of a basic block
• DAG nodes are

– The initial values of variables (before the basic block)
– Nodes labeled with operations – e.g. +, –, etc.

• DAG construction
– Traverse the sequence of instructions in the basic block
– Maintain a mapping: variable v  DAG node that 

corresponds to the last write to this variable
– Construct new nodes only when necessary

a = b + c
b = a – d
c = b + c
d = a – d 
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Common Subexpression Elimination
• In the previous example, we identified the 

common subexpression a – d 
– This can be used to optimize the code – eventually we 

will reassemble the basic block from this DAG
• Reverse topological sort traversal; if a node has 

multiple variables, write to one of them and then 
copy to the others; ignore vars that are not live 

• Is b live at the end of the basic block?
a = b + c a = b + c
d = a – d d = a – d
b = d c = d + c
c = d + c
if b is live if b is not live
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Common Subexpression Elimination
• This approach does not always find all 

redundancies
a = b + c
b = b – d
c = c + d
e = b + c

There are no common subexpressions here, but in fact
a and e both have the value b0+c0
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Dead Code Elimination
• Assumes the output of Live Variables analysis (aka 

liveness analysis)
• Consider the DAG together with the map of DAG 

node that have the last write of a variable
• If a DAG node has zero incoming edges, and has 

zero writes of live variables, it can be eliminated
– And this may enable other removals
– Example (from before): suppose that e and c are not 

live at the exit of the basic block
• First we can remove the node for e
• Then, the node for c
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Algebraic Identities
• Arithmetic

x + 0 = 0 + x = x x *1 = 1 * x = x
x – 0 = x x / 1 = x

• Strength reduction: replace a more expensive 
operator with a cheaper one

2 * x = x + x x / 2 = 0.5 * x
• Constant folding: evaluate expressions at compile 

time and use the result
x = 2*3.14 is replaced with x = 6.28 (e.g., due to 
symbolic constants with #define in C, final in Java, etc.) 

• Commutativity
– E.g. a = x*y and b = y*x have a common subexpression
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Local vs. Global Optimizations
• Local: inside a single basic block

– Simple forms of common subexpression elimination, 
dead code elimination, strength reduction, etc.

– May sometimes require the results of a dataflow 
analysis (e.g., Live Variables analysis)

• Global: intraprocedurally, across basic blocks
– Code motion, more complex common subexpression

elimination, etc.
• Interprocedural optimizations: across procedure 

boundaries
– Tricky; not used often
– Sometimes we do procedure inlining and use  

intraprocedural optimizations
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Part 2: Loop-Invariant Computations
• Motivation: again, avoid redundancy
a = … All instructions whose
b = … right-hand side operands have
c = … reaching definitions that are 
start loop only from outside the loop
…
d = a + b But, this also applies transitively …
e = c + d Need an algorithm to compute
… the set Inv of all loop-invariant
end loop instructions
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Complete Definition and Algorithm
• Add an instruction to Inv if each operand on the 

right-hand side satisfies one of the following
– It is a constant: e.g., -5 or 3.1415
– All its reaching definitions are from outside of the loop

• After this initialization, repeat until no further 
changes to Inv are possible
– Find an instruction that is not in Inv but each operand 

on the right-hand side satisfies one of the following
• It is a constant
• All its reaching definitions from outside of the loop
• It has exactly one reaching definition, and that 

definition is already in Inv
– Add this instruction to Inv
– Note: use the ud-chains to find all reaching defs
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The Last Condition
• A right-hand side operand has exactly one reaching 

def, and that def is already in Inv
• Why not two reaching defs, both already in Inv?

if (…) a = 5; else a = 6; 
b = a+1;

– Even though each definition of a is in Inv, the value of b
is not guaranteed to be the same for each iteration

• But: not every loop-invariant computation (i.e., 
member of Inv) can be moved out of the loop
– for (…) { a = 1; … if (…) break; … b = a+1; … }
– a = 1; b = a+1; for (…) { … if (…) break; … }
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Conditions for the Actual Code Motion
• Given: a loop-invariant instruction from Inv
• Condition 1: the basic block that contains the 

instruction must dominate all exits of the loop
– i.e., all nodes that are sources of loop-exit edges
– This means that it is impossible to exit the loop before 

the instruction is executed
• And thus, it is safe to move this instruction before 

the loop header
• Condition 2: to move instruction a = …, this must 

be the only assignment to a in the loop
– for (…) { a = 1; … if (…) { … a = 2; … } … b = a+1; … }
– a = 1; for (…) { … if (…) { … a = 2; … } … b = a+1; … }
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Conditions for the Actual Code Motion
• Condition 3: to move instruction a = …, every use 

of a in the loop must be reached only by this 
definition of a
– Condition 2 ensures that there does not exist another 

definition of a in the loop; Condition 3 guarantees that 
even if there are definitions of a outside of the loop, 
they do not reach any use of a in the loop

– a = 1; for (…) { … b = a+1; … a = 2; … }
– a = 1; a = 2; for (…) { … b = a+1; … }

• Given the subset of instructions from Inv that 
satisfy the three conditions from above, we can 
now modify the three-address code
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Complications with Arrays
• Reaching definitions and ud-chains for arrays:

– Any x[y] = z is treated as a “definition” of the entire 
array x (really, a possible def for each array element)

– Any x = y[z] is treated as a “use” of the entire array y
(really, a possible use for each array element)

– This is very approximate ... (better approaches exist)
• Various issues

a[x] = y
a[z] = w
u=a[v]

– Both definitions of a are reaching for the use of a
• Unless we can prove that z is always equal to x
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Code Transformation
• First, create a preheader for the loop

– Original CFG

– Modified CFG

• Next, consider all instructions in Inv, in the order in 
which they were added to Inv
– Each instruction that satisfies the three conditions is 

added at the end of the preheader, and removed from 
its basic block
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Problem for While/For Loops
S → while (E) S1  

S.startLabel = newLabel() 
S.exitLabel = newLabel() 
S.code = 

S.startLabel ||
E.code || 
"if (! " E.addr ") goto " S.exitLabel || 
S1.code ||
"goto " S.startLabel ||
S.exitLabel
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Example
while (i <= n) {

x = 3*4;
res *= x;
i += 1;

}
…
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_l1:
_t1 = i <= n;
if (!_t1) goto _l2;
x = 3*4;
_t2 = res * x; res = _t2;
_t3 = i + 1; i = _t3;
goto _l1;
_l2: …

Condition 1: the basic block that contains the instruction
must dominate all exits of the loop – violated!



The Fix
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_l1:
_t1 = i <= n;
if (!_t1) goto _l2;
x = 3*4;
_t2 = res * x; res = _t2;
_t3 = i + 1; i = _t3;
goto _l1;
_l2: …

_t1 = i <= n;
if (!_t1) goto _l2;
_l1:
x = 3*4;
_t2 = res * x; res = _t2;
_t3 = i + 1; i = _t3;

_t1 = i <= n;
if (!_t1) goto _l2;

goto _l1;
_l2: …



Conceptually …

while (i <= n) {
x = 3*4;
res *= x;
i += 1;

}
…
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if (i <=n)
do {
x = 3*4;
res *= x;
i += 1;

} while (i<=n)
…

if (i <=n)
x = 3*4;
do {
res *= x;
i += 1;

} while (i<=n)
…



Part 3: Other Global Optimizations
• We have already have seen one simple form of 

code motion for loop-invariant computations
• Common subexpression elimination
• Copy propagation
• Dead code elimination
• Elimination of induction variables

– Variables that essentially count the number of 
iterations around a loop

• Partial redundancy elimination
– Powerful generalization of code motion and common 

subexpression elimination (Section 9.5)
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i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Code fragment from quicksort:
i = m-1; j = n; v = a[n];
while(1) {

do  i = i+1;  while  (a[i] < v);
do  j = j–1;  while  (a[j] > v);
if (i>=j) break;
x=a[i]; a[i] = a[j]; a[j] = x; 

}
x=a[i]; a[i] = a[n]; a[n] = x;
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=4*i
t8=4*j
t9=a[t8]
a[t7]=t9
t10=4*j
a[t10]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Common subexpression elimination

Local redundancy in B5: 
t7=4*i : value already available in t6
t10=4*j : value already available in t8
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=4*i
t8=4*j
t9=a[t8]
a[t7]=t9
t10=4*j
a[t10]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Common subexpression elimination

Optimization: 
t7=4*i becomes t7=t6
t10=4*j becomes t10=t8
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=t6
t8=4*j
t9=a[t8]
a[t7]=t9
t10=t8
a[t10]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Copy propagation (details later)

t7=t6 is a copy instruction; can we 
replace t7 with t6?
t10=t8 is a copy instruction; can we 
replace t10 with t8?
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=t6
t8=4*j
t9=a[t8]
a[t7]=t9
t10=t8
a[t10]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Copy propagation (details later)

a[t7]=t9 becomes a[t6]=t9
a[t10]=x becomes a[t8]=t9
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=t6
t8=4*j
t9=a[t8]
a[t6]=t9
t10=t8
a[t8]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Dead code elimination

t7 is dead at the end of B5 
(remember Live Variables data-flow 
analysis?) and is not used inside B5; 
so, t7=t6 is dead code

t10 is dead at the end of B5 and is not 
used inside B5; so, t10=t8 is dead 
code
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t7=t6
t8=4*j
t9=a[t8]
a[t6]=t9
t10=t8
a[t8]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x

true

B5
B6

Common subexpression elimination

Local redundancy in B6: 
t12=4*i : value already available in t11
t15=4*n : value already available in t13
Same optimizations as was done for B5

t11=4*i
x=a[t11]
t12=4*i
t13=4*n
t14=a[t13]
a[t12]=t14
t15=4*n
a[t15]=x



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=t14
a[t13]=x

true

B5 B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Common subexpression elimination

Global redundancy in B5: 
t6=4*i : value already available in t2
t8=4*j : value already available in t4
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=t14
a[t13]=x

true

B5 B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

Common subexpression elimination,
copy propagation, dead code 
elimination:

x=a[t6] becomes x=a[t2]
a[t6]=t9 becomes a[t2]=t9
t9=a[t8] becomes t9=a[t4]
a[t8]=x becomes a[t4]=x
t6 and t8 are eliminated
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=t14
a[t13]=x

true

B5 B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

x=a[t2]
t9=a[t4]
a[t2]=t9
a[t4]=x
goto

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=t14
a[t13]=x

true

B5 B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

x=a[t2]
t9=a[t4]
a[t2]=t9
a[t4]=x
goto

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=t14
a[t13]=x

true

B5 B6

Common subexpression elimination,
copy propagation, dead code 
elimination:

x=a[t11] becomes x=a[t2]
a[t11]=t14 becomes a[t2]=t14
t14=a[t13] becomes t14=a[t1]
a[t13]=x becomes a[t1]=x
t11 and t13 are eliminated



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

34

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

x=a[t2]
t9=a[t4]
a[t2]=t9
a[t4]=x
goto

x=a[t2]
t14=a[t1]
a[t2]=t14
a[t1]=x

true

B5 B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

x=a[t2]
t9=a[t4]
a[t2]=t9
a[t4]=x
goto

x=a[t2]
t14=a[t1]
a[t2]=t14
a[t1]=x

true

B5 B6

Additional common subexpressions?

x=a[t2] : value already available in t3

a[t4]=x becomes a[t4]=t3
a[t1]=x becomes a[t1]=t3
x is eliminated



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t9=a[t4]
a[t2]=t9
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

t9=a[t4]
a[t2]=t9
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6

Additional common subexpressions?

t9=a[t4] : value already available in t5

a[t2]=t9 becomes a[t2]=t5
t9 is eliminated



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true

39

B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6

Additional common subexpressions?

t14=a[t1] : value already available in v?
Not really …



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5
B6

Induction variables
Induction variables in B2:
Each time i is assigned, its value increases by 1
Each time t2 is assigned, its value increases by 4

Induction variables in B3:
Each time j is assigned, its value decreases by 1
Each time t4 is assigned, its value decreases by 4



i=m-1
j=n
t1= 4*n
v=a[t1]

i=i+1
t2=4*i
t3=a[t2]
if (t3<v)

B1

true
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B2

j=j-1
t4=4*j
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5
B6

Strength reduction: use +/- instead of *
Induction variables in B2:
Can replace t2=4*i with t2=t2+4

Induction variables in B3:
Can replace t4=4*j with t4=t4-4



i=m-1
j=n
t1= 4*n
v=a[t1]
t2=4*i
t4=4*j

i=i+1
t2=t2+4
t3=a[t2]
if (t3<v)

B1

true

Elimination of induction variables

After initialization, i and j are used only in B4
Can replace i>=j with t2>=t4 in B4
After this, i=i+1 and j=j-1 become dead code 
and can be eliminated

In general, if there are two or more 
induction variables in the same loop, it may 
be possible to eliminate all but one of them
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B2

j=j-1
t4=t4-4
t5=a[t4]
if (t5>v)

B3 true
if (i>=j)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6



i=m-1
j=n
t1= 4*n
v=a[t1]
t2=4*i
t4=4*j

t2=t2+4
t3=a[t2]
if (t3<v)

B1

true

Final program after all optimizations

Original program: for the worst-case input,       
~ 18*(n-m) instructions would be executed in 
the outer loop, with ~ 6*(n-m) multiplications

Optimized program: for the worst-case input,   
~ 10*(n-m) instructions would be executed in 
the outer loop, without any multiplications 
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B2

t4=t4-4
t5=a[t4]
if (t5>v)

B3 true
if (t2>=t4)B4

a[t2]=t5
a[t4]=t3
goto

t14=a[t1]
a[t2]=t14
a[t1]=t3

true

B5 B6



(start detour) Another Dataflow Analysis
• Copy propagation: for x = y, replace subsequent 

uses of x with y, as long as x and y have not 
changed along the way
– Creates opportunities for dead code elimination: e.g., 

after copy propagation we may find that x is not live
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b=a
c=4*b
if (c>b)

e=a+b

B1

true

B3

EXIT

d=b+2

ENTRY

B2

b=a
c=4*a
if (c>a)

e=a+a

B1

true

B3

EXIT

d=a+2

ENTRY

B2

1) Dead code 
elimination: b=a

2) Strength 
reduction: e=a+a
use left shift 
instead of 
addition



Formulation as a System of Equations
• For each CFG node n (assume nodes = instructions)

– IN[n] is a set of copy instructions x=y such that nether x
nor y is assigned along any path from x=y to n

– GEN[n] is 
• A singleton set containing the copy instruction, when 

n is indeed a copy instruction
• The empty set, otherwise

– KILL[n]: if n assigns to x, kill every y=x and x=y
– Note that we must use intersection of OUT[m]
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Worklist Algorithm (end detour)
IN[n] = the set of all copy instructions, for all n
Put the successor of ENTRY on worklist
While (worklist is not empty) 

1. Remove a CFG node m from the worklist
2. OUT[m] = (IN[m] – KILL[m]) ∪ GEN[m]
3. For each successor n of m

old = IN[n]
IN[n] = IN[n] ∩ OUT[m]
If (old != IN[n]) add n to worklist
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In Reaching Definitions, we initialized IN[n] to the empty set; here 
we cannot do this, because of IN[n] = IN[n] ∩ OUT[m]
• Here the “merge” operation is set intersection
•In Reaching Definitions, “merge” is set union



Part 4: Loop Optimizations
• Loops are important for performance
• Parallelization

– May need scalar expansion
• Loop peeling
• Loop unrolling
• Loop fusion
• Many more  [CSE 5441 - Introduction to Parallel Computing]

– Loop permutation (interchange)
– Loop distribution (fission)
– Loop tiling
– Loop skewing
– Index set splitting (generalization of peeling)
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Loop Parallelization
• When all iterations of a loop are independent of 

each other

• Needs some form of loop dependence analysis, 
which often involves reasoning about arrays

• May require enabling pre-transformations to make 
it parallel (e.g., scalar expansion or privatization)

Scalar expansion example
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for ( i = 0 ; i < 4096 ; i++ )
c[i] = a[i] + b[i];

for ( i = 0 ; i < 4096 ; i++ ) {
t = a[i] + b[i];
c[i] = t*t; } 

double tx[4096];
for ( i = 0 ; i < 4096 ; i++ ) {

tx[i] = a[i] + b[i];
c[i] = tx[i]*tx[i]; } 

t = tx[4095];



Loop Peeling
• Goal: extract the first (or last) iteration

– E.g. wraparound variables for cylindrical coordinates

• Peel-off the first iteration, then do induction variable 
analysis and copy propagation
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j = N;
for ( i = 0 ; i < N ; i++ ) {

b[i] = (a[i] + a[j]) / 2;
j = i; } // assume  j is not live here

b[0] = (a[0] + a[N]) / 2;
b[1] = (a[1] + a[0]) / 2;
b[2] = (a[2] + a[1]) / 2
...  

j = N;
if (N>=1) { 

b[0] = (a[0] + a[j]) / 2;
j = 0;
for ( i = 1 ; i < N ; i++ ) {

b[i] = (a[i] + a[j]) / 2;
j = i; } }

if (N>=1) { 
b[0] = (a[0] + a[N]) / 2;
for ( i = 1 ; i < N ; i++ ) {

b[i] = (a[i] + a[i-1]) / 2; } }
// now we can do unrolling



Loop Unrolling
• Loop unrolling: extend the body

– Reduces the “control overhead” of the loop: makes the 
loop exit test (i < 4096) execute less frequently

– Hardware advantages: instruction-level parallelism; 
fewer pipeline stalls

– Issue: loop bound may not be a multiple of unroll factor
– Problem: high unroll factors may degrade performance 

due to register pressure and spills (more later)
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for ( i = 0 ; i < 4096 ; i++ )
c[i] = a[i] + b[i];

for ( i = 0 ; i < 4095 ; i +=2 ) {
c[i] = a[i] + b[i];
c[i+1] = a[i+1] + b[i+1];

} // unroll factor of 2



Loop Fusion
• Merge two loops with compatible bounds

– Reduces the loop control overhead (i.e., loop exit test)
– May improve cache use (e.g. the reuse of c[k] above) –

especially producer/consumer loops [↓capacity misses]
– Fewer parallelizable loops and increased work per loop: 

reduces parallelization overhead (cost of spawn/join)
– If the loop bounds are “±1 off” – use peeling
– Not always legal – need loop dependence analysis
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for ( i = 0 ; i < N ; i++ )
c[i] = a[i] + b[i];

for ( j = 0 ; j < N ; j++)
d[j] = c[j] * 2;

for ( k = 0 ; k < N ; k++ ) {
c[k] = a[k] + b[k];
d[k] = c[k] * 2;

}
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