
More on Points-To Analysis

Parameterized Object Sensitivity for Points-to Analysis for Java, A.
Milanova, A. Rountev, and B. G. Ryder, ACM Transactions on
Software Engineering and Methodology (TOSEM), January 2005
(available at my research web page)

Scaling Java Points-to Analysis using Spark, O. Lhotak and L.
Hendren, Int. Conf. Compiler Construction (CC), 2003

Earlier Discussion of Points-To Analysis
• Question (oversimplified): can variable x contain

the address of variable y at program point p?
• Instructions of interest in C

– x = &y (note that we do not consider taking the address
of a function, an array element, or a struct field)

– x = y
– x = *y
– *x = y
– x = null
– x = malloc(…): think of it as x = &heapi
– x = (*y).fld
– (*x).fld = y
– a[x] = y
– x = a[y]

2

Basic Ideas
• IN[n] ⊆ (Vars × Vars) ∪ (Vars × Fields × Vars)

– That is, a set of pairs (x,y) or triples (x,fld,y)

• Often defined as “points-to graph”
– an edge x → y shows that x may point to y
– an edge x → y shows that field fld of struct x may point

to y

• Merging two points-to graphs: just the union of
their edge sets

3

fld

Flow-Insensitive Formulation
• One graph G instead of per-node graphs IN[n]
• Switch-in-a-loop artificial structure
• No “kills”: for a node n, fn(G) only adds to G, but

does not remove any edges
– E.g., for x = y: instead of (G – {x}×…) ∪ { (x,z) | (y,z)∈ G},

we will use G ∪ { (x,z) | (y,z)∈ G}
– Can ignore x = null statements

• Conceptual fixed-point computation
1. G := ∅
2. for each n in some arbitrary order, G:= fn(G)
3. If G changed in step 2, repeat step 2

• In reality, it would be implemented w/ worklist
 4

Transfer Functions for C
• x = &y: G ∪ { (x,y) }
• x = y: G ∪ { (x,z) | (y,z)∈ G}
• x = *y: G ∪ { (x,z) | (y,w)∈ G ∧ (w,z) ∈ G }
• *x = y: G ∪ { (w,z) | (x,w)∈ G ∧ (y,z) ∈ G }
• x = malloc(…) : G ∪ { (x,heapi) }
• x = a[y]: G ∪ { (x,z) |(a,z)∈ G }
• a[x] = y: G ∪ { (a,z) | (y,z)∈ G }
• x = (*y).fld: G ∪ { (x,z) |(y,w)∈ G ∧ (w,fld,z) ∈ G }
• (*x).fld = y: G ∪ { (w,fld,z) |(x,w) ∈ G ∧ (y,z) ∈ G }

5

Transfer Functions for Java
• x = y: same
• x = new X: same as malloc(…) calls
• x = y.fld: same as x = (*y).fld in C
• x.fld = y: same as (*x).fld = y in C
• x = a[y]: same as x = a.any (artificial field any)
• a[x] = y: same as a.any = y
• How about calls?

• Option 1: pre-compute the call graph w/ CHA or
RTA or …; treat parameter passing as x=y

• Option 2: on-the-fly call graph (next slide)

6

Points-to Analysis for Java in Action

class A { void m(X p) {..} }

class B extends A {
 X f;
 void m(X q) { this.f=q; }
}

B b = new B();
X x = new X();
A a = b;
a.m(x);

q

b o1

a

thisB.m f

x o2

9

Example: Imprecision
class Y extends X { … }

class A {
 X f;
 void m(X q) {
 this.f=q ; }

}
A a = new A() ;
a.m(new X()) ;
A aa = new A() ;
aa.m(new Y()) ;

o2 o1 a

thisA.m q

o3 aa o4 f

f

f

f

10

Object-Sensitive Analysis

• Form of calling-context-sensitive analysis
• Instance methods and constructors analyzed

for different contexts
• Receiver objects used as contexts
• Multiple copies of reference variables

this.f=q thisA.m.f=q o1 o1
o1

11

Example: Object-sensitive Analysis

class A {
 X f;
 void m(X q) {
 this.f=q ; }

}

A a = new A() ;
a.m(new X()) ;
A aa = new A() ;
aa.m(new Y()) ;

o2
f

o1 a

thisA.m
o1 qA.m

o1
thisA.m.f=q o1 o1

o1

 this.f=q ;

o3 aa o4

o3 thisA.m
o3 qA.m

thisA.m.f=q o3 o3

f

12

Context-Insensitive Base-Object-Insensitive
• x = y: same; x = new X: same
• x = y.fld: same as x = fld
• x.fld = y: same as fld = y
• x = a[y]: same as x = any
• a[x] = y: same as any = y

• One single field any for all array types, or a
separate any for each array type (but beware of subtyping
of array types, because variable a may have several array types)

Points-to graph has only x → y; i.e., no edges labeled
with fields

 13

Context-Insensitive Base-Object-Insensitive
• Specialized representation of the transfer functions

through a flow graph
– Not a points-to graph; not a control-flow graph

• x = new X: edge oi ⇒ x in the flow graph
• x = y: edge y ⇒ x in the flow graph
• “x points-to oi” if and only if x is reachable from oi

in the flow graph
• Remember “for each n, G:= fn(G)”? Equivalently

1. For each oi ⇒ x, x points to oi
2. If y points to oi : for each y ⇒ x, x points to oi
Easy to see that “points to” is same as “reachable from”

14

	More on Points-To Analysis
	Earlier Discussion of Points-To Analysis
	Basic Ideas
	Flow-Insensitive Formulation
	Transfer Functions for C
	Transfer Functions for Java
	Points-to Analysis for Java in Action
	Slide Number 8
	Example: Imprecision
	Object-Sensitive Analysis
	Example: Object-sensitive Analysis
	Slide Number 12
	Context-Insensitive Base-Object-Insensitive
	Context-Insensitive Base-Object-Insensitive

