
CSE 5239: Compile-Time Program
Analysis and Transformations

Nasko Rountev
Autumn 2014

http://web.cse.ohio-state.edu/~rountev/5239

Use Cases for Compile-Time Analysis (1/2)
• Traditional compilation (C,C++,Fortran)

– Analysis in the compiler for correctness & performance

• Modern compilation (Java w/ bytecode, C# w/ CIL)

– Analysis in the translator (e.g., javac)
– Lightweight analysis in the just-in-time (JIT) compiler

inside the virtual machine
2

Use Cases for Compile-Time Analysis (2/2)
• Software development environments

– E.g., in Eclipse: finds code smells and potential defects;
performs code refactoring

• Software verification/checking tools
– Prove the absence of certain categories of defects

• Testing tools
– E.g., for regression testing – which tests do not need to

be rerun after some changes to the program?
• Also: comprehension tools, debugging tools (after

failure), performance analysis tools, etc.
• More generally, static analysis (vs. dynamic analysis)

3

Inside a Traditional Compiler: Front End
• Lexical analyzer (aka scanner)

– Converts ASCII or Unicode to a stream of tokens
• Syntax analyzer (aka parser)

– Creates a parse tree from the token stream
• Semantic analyzer

– Type checking and conversions; other semantic checks
– Some compile-time analyses done here, on the AST

• Generator of intermediate code
– A parse tree is too high-level for code generation &

optimization
– Create lower-level intermediate representation (IR):

e.g., three-address code

4

Inside the Compiler: Middle Part
• Compile-time analysis of intermediate code

– Additional IRs: control-flow graph (CFG), static single-
assignment form (SSA), def-use graph, etc.

– Control-flow analysis, data-flow analysis, pointer
analysis, side-effect analysis, polyhedral analysis, …

• Machine-independent optimization of
intermediate code: better three-address code
– Copy propagation, dead code elimination, code motion,

constant propagation, redundancy elimination,
parallelization, data locality optimizations, …

• Currently, this is where most of compiler research
is focused

5

Three-Address Code
• ASTs are high-level IRs

– Close to the source language
– Suitable for tasks such as type checking

• Three-address code is a lower-level IR
– Closer to the target language (i.e., assembly code)
– Suitable for tasks such as code generation/optimization

• Basic ideas
– A small number of simple instructions: e.g. x = y op z
– A number of compiler-generated temporary variables

a = b + c + d; in source code  t = b + c; a = t + d;
– Simple flow of control – conditional and unconditional

jumps to labeled statements
6

Important Note
• The choice of the program representation on

which to perform analysis is critical
– E.g. if you are writing an Eclipse plug-in, you have

access to the AST, but not to a lower-level IR
• Plus, the results of the analysis are useful for ASTs

(e.g., code smells reported to the programmer)
• In a compiler, we usually prefer to have access to a

lower-level IR, since the analyses and
transformations are easier
– In this course, we will focus on this scenario

7

Addresses and Instructions
• “Address”: a program variable, a constant, or a

compiler-generated temporary variable
• Instructions

– x = y op z: binary operator op; y and z are variables,
temporaries, or constants; x is a variable or a temporary

– x = op y: unary operator op; y is a variable, a temporary,
or a constant; x is a variable or a temporary

– x = y: copy instruction; y is a variable, a temporary, or a
constant; x is a variable or a temporary

– Arrays, flow-of-control
– Each instruction contains at most three “addresses”

• Thus, three-address code
8

Simple Examples
x = y produces one three-address instruction

Left: a pointer to the symbol table entry for x
Right: a pointer to the symbol table entry for y
For convenience, we will write this as x = y

x = - y produces t1 = - y; x = t1;
x = y + z produces t1 = y + z; x = t1;
x = y + z + w produces t1 = y + z; t2 = t1 + w; x = t2;
x = y + - z produces t1 = - z; t2 = y + t1; x = t2;

9

Flow of Control
• Three-address instructions

– goto L: unconditional jump to the three-address
instruction with label L

– if (x relop y) goto L: x and y are variables, temporaries,
or constants; relop ∈ { <, <=, ==, !=, >, >= }

• The labels are symbolic names

10

More Examples
• Possible three-address code: two versions

– Example: if (x < 100 || x > 200 && x != y) x = 0;
if (x < 100) goto L2; if (x < 100) goto L2;
goto L3; if (x <= 200) goto L1;
L3: if (x > 200) goto L4; if (x == y) goto L1;
goto L1; L2: x = 0;
L4: if (x != y) goto L2; L1: …;
goto L1;
L2: x = 0;
L1: …;

11

Main Topics
• Control-flow analysis: what sequences of

instructions could be executed at run time?
– Infinite number of sequences  need finite static

representation (control-flow graph)
• Data-flow analysis: what are the effects of these

instruction sequences on the state of the program?
– Infinite (or very large) sets of possible states  need

finite/small abstractions, often with loss of precision
– Key technical challenges: abstractions must be

• correct (depending on the client)
• precise and efficient-to-compute

• Code transformations: enabled by analysis
12

	CSE 5239: Compile-Time Program Analysis and Transformations
	Use Cases for Compile-Time Analysis (1/2)
	Use Cases for Compile-Time Analysis (2/2)
	Inside a Traditional Compiler: Front End
	Inside the Compiler: Middle Part
	Three-Address Code
	Important Note
	Addresses and Instructions
	Simple Examples
	Flow of Control
	More Examples
	Main Topics

