
Dataflow Analysis

Dragon book, Chapter 9, Section 9.2, 9.3, 9.4

Dataflow Analysis
• Dataflow analysis is a sub-area of static program

analysis
– Used in the compiler back end for optimizations of

three-address code and for generation of target code
– For software engineering: software understanding,

restructuring, testing, verification
• Attaches to each CFG node some information that

describes properties of the program at that point
– Based on lattice theory

• Defines algorithms for inferring these properties
– e.g., fixed-point computation

2

Map of what is coming next
• Six intraprocedural dataflow analyses

– Reaching Definitions
– Live Variables
– Copy Propagation
– Available Expressions
– Very Busy Expressions
– Constant Propagation
– Points-to Analysis

• Foundations of dataflow analysis
– Framework: lattices and transfer functions
– Meet-over-all-paths
– Fixed point algorithms and solutions

3

Analysis 1: Reaching Definitions
• A classical example of a dataflow analysis

– We will consider intraprocedural analysis: only inside a
single procedure, based on its CFG

• For a minute, assume CFG nodes are individual
instructions, not basic blocks
– Each node defines two program points: immediately

before and immediately after
• Goal: identify all connections between variable

definitions (“write”) and variable uses (“read”)
– x = y + z has a definition of x and uses of y and z

4

Reaching Definitions
• A definition d reaches a program point p if there

exists a CFG path that
– starts at the program point immediately after d
– ends at p
– does not contain a definition of d (i.e., d is not “killed”)

• The CFG path may be infeasible (could never occur)
– Any compile-time analysis has to be conservative, so we consider

all paths in the CFG

• For a CFG node n
– IN[n] is the set of definitions that reach the program point

immediately before n
– OUT[n] is the set of definitions that reach the program point

immediately after n
– Reaching definitions analysis: sets IN[n] and OUT[n] for each n

5

ENTRY

i = m-1

j = n

a = u1

i = i + 1

d1

d2

OUT[n1] = { }
IN[n2] = { }
OUT[n2] = { d1 }
IN[n3] = { d1 }
OUT[n3] = { d1, d2 }
IN[n4] = { d1, d2 }
OUT[n4] = { d1, d2, d3 }
IN[n5] = { d1, d2, d3, d5, d6, d7 }
OUT[n5] = { d2, d3, d4, d5, d6 }
IN[n6] = { d2, d3, d4, d5, d6 }
OUT[n6] = { d3, d4, d5, d6 }
IN[n7] = { d3, d4, d5, d6 }
OUT[n7] = { d3, d4, d5, d6 }
IN[n8] = { d3, d4, d5, d6 }
OUT[n8] = { d4, d5, d6 }
IN[n9] = { d3, d4, d5, d6 }
OUT[n9] = { d3, d5, d6, d7 }
IN[n10] = { d3, d5, d6, d7 }
OUT[n10] = { d3, d5, d6, d7 }
IN[n11] = { d3, d5, d6, d7 }

d3

d4

j = j - 1 d5

if (…)

a = u2 d6

i = u3 d7

if (…)

EXIT

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

Examples of relationships:
IN[n2] = OUT[n1]
IN[n5] = OUT[n4] ∪ OUT[n10]
OUT[n7] = IN[n7]
OUT[n9] = (IN[n9] – {d1,d4,d7}) ∪ {d7}

6

Formulation as a System of Equations
• For each CFG node n

– GEN[n] is a singleton set containing the definition d at n
– KILL[n] is the set of all other definitions of the variable

whose value is changed by d
• It can be proven that the “smallest” sets IN[n] and

OUT[n] that satisfy this system are exactly the
solution for the Reaching Definitions problem
– To ponder: how do we know that this system has any

solutions at all? how about a unique smallest one? 7

)(rsPredecesso
][OUT][IN

nm
mn

∈
=

][GEN])[KILL][IN(][OUT nnnn ∪−=

∅=]ENTRY[OUT

Iteratively Solving the System of Equations
OUT[n] = ∅ for each CFG node n
change = true
While (change)

1. For each n other than ENTRY
 OUTold[n] = OUT[n]

2. For each n other than ENTRY
 IN[n] = union of OUT[m] for all predecessors m of n

3. For each n other than ENTRY
 OUT[n] = (IN[n] – KILL[n]) ∪ GEN[n]

4. change = false
5. For each n other than ENTRY

 If (OUTold[n] != OUT[n]) change = true
8

Questions
• What are the guarantees that this algorithm

terminates?
• Does it compute a correct solution for the system

of equations?
• Does it compute the smallest solution for the

system of equations?
– Assuming that there is a unique smallest solution

• How do we even know that this solution is the
desired solution for Reaching Definitions?

• We will revisit these questions later, when
considering the general machinery of dataflow
analysis frameworks

9

Better Algorithm: Round-Robin, in Order

OUT[n] = ∅ for each CFG node n
change = true
While (change)
 change = false
 For each n other than ENTRY, in rev. postorder

 OUTold[n] = OUT[n]
 IN[n] = union of OUT[m] for all predecessors m of n
 OUT[n] = (IN[n] – KILL[n]) ∪ GEN[n]
 If (OUTold[n] != OUT[n]) change = true

10

Alternative: Worklist Algorithm
IN[n] = ∅ for all n
Put the successor of ENTRY on worklist
While (worklist is not empty)

1. Remove a CFG node m from the worklist
2. OUT[m] = (IN[m] – KILL[m]) ∪ GEN[m]
3. For each successor n of m

 old = IN[n]
 IN[n] = IN[n] ∪ OUT[m]
 If (old != IN[n]) add n to worklist

11

This is “chaotic” iteration
• The order of adding-to/removing-from the worklist is unspecified

• e.g., could use stack, queue, set, etc.
• The order of processing of successor nodes is unspecified
Regardless of order, the resulting solution is always the same

A Simpler Formulation
• In practice, an algorithm will only compute IN[n]

– Ignore predecessor m if it is ENTRY

• Worklist algorithm
– IN[n] = ∅ for all n
– Put the successor of ENTRY on the worklist
– While the worklist is not empty, remove m from the

worklist; for each successor n of m, do
• old = IN[n]
• IN[n] = IN[n] ∪ (IN[m] – KILL[m]) ∪ GEN[m]
• If (old != IN[n]) add n to worklist

12

]GEN[)]KILL[][(IN][IN
)(rsPredecesso

mmmn
nm

∪−=
∈

A Few Notes
• We sometimes write

• PRES[n]: the set of all definitions “preserved” (i.e.,
not killed) by n

• Efficient implementation: bitvectors
– Sets are presented by bitvectors; set intersection is

bitwise AND; set union is bitwise OR
– GEN[n] and PRES[n] are computed once, at the very

beginning of the dataflow analysis
– IN[n] are computed iteratively, using a worklist

13

]GEN[)]PRES[][(IN][IN
)(rsPredecesso

mmmn
nm

∪∩=
∈

Reaching Definitions and Basic Blocks
• For space/time savings, we can solve the problem

for basic blocks (i.e., CFG nodes are basic blocks)
– Program points are before/after basic blocks
– IN[n] is still the union of OUT[m] for predecessors m
– OUT[n] is still (IN[n] – KILL[n]) ∪ GEN[n]

• KILL[n] = KILL[s1] ∪ KILL[s2] ∪ … ∪ KILL[sk]
– s1, s2, …, sk are the statements in the basic blocks

• GEN[n] = GEN[sk] ∪ (GEN[sk-1] – KILL[sk]) ∪
(GEN[sk-2] – KILL[sk-1] – KILL[sk]) ∪ … ∪
(GEN[s1] – KILL[s2] – KILL[s3] – … – KILL[sk])
– GEN[n] contains any definition in the block that is

downwards exposed (i.e., not killed by a subsequent
definition in the block)

14

ENTRY

i = m-1

j = n

a = u1

i = i + 1

d1

d2

KILL[n2] = { d1, d2, d3, d4, d5, d6, d7 }
GEN[n2] = { d1, d2, d3 }
KILL[n3] = { d1, d2, d4, d5, d7 }
GEN[n3] = { d4, d5 }
KILL[n4] = { d3, d6 }
GEN[n4] = { d6 }
KILL[n5] = { d1, d4, d7 }
GEN[n5] = { d7 }

IN[n2] = { }
OUT[n2] = { d1, d2, d3 }

IN[n3] = { d1, d2, d3, d5, d6, d7 }
OUT[n3] = { d3, d4, d5, d6 }

IN[n4] = { d3, d4, d5, d6 }
OUT[n4] = { d4, d5, d6 }

IN[n5] = { d3, d4, d5, d6 }
OUT[n5] = { d3, d5, d6, d7 }

d3

d4

j = j - 1 d5

if (…)

a = u2 d6

i = u3 d7

if (…)

EXIT

n1

n2

n3

n4

n5

n6

15

Uses of Reaching Definitions Analysis
• Def-use (du) chains

– For a given definition (i.e., write) of a memory location, which
statements read the value created by the def?

– For basic blocks: all upward-exposed uses (use of variable does
not have preceding def in the same basic block)

• Use-def (ud) chains
– For a given use (i.e., read) of a memory location, which

statements performed the write of this value?
– The reverse of du-chains

• Goal: potential write-read (flow) data dependences
– Compiler optimizations
– Program understanding (e.g., slicing)
– Dataflow-based testing: coverage criteria
– Semantic checks: e.g., use of uninitialized variables
– Could also find write-write (output) dependences

16

ENTRY

i = m-1

j = n

a = u1

i = i + 1

d1

d2

Upward exposed uses:
USES[n2] = { m@d1, n@d2, u1@d3 }
USES[n3] = { i@d4, j@d5, a@c1 }
USES[n4] = { u2@d6 }
USES[n5] = { u3@d7, j@c2, a@c2 }
Reaching definitions:
IN[n3] = { d1, d2, d3, d5, d6, d7 }
IN[n4] = { d3, d4, d5, d6 }
IN[n5] = { d3, d4, d5, d6 }
Def-use chains across basic blocks:
DU[d1] = upward exposed uses of variable i in all basic
blocks n such that d1 ∈ IN[n] = { i@d4 }
DU[d2] = { j@d5 }
DU[d3] = { a@c1, a@c2 }
DU[d4] = { }
DU[d5] = { j@d5, j@c2 }
DU[d6] = { a@c1, a@c2 }
DU[d7] = { i@d4 }
Def-use chains inside basic blocks:
DU[d4] = { i@c1 }

d3

d4

j = j - 1 d5

if(..i..a)

a = u2 d6

i = u3 d7

if(..j..a)

EXIT

n1

n2

n3

n4

n5

n6

17

c1

c2

Use-def chains:
UD[m@d1]= { }
UD[n@d2]= { }
UD[u1@d3]= { }
UD[i@d4]= { d1,d7 }
UD[j@d5]= { d2,d5 }
UD[i@c1]= { d4 }
UD[a@c1]= { d3,d6 }
UD[u2@d6]= { }
UD[u3@d7]= { }
UD[j@c2]= { d5 }
UD[a@c2]= { d3,d6 }

Analysis 2: Live Variables
• A variable v is live at a program point p if there

exists a CFG path that
– starts at p
– ends at a statement that reads v
– does not contain a definition of v

• Thus, the value that v has at p could be used later
– “could” because the CFG path may be infeasible
– If v is not live at p, we say that v is dead at p

• For a CFG node n
– IN[n] is the set of variables that are live at the program

point immediately before n
– OUT[n] is the set of variables that are live at the

program point immediately after n
18

ENTRY

i = m-1

j = n

a = u1

i = i + 1

OUT[n1] = { m, n, u1, u2, u3 }
IN[n2] = { m, n, u1, u2, u3 }
OUT[n2] = { n, u1, i, u2, u3 }
IN[n3] = { n, u1, i, u2, u3 }
OUT[n3] = { u1, i, j, u2, u3 }
IN[n4] = { u1, i, j, u2, u3 }
OUT[n4] = { i, j, u2, u3 }
IN[n5] = { i, j, u2, u3 }
OUT[n5] = { j, u2, u3 }
IN[n6] = { j, u2, u3 }
OUT[n6] = { u2, u3, j }
IN[n7] = { u2, u3, j }
OUT[n7] = { u2, u3, j }
IN[n8] = { u2, u3, j }
OUT[n8] = { u3, j, u2 }
IN[n9] = { u3, j, u2 }
OUT[n9] = { i, j, u2, u3 }
IN[n10] = { i, j, u2, u3 }
OUT[n10] = { i, j, u2, u3 }
IN[n11] = { }

j = j - 1

if (…)

a = u2

i = u3

if (…)

EXIT

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

Examples of relationships:

OUT[n1] = IN[n2]

OUT[n7] = IN[n8] ∪ IN[n9]

IN[n10] = OUT[n10]

IN[n2] = (OUT[n2] – {i}) ∪ {m}

19

Formulation as a System of Equations
• For each CFG node n

– GEN[n] is the set of all variables that are read by n
– KILL[n] is a singleton set containing the variable that is

written by n (even if this variable is live immediately
after n, it is not live immediately before n)

• The smallest sets IN[n] and OUT[n] that satisfy this
system are exactly the solution for the Live
Variables problem

20

)(Successors
][IN][OUT

nm
mn

∈
=

][GEN])[KILL][OUT(][IN nnnn ∪−=

∅=]EXIT[IN

Iteratively Solving the System of Equations
IN[n] = ∅ for each CFG node n
change = true
While (change)

1. For each n other than EXIT
 INold[n] = IN[n]

2. For each n other than EXIT
 OUT[n] = union of IN[m] for all successors m of n

3. For each n other than EXIT
 IN[n] = (OUT[n] – KILL[n]) ∪ GEN[n]

4. change = false
5. For each n other than EXIT

 If (INold[n] != IN[n]) change = true

21
Better version: round-robin algorithm, in postorder

Worklist Algorithm
OUT[n] = ∅ for all n
Put the predecessors of EXIT on worklist
While (worklist is not empty)

1. Remove a CFG node m from the worklist
2. IN[m] = (OUT[m] – KILL[m]) ∪ GEN[m]
3. For each predecessor n of m

 old = OUT[n]
 OUT[n] = OUT[n] ∪ IN[m]
 If (old != OUT[n]) add n to worklist

22

As with the worklist algorithm for Reaching Definitions, this is
chaotic iteration. But, regardless of order, the resulting solution is
always the same.

A Simpler Formulation
• In practice, an algorithm will only compute OUT[n]

– Ignore successor m if it is EXIT

• Worklist algorithm
– OUT[n] = ∅ for all n
– Put the predecessors of EXIT on the worklist
– While the worklist is not empty, remove m from the

worklist; for each predecessor n of m, do
• old = OUT[n]
• OUT[n] = OUT[n] ∪ (OUT[m] – KILL[m]) ∪ GEN[m]
• If (old != OUT[n]) add n to worklist

23

]GEN[)]KILL[][(OUT][OUT
)(Successors

mmmn
nm

∪−=
∈

A Few Notes
• We sometimes write

– PRES[n]: the set of all variables “preserved” (i.e., not

written) by n
– Efficient implementation: bitvectors

• Comparison with Reaching Definitions
– Reaching Definitions is a forward dataflow problem and

Live Variables is a backward dataflow problem
– Other than that, they are basically the same

• Uses of Live Variables
– Dead code elimination: e.g., when x is not live at x=y+z
– Register allocation (more on this in CSE 756)

24

]GEN[)]PRES[][(OUT][OUT
)(Successors

mmmn
nm

∪∩=
∈

Analysis 3: Copy Propagation
• Copy propagation: for x = y, replace subsequent

uses of x with y, as long as x and y have not
changed along the way
– Creates opportunities for dead code elimination: e.g.,

after copy propagation we may find that x is not live

25

b=a
c= 4*b
if (c>b)

e=a+b

B1

true

B3

EXIT

d=b+2

ENTRY

B2

b=a
c= 4*a
if (c>a)

e=a+a

B1

true

B3

EXIT

d=a+2

ENTRY

B2

1) Dead code
elimination: b=a

2) Strength
reduction: e=a+a
use left shift
instead of
addition

Formulation as a System of Equations
• For each CFG node n (assume nodes = instructions)

– IN[n] is a set of copy instructions x=y such that nether x
nor y is assigned along any path from x=y to n

– GEN[n] is
• A singleton set containing the copy instruction, if n is

a copy instruction
• The empty set, otherwise

– KILL[n]: if n assigns to x, kill every y=x and x=y
– Note that we must use intersection of OUT[m]

26

)(rsPredecesso
][OUT][IN

nm
mn

∈
=

][GEN])[KILL][IN(][OUT nnnn ∪−=

∅=]ENTRY[OUT

Worklist Algorithm
IN[n] = the set of all copy instructions, for all n
Put the successor of ENTRY on worklist
While (worklist is not empty)

1. Remove a CFG node m from the worklist
2. OUT[m] = (IN[m] – KILL[m]) ∪ GEN[m]
3. For each successor n of m

 old = IN[n]
 IN[n] = IN[n] ∩ OUT[m]
 If (old != IN[n]) add n to worklist

27

In Reaching Definitions, we initialized IN[n] to the empty set; here
we cannot do this, because of IN[n] = IN[n] ∩ OUT[m]
• Here the “meet” operator of the lattice is set intersection; the top
element of the lattice is the set of all copy instructions
• In Reaching Definitions, “meet” is set union; “top” is the empty set

Classification
• Forward vs backward problems: intuitively, do we

need to go forward along CFG paths, or backward?
– Reaching Definitions: forward; Live Variables:

backward; Copy Propagation: forward
• May vs must problems

– Reaching Definitions: a definition may reach (union
over predecessors – i.e., ∃ path …)

– Live Variables: a use may be reached (union over
successors – i.e., ∃ path …)

– Copy Propagation: x and y must be preserved along all
paths (intersection over predecessors – i.e., ∀ paths …)

28

Analysis 4: Available Expressions
• Expression x op y is available at program point p

1. Every path from ENTRY to p evaluates x op y
2. After the last evaluation along the path, there are no

subsequent assignments to x or y
• Useful for common subexpression elimination
• Must and forward problem

– “Every path” – must problem
– “From ENTRY to p” – forward problem

29

Common Subexpression Elimination

30

q:=a*b z:=a*b
r:=2*z

u:=a*b
z:=u/2

w:=a*b
Example courtesy of Prof. Barbara Ryder

Common Subexpression Elimination

31 Example courtesy of Prof. Barbara Ryder
31

t1:=a*b
q:=t1

t1:=a*b
z:=t1
r:=2*z

u:=t1
z:=u/2

w:=a*b

Cannot be eliminated
because does not have
a*b available on all paths

Formulation as a System of Equations
• For each CFG node n

– IN[n] is a set of expressions x op y available at n
– GEN[n] is

• A singleton set containing the expression x op y, if n
computes that expression

• The empty set, otherwise
– KILL[n]: if n assigns to x, kill every x op y and y op x
– IN[n] is initialized to the set of all expressions appearing

on the right-hand size of any instruction
32

)(rsPredecesso
][OUT][IN

nm
mn

∈
=

][GEN])[KILL][IN(][OUT nnnn ∪−=

∅=]ENTRY[OUT

Analysis 5: Very Busy Expressions
• Expression x op y is very busy at p if along every

path from p we come to a computation of x op y
before any redefinition of x or y
– Useful for code motion: hoist x op y to program point p
– Backward must problem

– Compare with Live Variables: backward may problem

33

)(Successors
][IN][OUT

nm
mn

∈
=

)(Successors
][IN][OUT

nm
mn

∈
=

][GEN])[KILL][OUT(][IN nnnn ∪−=

Summary of Analyses 1-5
• Solution at a node is a subset of a finite set (thus,

sometimes they are called “bitvector” problems)
• Functions are f(x)=(A∩x)∪B – “rapid” problems

– Fast convergence w/ reverse postorder (forward
analysis) or postorder (backward analysis): e.g.

while (change)
for each node n in reverse postorder

IN[n] = … IN[m]…
d+2 iterations; d is the max CFG loop nesting depth

– If we use the worklist algorithm (i.e., chaotic iteration)
non-determinism in worklist order and in order of
successors

34

Analysis 6: Constant Propagation
• Can we guarantee that the value of a variable v at

a program point p is always a known constant?
• Compile-time constants are quite useful

– Constant folding: e.g., if we know that v is always 3.14
immediately before w = 2*v; replace it w = 6.28
• Often due to symbolic constants

– Dead code elimination: e.g., if we know that v is always
false at if (v) …

– Program understanding, restructuring, verification,
testing, etc.

35

Basic Ideas
• At each CFG node n, IN[n] is a map Vars → Values

– Each variable v is mapped to a value x ∈ Values
– Values = all possible constant values ∪ { nac , undef }

• Special “value” nac (not-a-constant) means that the
variable cannot be definitely proved to be a compile-
time constant at this program point
– E.g., the value comes from user input, file I/O, network
– E.g., the value is 5 along one branch of an if statement, and

6 along another branch of the if statement
– E.g., the value comes from some nac variable

• Special “value” undef (undefined): used temporarily
during the analysis
– Means “we have no information about v yet”

36

Formulation as a System of Equations
• OUT[ENTRY] = a map which maps each v to undef
• For any other CFG node n

– IN[n] = Merge(OUT[m]) for all predecessors m of n
– OUT[n] = Update(IN[n])

• Merging two maps: if v is mapped to c1 and c2
respectively, in the merged map v is mapped to:
– If c1 = undef, the result is c2
– Else if c2 = undef, the result is c1
– Else if c1 = nac or c2 = nac, the result it nac
– Else if c1 ≠ c2, the result is nac
– Else the result is c1 (in this case we know that c1 = c2)

37

Formulation as a System of Equations
• Updating a map at an assignment v = …

– If the statement is not an assignment, OUT[n] = IN[n]
• The map does not change for any w ≠ v
• If we have v = c, where c is a constant: in OUT[n], v

is now mapped to c
• If we have v = p + q (or similar binary operators)

and IN[n] maps p and q to c1 and c2 respectively
– If both c1 and c2 are constants: result is c1+c2
– Else if either c1 or c2 is nac: result is nac
– Else: result is undef

38

ENTRY

a = 1

b = 2

c = a+b

a=1+c

OUT[n1] = {a → undef, b → undef, c → undef, d → undef }
OUT[n2] = {a → 1, b → undef, c → undef, d → undef }
OUT[n3] = {a → 1, b → 2, c → undef, d → undef }
OUT[n4] = {a → 1, b → 2, c → 3, d → undef }

OUT[n6] = {a → 4, b → 2, c → 3, d → undef }
OUT[n7] = {a → 4, b → 7, c → 3, d → undef }
OUT[n8] = {a → 4, b → 7, c → 3, d → 11 }

OUT[n9] = {a → 5, b → 2, c → 3, d → undef }
OUT[n10] = {a → 5, b → 6, c → 3, d → undef }

IN[n11] = {a → nac, b → nac, c → 3, d → 11 }
OUT[n11] = {a → nac, b → nac, c → 3, d → 11 }

OUT[n12] = {a → nac, b → nac, c → 3, d → 11 }

Note: in reality, d could be uninitialized at n11 and n12 (see
Section 9.4.6 for a good discussion on this issue)

b = 4+c

a = 2+c

b = 3+c

a=a+b

b=a+c

n1

n2

n3

n4

n6 n9

n8

n12

n10

n11

39

if (…) n5

n7

d = a+b

EXIT n13

Merge

Analysis 7: Points-To Analysis
• Question (oversimplified): can variable x contain

the address of variable y at program point p?
• First abstraction: no arrays, no structs, no objects,

no heap-allocated memory, no pointer arithmetic,
no calls

• Instructions of interest
– x = &y
– x = y
– x = *y
– *x = y
– x = null

40

Basic Ideas
• At each CFG node n, IN[n] is a set ⊆ Vars × Vars

– That is, a set of pairs of variables (x,y)
– Alternative formulation: map Vars → PowerSet(Vars)

• For each variable x, its points-to set Pt(x)

• If for some path from ENTRY to n the value of x is
the address of y (when n is reached), then (x,y)
must be an element of IN[n]
– Often defined as “points-to graph”: an edge x → y

shows that x may point to y

• Similarly defined OUT[n]

41

Formulation as a System of Equations
• OUT[ENTRY] = empty set
• For any other CFG node n

– IN[n] = Merge(OUT[m]) for all predecessors m of n
– OUT[n] = Update(IN[n])

• Merging two points-to graphs: just the union of
their edge sets

1. if (…) goto (4)
2. x = &a OUT[2] = { (x,a) }
3. goto (5)
4. x = &b OUT[4] = { (x,b) }
5. z = x IN[5] = { (x,a), (x,b) }; OUT[5] = { (z,a), (z,b), (x,a), (x,b) }
6. w = &c OUT[6] = { (z,a), (z,b), (x,a), (x,b), (w,c) }
7. *z = w OUT[7] = { (z,a), (z,b), (x,a), (x,b), (w,c), (a,c), (b,c) }
8. v = *x OUT[8] = { (z,a), (z,b), (x,a), (x,b), (w,c), (a,c), (b,c), (v,c) }
 42

Formulation as a System of Equations
• Updating at an assignment v = … or *v = …
• x = null: OUT[n] = IN[n] – {x}×Vars
• x = &y: OUT[n] = (IN[n] – {x}×Vars) ∪ { (x,y) }
• x = y: OUT[n] = (IN[n] – {x}×Vars) ∪ { (x,z) | (y,z)∈

IN[n]}
• x = *y: OUT[n] = (IN[n] – {x}×Vars) ∪ { (x,z) | (y,w)∈

IN[n] ∧ (w,z) ∈ IN[n] }
• *x = y: OUT[n] = (IN[n] – nothing) ∪ { (w,z) |

(x,w)∈ IN[n] ∧ (y,z) ∈ IN[n] }
– Why not kill (w,…)? In general, we cannot assert that x

definitely points to w, even if (x,w)∈ IN[n]; more later …

43

How About Real Programs?
• x = malloc(…) or x = new X(…): artificial name

heapi : OUT[n] = (IN[n] – {x}×Vars) ∪ { (x,heapi) }

• a[x] = y: treat array a as one uniform block of data
OUT[n] = IN[n] ∪ { (a,z) | (y,z)∈ IN[n] }

• x = a[y]: OUT[n] = (IN[n] – {x}×Vars)∪{ (x,y)|(a,y)∈ IN[n] }

• Fields of structs/objects: labels on points-to edges
struct S { int* f1; float* f2; };
struct S* x = malloc(sizeof(struct S)); (x,heap1)
(*x).f1 = &a; (*x).f2 = &b; (heap1,f1,a) (heap1,f2,b)
y = (*x).f1; (y, a)

• Many complications: e.g., pointer arithmetic
44

Approximations
• Flow-insensitive analysis: ignore the flow of

control and compute one points-to graph for the
entire program (rather than a separate points-to
graph for each CFG node)

• Field-insensitive: do not distinguish between fields
(*x).f1 = &a; (*x).f2 = &b; y = (*x).f1; treated as *x = &a; *x = &b; y = *x;
(heap1,f1,a) (heap1,f2,b), (y,a) becomes (heap1,a) (heap1,b), (y,a), (y,b)

• Base-object-insensitive: treat (*x).f1 as f1
Java: x = new A; y = new A; x.f = new C; y.f = new D; z = y.f should lead
to (x,heap1), (y,heap2), (heap1,f,heap3), (heap2,f,heap4), (z,heap4)
Instead, it is treated as x = new A; y = new A; f = new C; f = new D; z = f
and leads to (x,heap1), (y,heap2), (f,heap3), (f,heap4), (z,heap3),(z,heap4)

45

Flow-Insensitive Points-to Analysis
• A points-to graph could be O(n2) in size; a separate

graph at each node is often too expensive
• “Fake” CFG with arbitrary sequences of statements

while …
 switch ….
 case 1: statement 1
 case 2: statement 2 ….

• Points-to graph at the merge point of the switch
• Simplified functions without “kill” (more efficient):
OUT[n] = (IN[n] – {x}×Vars) ∪ ... becomes
OUT[n] = IN[n] ∪ …

46

Loss of Precision: FI, FS, and Beyond
1. x = &a FS: OUT[1] = { (x,a) }
2. y = &b FS: OUT[2] = { (x,a), (y,b) }
3. z = &c FS: OUT[3] = { (x,a), (y,b), (z,c) }
4. *x = y FS: OUT[4] = { (x,a), (y,b), (z,c), (a,b) }
5. *a = … dependence between these statements:
6. … = c+1 FI: yes; FS: no
7. *x = z FS: OUT[7] = { (x,a), (y,b), (z,c), (a,b), (a,c) }
8. *a = … dependence between these statements:
9. … = b+2 FI and FS: yes (wrong!)
FI solution: (x,a), (y,b), (z,c), (a,b), (a,c)
Can we improve FS to eliminate (a,b) from OUT[7]?

47

FS with Strong Updates
• Updating at an assignment v = … or *v = …

– If the statement is not an assignment, OUT[n] = IN[n]
• x = …: OUT[n] = (IN[n] – {x}×Vars) ∪ ...
• *x = y: OUT[n] = (IN[n] – nothing) ∪ …

– Why not kill (w,…) for when x points to w? In general,
we cannot assert that x definitely points to w

• But what if the points-to set of x is a singleton set?
– E.g., in the previous example, Pt(x) = { a }: can we kill

(a,…) at *x = y?
– If we can, OUT[7] will become { (x,a), (y,b), (z,c), (a,c) }

and the precision is improved
• False dependence between 8 and 9 disappears

48

FS with Strong Updates
• Proposal: at *x = y, if Pt(x) is a singleton set { w },

perform a strong update on w:
– OUT[n] = (IN[n] – {w} ×Vars) ∪ …

• Not so fast … remember that w is just a static
abstraction of a set of run-time memory locations;
this set itself must be a singleton set

Example: recall field-insensitive analysis
x = malloc; (*x).f1 = &a; (*x).f2 = &b; y = (*x).f1; treated as x = &heap1,
*x = &a; *x = &b; y = *x;
• FI without strong updates: at *x=&b, IN = { (x,heap1), (heap1,a)},

OUT = { (x,heap1), (heap1,a), (heap1,b)} and later we get (y,a) , (y,b)
• With strong updates: OUT = { (x,heap1),(heap1,b)} but (y,a) is lost!

49

“Dangerous” Strong Update
Which points-to graph node may correspond to multiple memory
locations (and should not be strongly updated)?
• Array: one name for the entire array
• Local variable of a recursive procedures
• Dynamically allocated memory (even with field sensitivity)
curr = null
while (…) {
1. prev = curr IN[1] = {(prev,heap1),(curr,heap1),(y,heap2),(heap1,fld,heap2)}
2. curr = new X
3. y = new Y
4. curr.fld = y
} IN[5] = {(prev,heap1),(curr,heap1),(y,heap2),(heap1,fld,heap2)}
5. prev.fld = new Z OUT[5] = {(prev,heap1),(curr,heap1),(y,heap2),(heap1,fld,heap3)}
6. … curr.fld.fld2 … Dependence between these statements? Yes
7. … y.fld2 … With strong updates: No, because heap3.fld2 ≠ heap2.fld2

 50

Foundations of Dataflow Analysis

Partial Order
• Given a set S, a relation r between elements of S is

a set r ⊆ S × S
– Notation: if (x,y) ∈ r, write “x r y”
– Example: “less than” relation over integers

• A relation is a partial order if and only if
– Reflexive: x r x
– Anti-symmetric: x r y and y r x implies x = y
– Transitive: x r y and y r z implies x r z
– Example: “less than or equal to” over integers
– By convention, the symbol used for a partial order is ≤

or something similar to it (e.g. )

52

53

Partially Ordered Set
• Partially ordered set (S, ≤) is a set S with a defined

partial order ≤
• Greatest element: x such that y ≤ x for all y ∈ S;

often denoted by 1 or (top)
• Least element: x such that x ≤ y for all y ∈ S; often

denoted by 0 or (bottom)
• It is not necessary to have 1 or 0 in a partially

ordered set
– e.g. S = { a, b, c, d } and only a ≤ b and c ≤ d

• We can always add an artificial top or bottom to
the set (if we need one)

54

Displaying Partially Ordered Sets
• Represented by an undirected graph

– Nodes = elements of S
– If a ≤ b, a is shown below b in the picture

• If a ≤ b, there is an edge (a,b)
– But: transitive edges are typically not shown

• Example: S = {0,a,b,c,1}

0 ≤ a ≤ b ≤ 1
0 ≤ c ≤ 1

1

0
a

c b

Implicit
transitive

edges:
0 ≤ b,

0 ≤ 1, a ≤ 1

55

Meet
• S – partially ordered set, a∈S, b∈S
• A meet of a and b is c∈S such that

– c ≤ a and c ≤ b
– For any x: x ≤ a and x ≤ b implies x ≤ c
– Also referred to as “the greatest lower bound of a

and b”
– Typically denoted by a Λ b

a Λ b = a a Λ 0 = 0
a Λ c = 0 a Λ 1 = a
b Λ c = 0 b Λ 1 = b
b Λ 0 = 0

1

0
a

c b

56

Join
• A join of a and b is c∈S such that

– a ≤ c and b ≤ c
– For any x: a ≤ x and b ≤ x implies c ≤ x
– Also referred to as “the least upper bound of a and b”
– Typically denoted by a V b

a V b = b a V 0 = a
a V c = 1 a V 1 = 1
b V c = 1 b V 1 = 1
b V 0 = b

1

0
a

c b

57

Lattices
• Any pair (a,b) has either zero or one meets

– Why can’t there be two meets?
– Similarly for joins

• If every pair (a,b) has is a meet and a join, the set is
a lattice with operators Λ and V
– If only a meet operator is defined: a meet semilattice

• Finite lattice: the underlying set is finite
• Finite-height lattice: any chain x < y < z < … is finite

a b

d c
a Λ b does not exist
“x ≤ a and x ≤ b implies x ≤ meet”: NO!

58

Cross-Product Lattice
• Given a lattice (L , ≤ , Λ , V)
• Let Ln = L × L × … × L (elements are n-tuples)
• Partial order: (a1,…,an) ≤ (b1,…,bn) iff ai ≤ bi for all i
• Meet: (a1,…,an) Λ (b1,…,bn) = (a1Λ b1,…,anΛ bn)

– Same for join
• Cross-product lattice: (Ln , ≤ , Λ , V)
• If L has a bottom element 0, Ln has a bottom

element (0,…,0)
• If L has a top element 1, Ln has a top element

(1,…,1)
• If L has finite height, so does Ln

59

So What?
• All of this is basic discrete math. What does it have

to do with compile-time code analysis and code
optimizations?

• For many analysis problems, program properties
can be conveniently encoded as lattice elements

• If a ≤ b, in some sense the property encoded by a is
weaker (or stronger) than the one encoded by b
– Exactly what “weaker”/“stronger” means depends on

the problem
• We usually care only about “going in one direction”

(down) in the lattice, so typically it is enough to
have a meet semilattice

60

The Most Basic Lattice
• Many dataflow analyses use a lattice L that is the

power set P(X) of some set X
– P(X) is the set of all subsets of X
– A lattice element is a subset of X
– Partial order ≤ is the ⊇ relation
– Meet is set union ∪; join is set intersection ∩
– 0 = X; 1 = ∅

{ }

{a} {b} {c}

{a,b} {b,c} {a,c}

{a,b,c}

61

Reaching Definitions and Live Variables
• Let D be the set of all definitions in the CFG
• Reaching definitions: the lattice L is P(D)

– The solution for every CFG node is a lattice element
• IN[n] ∈ P(D) is the set of definitions reaching n

– The complete solution is a map Nodes → L
• Actually, an element of the cross-product lattice

L|Nodes|; basically, an n-tuple
• Let V be the set of all variables that are read

anywhere in the CFG
• Live variables: the lattice L is P(V)

– The solution for every CFG node is a lattice element
• OUT[n] ∈ P(V) is the set of variables live at n

– The complete solution is a map Nodes → L

62

The Role of Meet
• The partial order encodes some notion of

strength for properties
– if x ≤ y, then x is “less precise” than y

• Reaching Definitions: x ≤ y iff x ⊇ y
– x tells us that more things are possible, so x is less

precise than y
– Extreme case: if x = 0 = D, this tells us that any

definition may reach
• x Λ y is less precise than x and y

– greatest lower bound is the most precise lattice
element that “describes” both x and y

– E.g., the union of two sets of reaching definitions is
the smallest (most precise) way to describe both
• Any superset of the union has redundancy in it

63

The Role of Meet (cont’d)
• Recall the Constant Propagation problem

– At each CFG node n, IN[n] is a map Vars → Values
– Values = all possible constant values ∪ { nac , undef }
– Values is an infinite lattice with finite height

• nac ≤ any constant value ≤ undef
• two different constant values are not comparable

• Meet operation in Values:
– If c1 = undef, the result is c2
– Else if c2 = undef, the result is c1
– Else if c1 = nac or c2 = nac, the result it nac
– Else if c1 ≠ c2, the result is nac
– Else the result is c1 (in this case we know that c1 = c2)

• Problem lattice L: cross-product Values|Vars|

CIS 788 64

Transfer Functions
• A dataflow analysis defines a meet semilattice L

that encodes some program properties
• It also has to define the effects of program

statements on these properties
– A transfer function fn: L → L is associated with each

CFG node n
– For forward problems: if the properties before the

execution of n were encoded by x∈L, the properties
after the execution of n are encoded by fn(x)

• Reaching Definitions
– fn(x) = (x ∩ PRES[n]) ∪ GEN[n]
– Expressed with meet and join: f(x) = (x V a) Λ b

CIS 788 65

Function Space and Dataflow Framework
• Given: meet semilattice (L,≤,Λ,1) with finite height

– This is what we typically want as the part of the
definition of the dataflow analysis

• A monotone functions space for L is a set F of
functions f : L → L such that
– Each f is monotone: x ≤ y implies f(x) ≤ f(y)

• This is equivalent to f(x Λ y) ≤ f(x) Λ f(y)
– F contains the identity function
– F is closed under composition and meet: f °g and f Λ g

are in F [Note: (f °g)(x) = f(g(x)) and (fΛg)(x) = f(x)Λg(x)]
• Dataflow framework: (L,F)

– Forward or backward; we will consider only forward
– Framework instance (G,M): G=(N,E) is a CFG; M: NF

associates a transfer function f∈F with each node n∈N

Intraprocedural Dataflow Analysis
• Given: an intraprocedural CFG, a lattice L, and

transfer functions
– Plus a lattice element η ∈ L that describes the

properties that hold at the entry node of the CFG
• The effects of one particular CFG path

p=(n0,n1,…,nk) are

– i.e., fp(η), where fp is the composition of the transfer

functions for nodes in the path
– n0 is the entry node of the CFG

66

))...))(((...(011
ηffff

knkn −

67

Intraprocedural Dataflow Analysis
• Analysis goal: for each CFG node n, compute a

meet-over-all-paths solution

– Paths(n0,n) the set of all paths from the entry node
to n (the paths do not include n)

• This solution “summarizes” all properties that
could hold immediately before n
– Many execution paths: “meet” ensures that we get

the greatest lower bound of their effects
• E.g., the smallest set of reachable definitions

MOP(n) = ∧ fp(η)
p∈Paths(n0,n)

68

The MOP Solution
• The MOP solution encodes everything that could

potentially happen at run time
– e.g., for Reaching Definitions: if there exists a run-time

execution in which variable x is assigned at m and read
at n, set MOP(n) is guaranteed to contain the definition
of x at m

• Problems for computing MOP(n):
– Potentially infinite # paths due to loops
– Even if there is a finite number of paths, there are too

many of them: too expensive to compute MOP(n) by
considering each path separately

• Finding the MOP solution is undecidable for
general monotone dataflow frameworks
– Or even just for the constant propagation problem

69

Approximating the MOP Solution
• A compromise: compute an approximation of the

MOP solution
• A correct approximation: S(n) ≤ MOP(n)

– Recall that ≤ means “less precise”
– e.g., for Reaching Definitions IN[n] ⊇ MOP(n)
– “safe solution” = “correct solution”

• A precise approximation: S(n) should be as close to
MOP(n) as possible
– In the best case, S(n)=MOP(n)

70

Standard Approximation Algorithm
• Idea: define a system of equations and then

solve it with fixed-point computation

• This system has the form S = F(S)
– S: Nodes → L is map from CFG nodes to lattice

elements (S is in the cross-product lattice L|Nodes|)
– F: (Nodes → L) → (Nodes → L) is a function that

computes the new solution from the old one, based
on the node-level transfer functions fn

S(n) = ∧ fm(S(m))
m∈Pred(n)

71

Computing a Fixed Point
• Discrete math: if f is a function, a fixed point of f

is a value x such that x = f(x)
– We want to compute a fixed point of F
– Standard algorithm (fixed-point computation)

 S := [1,1,…,1]

change := true
while (change)
 old_S := S;
 S := F(S)
 if (S ≠ old_S) change := true
 else change := false

at exit
S=old_S,
so S=F(S)

72

Does This Really Work?
• Does not necessarily terminate
• Common case: finite-height lattice + monotone

function space (as described earlier)
• In this case, the algorithm provably terminates

with the greatest (maximum) fixed point MFP
– Note: be careful with the difference between maximal

(no one is > x) and maximum (x > everyone)
• MFP is a safe approximation of the MOP solution:

MFP(n) ≤ MOP(n)
– For some categories of problems, the computed

solution is the same as the MOP solution
• e.g., for Reaching Definitions, but not for Constant

Propagation

73

Outline of Proofs
• Termination with a fixed point
• monotonicity: 1n ≥ F(1n) ≥ F2(1n) ≥ F3(1n) ≥ …
• Finite height for L implies finite height for Ln, which

gives us termination with Fm(1n) = Fm+1(1n)
– Fm(1n) is a fixed point of F, and a solution to the system

• Is it the greatest (maximum) fixed point?
– For any other fixed point S: 1n ≥ S, F(1n) ≥ F(S) = S, …

• By induction on j, Fj(1n) ≥ S
• Why is MOP ≥ MFP?

– For each CFG path p=(n0,n1,…,nk), fp(η) ≥ MFP for any
successor of nk

– Proof by induction on the length of paths

74

Distributive Frameworks
• Each f is monotone: x ≤ y implies f(x) ≤ f(y)

– This is equivalent to f(x Λ y) ≤ f(x) Λ f(y)
• Distributive: f(x Λ y) = f(x) Λ f(y)

– Each distributive function is also monotone
– Examples: Reaching Defs, Live Variables, Available

Expressions, Very Busy Expressions, Copy Propagation
• In this case, MFP = MOP

– Proof outline: Since we already know that MOP ≥ MFP,
enough to show that MFP ≥ MOP

– Show by induction on j that Fj(1n) ≥ MOP
– Enough to show that F(MOP) = MOP: that is, MOP(n) =

meet of fm(MOP(m)) over all predecessors m of n
– By definition, MOP(m) is a meet over all paths leading

to m; fm(meet of paths) = meet(fm(path))

75

An Approximation: Flow-Insensitive Analysis
• Some problems are too complex/expensive to

compute a solution specific to each CFG node
– Typical example: pointer analysis (more later)

• Approximation: “pretend” that statements can
execute in any order
– Not only in the order defined by CFG paths

• Completely ignore all CFG edges – just consider the
transfer functions at nodes
– For technical reasons, make the functions “non-kill”:

f(x) ≤ x [e.g. as if KILL set was empty for Reaching Defs]
• Single solution (lattice element) for the entire CFG
• Naïve algo: start from 1 and apply the transfer

functions in arbitrary order; get to a fixed point

	Dataflow Analysis
	Dataflow Analysis
	Map of what is coming next
	Analysis 1: Reaching Definitions
	Reaching Definitions
	Slide Number 6
	Formulation as a System of Equations
	Iteratively Solving the System of Equations
	Questions
	Better Algorithm: Round-Robin, in Order
	Alternative: Worklist Algorithm
	A Simpler Formulation
	A Few Notes
	Reaching Definitions and Basic Blocks
	Slide Number 15
	Uses of Reaching Definitions Analysis
	Slide Number 17
	Analysis 2: Live Variables
	Slide Number 19
	Formulation as a System of Equations
	Iteratively Solving the System of Equations
	Worklist Algorithm
	A Simpler Formulation
	A Few Notes
	Analysis 3: Copy Propagation
	Formulation as a System of Equations
	Worklist Algorithm
	Classification
	Analysis 4: Available Expressions
	Common Subexpression Elimination
	Common Subexpression Elimination
	Formulation as a System of Equations
	Analysis 5: Very Busy Expressions
	Summary of Analyses 1-5
	Analysis 6: Constant Propagation
	Basic Ideas
	Formulation as a System of Equations
	Formulation as a System of Equations
	Slide Number 39
	Analysis 7: Points-To Analysis
	Basic Ideas
	Formulation as a System of Equations
	Formulation as a System of Equations
	How About Real Programs?
	Approximations
	Flow-Insensitive Points-to Analysis
	Loss of Precision: FI, FS, and Beyond
	FS with Strong Updates
	FS with Strong Updates
	“Dangerous” Strong Update
	Foundations of Dataflow Analysis
	Partial Order
	Partially Ordered Set
	Displaying Partially Ordered Sets
	Meet
	Join
	Lattices
	Cross-Product Lattice
	So What?
	The Most Basic Lattice
	Reaching Definitions and Live Variables
	The Role of Meet
	The Role of Meet (cont’d)
	Transfer Functions
	Function Space and Dataflow Framework
	Intraprocedural Dataflow Analysis
	Intraprocedural Dataflow Analysis
	The MOP Solution
	Approximating the MOP Solution
	Standard Approximation Algorithm
	Computing a Fixed Point
	Does This Really Work?
	Outline of Proofs
	Distributive Frameworks
	An Approximation: Flow-Insensitive Analysis

