Dataflow Analysis

Dragon book, Chapter 9, Section 9.2, 9.3, 9.4

Dataflow Analysis

- Dataflow analysis is a sub-area of static program analysis
- Used in the compiler back end for optimizations of three-address code and for generation of target code
- For software engineering: software understanding, restructuring, testing, verification
- Attaches to each CFG node some information that describes properties of the program at that point - Based on lattice theory
- Defines algorithms for inferring these properties
- e.g., fixed-point computation

Map of what is coming next

- Six intraprocedural dataflow analyses
- Reaching Definitions
- Live Variables
- Copy Propagation
- Available Expressions
- Very Busy Expressions
- Constant Propagation
- Points-to Analysis
- Foundations of dataflow analysis
- Framework: lattices and transfer functions
- Meet-over-all-paths
- Fixed point algorithms and solutions

Analysis 1: Reaching Definitions

- A classical example of a dataflow analysis
- We will consider intraprocedural analysis: only inside a single procedure, based on its CFG
- For a minute, assume CFG nodes are individual instructions, not basic blocks
- Each node defines two program points: immediately before and immediately after
- Goal: identify all connections between variable definitions ("write") and variable uses ("read")
$-\mathbf{x}=\mathbf{y}+\mathbf{z}$ has a definition of \mathbf{x} and uses of \mathbf{y} and \mathbf{z}

Reaching Definitions

- A definition d reaches a program point p if there exists a CFG path that
- starts at the program point immediately after d
- ends at p
- does not contain a definition of d (i.e., d is not "killed")
- The CFG path may be infeasible (could never occur)
- Any compile-time analysis has to be conservative, so we consider all paths in the CFG
- For a CFG node n
- IN[n] is the set of definitions that reach the program point immediately before n
- OUT[n] is the set of definitions that reach the program point immediately after n
- Reaching definitions analysis: sets $\operatorname{IN}[n]$ and OUT[n] for each n

Formulation as a System of Equations

- For each CFG node n

$$
\begin{equation*}
\operatorname{IN}[n]=\bigcup_{m \in \operatorname{Predecessors}(n)} \text { OUT }[m] \tag{ENTRY}
\end{equation*}
$$

OUT[n] $=(\operatorname{IN}[n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]$

- GEN[n] is a singleton set containing the definition d at n
- KILL[n] is the set of all other definitions of the variable whose value is changed by d
- It can be proven that the "smallest" sets IN[n] and OUT[n] that satisfy this system are exactly the solution for the Reaching Definitions problem
- To ponder: how do we know that this system has any solutions at all? how about a unique smallest one?

Iteratively Solving the System of Equations
OUT $[n]=\varnothing$ for each CFG node n
change = true
While (change)

1. For each n other than ENTRY

$$
\mathrm{OUT}_{\text {old }}[n]=\mathrm{OUT}[n]
$$

2. For each n other than ENTRY

$$
\operatorname{IN}[n]=\text { union of OUT }[m] \text { for all predecessors } m \text { of } n
$$

3. For each n other than ENTRY

$$
\mathrm{OUT}[n]=(\operatorname{IN}[n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]
$$

4. \quad change $=$ false
5. For each n other than ENTRY

$$
\text { If }\left(\mathrm{OUT}_{\text {old }}[n] \text { != OUT }[n]\right) \text { change }=\text { true }
$$

Questions

- What are the guarantees that this algorithm terminates?
- Does it compute a correct solution for the system of equations?
- Does it compute the smallest solution for the system of equations?
- Assuming that there is a unique smallest solution
- How do we even know that this solution is the desired solution for Reaching Definitions?
- We will revisit these questions later, when considering the general machinery of dataflow analysis frameworks

Better Algorithm: Round-Robin, in Order

OUT $[n]=\varnothing$ for each CFG node n
change = true
While (change)
change = false
For each n other than ENTRY, in rev. postorder OUT $_{\text {old }}[n]=$ OUT $[n]$
$\operatorname{IN}[n]=$ union of OUT $[m]$ for all predecessors m of n OUT $[n]=(\operatorname{IN}[n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]$
If $\left(\mathrm{OUT}_{\text {old }}[n]\right.$!= $\left.\mathrm{OUT}[n]\right)$ change $=$ true

Alternative: Worklist Algorithm

$\operatorname{IN}[n]=\varnothing$ for all n
Put the successor of ENTRY on worklist
While (worklist is not empty)

1. Remove a CFG node m from the worklist
2. $\operatorname{OUT}[m]=(\mathrm{IN}[m]-\mathrm{KILL}[m]) \cup \operatorname{GEN}[m]$
3. For each successor n of m

$$
\begin{aligned}
& \text { old }=\operatorname{IN}[n] \\
& \operatorname{IN}[n]=\operatorname{IN}[n] \cup \text { OUT }[m] \\
& \text { If (old }!=\operatorname{IN}[n]) \text { add } n \text { to worklist }
\end{aligned}
$$

This is "chaotic" iteration

- The order of adding-to/removing-from the worklist is unspecified
- e.g., could use stack, queue, set, etc.
- The order of processing of successor nodes is unspecified
${ }^{11}$ Regardless of order, the resulting solution is always the same

A Simpler Formulation

- In practice, an algorithm will only compute $\operatorname{IN}[n]$

$$
\operatorname{IN}[n]=\bigcup_{m \in \operatorname{Predecessors}(n)}(\operatorname{IN}[m]-\operatorname{KILL}[m]) \cup \operatorname{GEN}[m]
$$

- Ignore predecessor m if it is ENTRY
- Worklist algorithm
$-\mathrm{IN}[n]=\varnothing$ for all n
- Put the successor of ENTRY on the worklist
- While the worklist is not empty, remove m from the worklist; for each successor n of m, do
- old = IN[n]
- $\operatorname{IN}[n]=\operatorname{IN}[n] \cup(\operatorname{IN}[m]-\operatorname{KILL}[m]) \cup \operatorname{GEN}[m]$
- If (old != IN[n]) add n to worklist

A Few Notes

- We sometimes write

$$
\operatorname{IN}[n]=\bigcup_{m \in \operatorname{Predecessors}(n)}(\operatorname{IN}[m] \cap \operatorname{PRES}[m]) \cup \operatorname{GEN}[m]
$$

- PRES[n]: the set of all definitions "preserved" (i.e., not killed) by n
- Efficient implementation: bitvectors
- Sets are presented by bitvectors; set intersection is bitwise AND; set union is bitwise OR
- GEN[n] and PRES[n] are computed once, at the very beginning of the dataflow analysis
- IN[n] are computed iteratively, using a worklist

Reaching Definitions and Basic Blocks

- For space/time savings, we can solve the problem for basic blocks (i.e., CFG nodes are basic blocks)
- Program points are before/after basic blocks
- IN[n] is still the union of OUT[m] for predecessors m - OUT[n] is still $(\operatorname{IN}[n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]$
- $\operatorname{KILL}[n]=\operatorname{KILL}\left[s_{1}\right] \cup \operatorname{KILL}\left[s_{2}\right] \cup \ldots \cup \operatorname{KILL}\left[s_{k}\right]$
$-s_{1}, s_{2}, \ldots, s_{k}$ are the statements in the basic blocks
- GEN $[n]=\operatorname{GEN}\left[s_{\mathrm{k}}\right] \cup\left(\operatorname{GEN}\left[s_{\mathrm{k}-1}\right]-\operatorname{KILL}\left[s_{\mathrm{k}}\right]\right) \cup$
$\left(\operatorname{GEN}\left[s_{\mathrm{k}-2}\right]-\operatorname{KILL}\left[s_{\mathrm{k}-1}\right]-\operatorname{KILL}\left[s_{\mathrm{k}}\right]\right) \cup \ldots \cup$
(GEN[$\left.\left.s_{1}\right]-\operatorname{KILL}\left[s_{2}\right]-\operatorname{KILL}\left[s_{3}\right]-\ldots-\operatorname{KILL}\left[s_{k}\right]\right)$
- GEN[n] contains any definition in the block that is downwards exposed (i.e., not killed by a subsequent definition in the block)

Uses of Reaching Definitions Analysis

- Def-use (du) chains
- For a given definition (i.e., write) of a memory location, which statements read the value created by the def?
- For basic blocks: all upward-exposed uses (use of variable does not have preceding def in the same basic block)
- Use-def (ud) chains
- For a given use (i.e., read) of a memory location, which statements performed the write of this value?
- The reverse of du-chains
- Goal: potential write-read (flow) data dependences
- Compiler optimizations
- Program understanding (e.g., slicing)
- Dataflow-based testing: coverage criteria
- Semantic checks: e.g., use of uninitialized variables
- Could also find write-write (output) dependences

Analysis 2: Live Variables

- A variable v is live at a program point p if there exists a CFG path that
- starts at p
- ends at a statement that reads v
- does not contain a definition of v
- Thus, the value that v has at p could be used later - "could" because the CFG path may be infeasible - If v is not live at p, we say that v is dead at p
- For a CFG node n
- $\operatorname{IN}[n]$ is the set of variables that are live at the program point immediately before n
- OUT[n] is the set of variables that are live at the program point immediately after n

ENTRY	n1	$\mathrm{OUT}[\mathrm{n} 1]=\{\mathrm{m}, \mathrm{n}, \mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3\}$	
\downarrow		$\mathrm{IN}[\mathrm{n} 2]=\{\mathrm{m}, \mathrm{n}, \mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3\}$	
$\mathbf{i}=\mathbf{m - 1}$	n 2	OUT[n2] $=\{n, u 1, i, u 2, u 3\}$	
\downarrow		$\operatorname{IN}[\mathrm{n} 3]=\{\mathrm{n}, \mathrm{u} 1, \mathrm{i}, \mathrm{u} 2, \mathrm{u} 3\}$	
$\mathbf{j}=\mathbf{n}$	n3	$\mathrm{OUT}[\mathrm{n} 3]=\{u 1, i, j, u 2, u 3\}$	
\downarrow		$\operatorname{IN}[\mathrm{n} 4]=\{u 1, i, j, u 2, u 3\}$	Examples of relationships:
$\mathrm{a}=\mathrm{u1}$ \downarrow	n4	$\mathrm{OUT}[\mathrm{n} 4]=\{\mathrm{i}, \mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	
$\mathbf{i}=\mathbf{i + 1}$	n5	$\mathrm{IN}[\mathrm{n} 5]=\{\mathrm{i}, \mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	OUT[n1] = IN[n2]
		OUT[n5] $=\{\mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	
$\mathbf{j}=\mathbf{j} \mathbf{- 1}$	n6	$\operatorname{IN}[\mathrm{n} 6]=\{\mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	OUT[n7] $=\operatorname{IN}[\mathrm{n} 8] \cup \operatorname{IN}[\mathrm{n} 9]$
		$\mathrm{OUT}[\mathrm{n} 6]=\{\mathrm{u} 2, \mathrm{u} 3, \mathrm{j}\}$	
if (...)	n7	$\operatorname{IN}[\mathrm{n} 7]=\{u 2, u 3, j\}$	$\mathrm{IN}[\mathrm{n} 10]=$ OUT[n10]
$a=u 2$ n8		OUT[n7] $=\{u 2, u 3, j\}$	
		$\operatorname{IN}[\mathrm{n} 8]=\{\mathrm{u} 2, \mathrm{u} 3, \mathrm{j}\}$	$\operatorname{IN}[\mathrm{n} 2]=(\mathrm{OUT}[\mathrm{n} 2]-\{i\}) \cup\{\mathrm{m}\}$
$\mathbf{i}=\mathbf{u} 3$		OUT[n8] $=\{\mathrm{u} 3, \mathrm{j}, \mathrm{u} 2\}$	
\downarrow		$\operatorname{IN}[\mathrm{n} 9]=\{\mathrm{u} 3, \mathrm{j}, \mathrm{u} 2\}$	
if (...)	n10	$\mathrm{OUT}[\mathrm{n} 9]=\{\mathrm{i}, \mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	
\downarrow		$\operatorname{IN}[\mathrm{n} 10]=\{\mathrm{i}, \mathrm{j}, \mathrm{u} 2, \mathrm{u} 3\}$	
EXIT	n11	$\text { OUT[n10] = \{i, j, u2, u3 \} }$	
		$\mathrm{IN}[\mathrm{n} 11]=\{ \}$	

Formulation as a System of Equations

- For each CFG node n

$$
\operatorname{OUT}[n]=\bigcup_{m \in \operatorname{Successors}(n)} \operatorname{IN}[m]
$$

$$
\mathrm{IN}[\mathrm{EXIT}]=\varnothing
$$

$\operatorname{IN}[n]=($ OUT $n n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]$

- GEN[$n]$ is the set of all variables that are read by n
- KILL[n] is a singleton set containing the variable that is written by n (even if this variable is live immediately after n, it is not live immediately before n)
- The smallest sets IN[n] and OUT[n] that satisfy this system are exactly the solution for the Live Variables problem

Iteratively Solving the System of Equations
IN $[n]=\varnothing$ for each CFG node n
change = true
While (change)

1. For each n other than EXIT

$$
\mathbb{N}_{\text {old }}[n]=\operatorname{IN}[n]
$$

2. For each n other than EXIT OUT[$n]=$ union of $\operatorname{IN}[m]$ for all successors m of n
3. For each n other than EXIT

$$
\operatorname{IN}[n]=(\operatorname{OUT}[n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]
$$

4. change $=$ false
5. For each n other than EXIT

$$
\text { If }\left(\mathbb{N}_{\text {old }}[n]!=\operatorname{IN}[n]\right) \text { change = true }
$$

Better version: round-robin algorithm, in postorder

Worklist Algorithm

OUT $[n]=\varnothing$ for all n
Put the predecessors of EXIT on worklist While (worklist is not empty)

1. Remove a CFG node m from the worklist
2. $\operatorname{IN}[m]=(\mathrm{OUT}[m]-\operatorname{KILL}[m]) \cup G E N[m]$
3. For each predecessor n of m

$$
\begin{aligned}
& \text { old }=\text { OUT }[n] \\
& \text { OUT }[n]=\text { OUT }[n] \cup \operatorname{IN}[m] \\
& \text { If (old }!=\text { OUT }[n] \text {) add } n \text { to worklist }
\end{aligned}
$$

As with the worklist algorithm for Reaching Definitions, this is chaotic iteration. But, regardless of order, the resulting solution is always the same.

A Simpler Formulation

- In practice, an algorithm will only compute OUT[n]

$$
\operatorname{OUT}[n]=\bigcup_{m \in \operatorname{Successors}(n)}(\mathrm{OUT}[m]-\operatorname{KILL}[m]) \cup \operatorname{GEN}[m]
$$

- Ignore successor m if it is EXIT
- Worklist algorithm
- OUT[n] = \varnothing for all n
- Put the predecessors of EXIT on the worklist
- While the worklist is not empty, remove m from the worklist; for each predecessor n of m, do
- old = OUT[n]
- OUT $[n]=$ OUT $[n] \cup($ OUT $[m]-\operatorname{KILL}[m]) \cup$ GEN $[m]$
- If (old != OUT[n]) add n to worklist

A Few Notes

- We sometimes write

$$
\text { OUT }[n]=\bigcup_{m \in \text { Successors }(n)}(\text { OUT }[m] \cap \operatorname{PRES}[m]) \cup \operatorname{GEN}[m]
$$

- PRES[n]: the set of all variables "preserved" (i.e., not written) by n
- Efficient implementation: bitvectors
- Comparison with Reaching Definitions
- Reaching Definitions is a forward dataflow problem and Live Variables is a backward dataflow problem
- Other than that, they are basically the same
- Uses of Live Variables
- Dead code elimination: e.g., when \mathbf{x} is not live at $\mathbf{x}=\mathbf{y}+\mathbf{z}$
- Register allocation (more on this in CSE 756)

Analysis 3: Copy Propagation

- Copy propagation: for $\mathbf{x}=\mathbf{y}$, replace subsequent uses of \mathbf{x} with \mathbf{y}, as long as \mathbf{x} and \mathbf{y} have not changed along the way
- Creates opportunities for dead code elimination: e.g., after copy propagation we may find that \mathbf{x} is not live

Formulation as a System of Equations

- For each CFG node n (assume nodes = instructions)

$$
\operatorname{IN}[n]=\bigcap_{m \in \operatorname{Predecessors}(n)} \text { OUT }[m]
$$

OUT[n] $=(\operatorname{IN}[n]-\operatorname{KILL}[n]) \cup$ GEN $[n]$

- IN[n] is a set of copy instructions $\mathbf{x}=\mathbf{y}$ such that nether \mathbf{x} nor y is assigned along any path from $x=y$ to n
$-\mathrm{GEN}[n]$ is
- A singleton set containing the copy instruction, if n is a copy instruction
- The empty set, otherwise
- KILL[n]: if n assigns to \mathbf{x}, kill every $\mathbf{y}=\mathbf{x}$ and $\mathbf{x}=\mathbf{y}$
- Note that we must use intersection of OUT[m]

Worklist Algorithm

$\mathrm{IN}[n]=$ the set of all copy instructions, for all n Put the successor of ENTRY on worklist
While (worklist is not empty)

1. Remove a CFG node m from the worklist
2. $\operatorname{OUT}[m]=(\operatorname{IN}[m]-\operatorname{KILL}[m]) \cup G E N[m]$
3. For each successor n of m

$$
\begin{aligned}
& \text { old }=\operatorname{IN}[n] \\
& \operatorname{lN}[n]=\operatorname{IN}[n] \cap \text { OUT }[m] \\
& \text { If }(o l d!=\operatorname{IN}[n] \text {) add } n \text { to worklist }
\end{aligned}
$$

In Reaching Definitions, we initialized $\operatorname{IN}[n]$ to the empty set; here we cannot do this, because of $\operatorname{IN}[n]=\operatorname{IN}[n] \cap$ OUT $[m]$

- Here the "meet" operator of the lattice is set intersection; the top element of the lattice is the set of all copy instructions

Classification

- Forward vs backward problems: intuitively, do we need to go forward along CFG paths, or backward?
- Reaching Definitions: forward; Live Variables: backward; Copy Propagation: forward
- May vs must problems
- Reaching Definitions: a definition may reach (union over predecessors - i.e., \exists path ...)
- Live Variables: a use may be reached (union over successors - i.e., \exists path ...)
- Copy Propagation: x and y must be preserved along all paths (intersection over predecessors - i.e., \forall paths ...)

Analysis 4: Available Expressions

- Expression \mathbf{x} op \mathbf{y} is available at program point p 1. Every path from ENTRY to p evaluates x op y

2. After the last evaluation along the path, there are no subsequent assignments to x or y

- Useful for common subexpression elimination
- Must and forward problem
- "Every path" - must problem
- "From ENTRY to p" - forward problem

Common Subexpression Elimination

Common Subexpression Elimination

Formulation as a System of Equations

- For each CFG node n

$$
\operatorname{IN}[n]=\bigcap_{m \in \operatorname{Predecessors}(n)} \text { OUT }[m] \quad \text { OUT[ENTRY] }=\varnothing
$$

OUT[n] $=(\operatorname{IN}[n]-\operatorname{KILL}[n]) \cup$ GEN[$n]$

- IN $[n]$ is a set of expressions \mathbf{x} op \mathbf{y} available at n
$-\mathrm{GEN}[n]$ is
- A singleton set containing the expression \mathbf{x} op \mathbf{y}, if n computes that expression
- The empty set, otherwise
- KILL[n]: if n assigns to \mathbf{x}, kill every \mathbf{x} op \mathbf{y} and \mathbf{y} op \mathbf{x}
- IN $[n]$ is initialized to the set of all expressions appearing on the right-hand size of any instruction

Analysis 5: Very Busy Expressions

- Expression \mathbf{x} op \mathbf{y} is very busy at p if along every path from p we come to a computation of x op y before any redefinition of \boldsymbol{x} or \boldsymbol{y}
- Useful for code motion: hoist x op y to program point p
- Backward must problem

$$
\operatorname{IN}[n]=(\operatorname{OUT}[n]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]
$$

$\operatorname{OUT}[n]=\bigcap_{m \in \text { Successors(n) }} \operatorname{IN}[m]$

- Compare with Live Variables: backward may problem

OUT[$n]=\bigcup_{m \in S \text { uccessors(} n \text {) }} \operatorname{IN}[m]$

Summary of Analyses 1-5

- Solution at a node is a subset of a finite set (thus, sometimes they are called "bitvector" problems)
- Functions are $\mathrm{f}(\mathrm{x})=(\mathbf{A} \cap \mathbf{x}) \cup \mathbf{B}$ - "rapid" problems
- Fast convergence w/ reverse postorder (forward analysis) or postorder (backward analysis): e.g. while (change)
for each node \mathbf{n} in reverse postorder

$$
\operatorname{IN}[n]=\ldots \operatorname{IN}[m] . . .
$$

$d+2$ iterations; d is the max CFG loop nesting depth

- If we use the worklist algorithm (i.e., chaotic iteration) non-determinism in worklist order and in order of successors

Analysis 6: Constant Propagation

- Can we guarantee that the value of a variable v at a program point p is always a known constant?
- Compile-time constants are quite useful
- Constant folding: e.g., if we know that v is always 3.14 immediately before $\mathbf{w}=\mathbf{2}^{*} \mathbf{v}$; replace it $\mathbf{w}=\mathbf{6 . 2 8}$
- Often due to symbolic constants
- Dead code elimination: e.g., if we know that v is always false at if (v) ...
- Program understanding, restructuring, verification, testing, etc.

Basic Ideas

- At each CFG node $n, \mathrm{IN}[n]$ is a map Vars \rightarrow Values
- Each variable v is mapped to a value $x \in$ Values
- Values = all possible constant values $\cup\{n a c$, undef $\}$
- Special "value" nac (not-a-constant) means that the variable cannot be definitely proved to be a compiletime constant at this program point
- E.g., the value comes from user input, file I/O, network
- E.g., the value is 5 along one branch of an if statement, and 6 along another branch of the if statement
- E.g., the value comes from some nac variable
- Special "value" undef (undefined): used temporarily during the analysis
- Means "we have no information about v yet"

Formulation as a System of Equations

- OUT[ENTRY] = a map which maps each v to undef
- For any other CFG node n
- IN[n] = Merge(OUT[m]) for all predecessors m of n
- OUT[n = Update(IN[$n]$)
- Merging two maps: if v is mapped to c_{1} and c_{2} respectively, in the merged map v is mapped to:
- If $c_{1}=$ undef, the result is c_{2}
- Else if $c_{2}=$ undef, the result is c_{1}
- Else if $c_{1}=n a c$ or $c_{2}=n a c$, the result it nac
- Else if $c_{1} \neq c_{2}$, the result is nac
- Else the result is c_{1} (in this case we know that $c_{1}=c_{2}$)

Formulation as a System of Equations

- Updating a map at an assignment $\mathbf{v}=$...
- If the statement is not an assignment, OUT[n]=IN[n]
- The map does not change for any $\mathrm{w} \neq \mathrm{v}$
- If we have $\mathbf{v}=\boldsymbol{c}$, where c is a constant: in OUT[n], \mathbf{v} is now mapped to c
- If we have $\mathbf{v}=\mathbf{p}+\mathbf{q}$ (or similar binary operators) and $\operatorname{IN}[n]$ maps p and q to c_{1} and c_{2} respectively
- If both c_{1} and c_{2} are constants: result is $c_{1}+c_{2}$
- Else if either c_{1} or c_{2} is nac: result is nac
- Else: result is undef

Analysis 7: Points-To Analysis

- Question (oversimplified): can variable x contain the address of variable y at program point p ?
- First abstraction: no arrays, no structs, no objects, no heap-allocated memory, no pointer arithmetic, no calls
- Instructions of interest

$$
\begin{aligned}
& -x=\& y \\
& -x=y \\
& -x={ }^{*} y \\
& -*^{*} x=y \\
& -x=\text { null }
\end{aligned}
$$

Basic Ideas

- At each CFG node $n, \mathrm{IN}[n]$ is a set \subseteq Vars \times Vars
- That is, a set of pairs of variables (\mathbf{x}, \mathbf{y})
- Alternative formulation: map Vars \rightarrow PowerSet(Vars)
- For each variable \mathbf{x}, its points-to set Pt(x)
- If for some path from ENTRY to n the value of \mathbf{x} is the address of \mathbf{y} (when n is reached), then (\mathbf{x}, \mathbf{y}) must be an element of IN[n]
- Often defined as "points-to graph": an edge $\mathbf{x} \rightarrow \mathbf{y}$ shows that \mathbf{x} may point to \mathbf{y}
- Similarly defined OUT[n]

Formulation as a System of Equations

- OUT[ENTRY] = empty set
- For any other CFG node n
$-\operatorname{IN}[n]=$ Merge(OUT[m]) for all predecessors m of n
- OUT[n] = Update(IN[n])
- Merging two points-to graphs: just the union of their edge sets

1. if (...) goto (4)
2. $x=\& a \operatorname{OUT}[2]=\{(x, a)\}$
3. goto (5)
4. $\mathbf{x}=\boldsymbol{\&} \mathbf{b} \quad \operatorname{OUT}[4]=\{(x, b)\}$
5. $z=x$
6. $w=\& c$

IN[5] = \{ (x,a), (x,b) \}; OUT[5] = \{ (z,a), (z,b), (x,a), (x,b) \}
7. ${ }^{*} z=w$

OUT[7] $=\{(z, a),(z, b),(x, a),(x, b),(w, c),(a, c),(b, c)\}$

Formulation as a System of Equations

- Updating at an assignment $\mathbf{v}=$... or ${ }^{*} \mathbf{v}=\ldots$
- $\mathbf{x}=$ null: OUT $[n]=\operatorname{IN}[n]-\{x\} \times \operatorname{Vars}$
- $\mathbf{x}=\& \mathrm{y}$: OUT $[n]=(\operatorname{IN}[n]-\{x\} \times \operatorname{Vars}) \cup\{(\mathbf{x}, \mathbf{y})\}$
- $\mathbf{x}=\mathbf{y}:$ OUT $[n]=(\operatorname{IN}[n]-\{x\} \times \operatorname{Vars}) \cup\{(\mathbf{x}, \mathbf{z}) \mid(\mathrm{y}, \mathrm{z}) \in$ IN[n]\}
- $\mathbf{x}=$ * $\mathrm{y}:$ OUT[n] $=(\operatorname{IN}[\mathrm{n}]-\{x\} \times \operatorname{Vars}) \cup\{(\mathrm{x}, \mathrm{z}) \mid(\mathrm{y}, \mathrm{w}) \in$ $\operatorname{IN}[n] \wedge(w, z) \in \mathbb{N}[n]\}$
- ${ }^{*} x=y: \operatorname{OUT}[n]=(\operatorname{IN}[n]-$ nothing $) \cup\{(w, z) \mid$ $(\mathrm{x}, \mathrm{w}) \in \mathbb{N}[n] \wedge(\mathrm{y}, \mathrm{z}) \in \mathbb{I N}[n]\}$
- Why not kill ($\mathrm{w}, .$.)? In general, we cannot assert that x definitely points to w , even if $(\mathrm{x}, \mathrm{w}) \in \mathbb{I N}[n]$; more later ...

How About Real Programs?

- $\mathbf{x}=$ malloc(...) or $\mathbf{x}=$ new $\mathbf{X (. . .) : ~ a r t i f i c i a l ~ n a m e ~}$ heap $_{i}:$ OUT $[n]=(\operatorname{IN}[n]-\{x\} \times$ Vars $) \cup\left\{\left(\mathbf{x}\right.\right.$, heap $\left.\left._{i}\right)\right\}$
- $\mathrm{a}[\mathrm{x}]=\mathbf{y}$: treat array \mathbf{a} as one uniform block of data $\operatorname{OUT}[n]=\operatorname{IN}[n] \cup\{(\mathbf{a}, \mathbf{z}) \mid(\mathrm{y}, \mathrm{z}) \in \mathbb{N}[n]\}$
- $\mathbf{x}=\mathrm{a}[\mathrm{y}]: \operatorname{OUT}[\mathrm{n}]=(\operatorname{IN}[n]-\{x\} \times \operatorname{Vars}) \cup\{(x, y) \mid(a, y) \in \operatorname{IN}[n]\}$
- Fields of structs/objects: labels on points-to edges struct S \{ int* f1; float* f2; \};
struct $S^{*} x=$ malloc(sizeof(struct S));
$\left({ }^{*} x\right) . f 1=\& a ;\left({ }^{*} x\right) . f 2=\& b ;$
$y=\left({ }^{*} x\right) . f 1$;
- Many complications: e.g., pointer arithmetic

Approximations

- Flow-insensitive analysis: ignore the flow of control and compute one points-to graph for the entire program (rather than a separate points-to graph for each CFG node)
- Field-insensitive: do not distinguish between fields $\left({ }^{*} x\right) . f 1=\& a ;\left({ }^{*} x\right) . f 2=\& b ; y=\left({ }^{*} x\right) . f 1$; treated as *x = \&a; *x = \&b; y = *x; (heap $\left.{ }_{1}, f 1, a\right)\left(\right.$ heap $\left._{1}, f 2, b\right),(y, a)$ becomes (heap $\left.{ }_{1}, a\right)\left(\right.$ heap $\left._{1}, b\right),(y, a),(y, b)$
- Base-object-insensitive: treat ($\left.{ }^{*} \mathrm{x}\right) . \mathrm{f1}$ as f 1 Java: $x=$ new $A ; y=$ new $A ; x . f=$ new $C ; y . f=$ new $D ; z=y . f$ should lead to $\left(x\right.$, heap $\left._{1}\right),\left(y\right.$, heap $\left._{2}\right),\left(\right.$ heap $_{1}, f$, heap $\left._{3}\right)$, (heap $2, f$, heap $\left._{4}\right),\left(z\right.$, heap $\left._{4}\right)$
Instead, it is treated as $x=$ new $A ; y=$ new $A ; f=$ new $C ; f=$ new $D ; z=f$ ${ }_{45}$ and leads to $\left(x\right.$, heap $\left._{1}\right),\left(y\right.$, heap $\left._{2}\right),\left(f\right.$, heap $\left._{3}\right),\left(f\right.$, heap $\left._{4}\right),\left(z\right.$, heap $\left._{3}\right),\left(z\right.$, heap $\left._{4}\right)$

Flow-Insensitive Points-to Analysis

- A points-to graph could be $O\left(\mathrm{n}^{2}\right)$ in size; a separate graph at each node is often too expensive
- "Fake" CFG with arbitrary sequences of statements while ... switch
case 1: statement 1
case 2: statement 2
- Points-to graph at the merge point of the switch
- Simplified functions without "kill" (more efficient):

OUT $[n]=(\operatorname{IN}[n]-\{x\} \times \operatorname{Vars}) \cup \ldots$ becomes
$\operatorname{OUT}[n]=\operatorname{IN}[n] \cup \ldots$

Loss of Precision: FI, FS, and Beyond

1. $x=\& a \operatorname{FS}: \operatorname{OUT}[1]=\{(x, a)\}$
2. $y=\& b \quad$ FS: OUT $[2]=\{(x, a),(y, b)\}$
3. $z=\& c \quad F S: \operatorname{OUT}[3]=\{(x, a),(y, b),(z, c)\}$
4. *x=y FS: OUT[4] = $\{(x, a),(y, b),(z, c),(a, b)\}$
$\begin{array}{lll}\text { 5. } & * a=\ldots & \text { dependence } b \\ \text { 6. } . . .=c+1 & \text { FI: yes; } F S: \text { no }\end{array}$
5. ${ }^{*} x=z \quad$ FS: $\operatorname{OUT}[7]=\{(x, a),(y, b),(z, c),(a, b),(a, c)\}$
6. *a = ...
7. ... $=\mathrm{b}+2$ FI and FS: yes (wrong!)

FI solution: $(x, a),(y, b),(z, c),(a, b),(a, c)$
Can we improve FS to eliminate (a, b) from OUT[7]?

FS with Strong Updates

- Updating at an assignment $\mathbf{v}=\ldots$ or $* \mathbf{v}=\ldots$
- If the statement is not an assignment, OUT[$n]=\operatorname{IN}[n]$
- $\mathbf{x}=\ldots:$ OUT $[n]=(\operatorname{IN}[n]-\{x\} \times \operatorname{Vars}) \cup . .$.
- ${ }^{*} x=y: \operatorname{OUT}[n]=(\operatorname{IN}[n]-n o t h i n g) \cup \ldots$
- Why not kill (w,...) for when x points to w? In general, we cannot assert that x definitely points to w
- But what if the points-to set of x is a singleton set?
- E.g., in the previous example, $\operatorname{Pt}(x)=\{a\}$: can we kill (a,...) at *x $=y$?
- If we can, OUT[7] will become $\{(x, a),(y, b),(z, c),(a, c)\}$ and the precision is improved
- False dependence between 8 and 9 disappears

FS with Strong Updates

- Proposal: at *x=y, if $\operatorname{Pt}(x)$ is a singleton set $\{w\}$, perform a strong update on w:
- OUT[n] $=(I N[n]-\{w\} \times$ Vars $) \cup . .$.
- Not so fast ... remember that w is just a static abstraction of a set of run-time memory locations; this set itself must be a singleton set
Example: recall field-insensitive analysis
$\mathrm{x}=$ malloc; ($\left.^{*} \mathrm{x}\right) . \mathrm{f} 1=$ \&a; ($\left.{ }^{*} \mathrm{x}\right) . \mathrm{f} 2=$ \&b; $\mathrm{y}=\left({ }^{*} \mathrm{x}\right) . \mathrm{f1}$; treated as $\mathrm{x}=$ \&heap1, *x = \&a; *x = \&b; y = *x;
- FI without strong updates: at ${ }^{*} x=\& b, I N=\left\{\left(x\right.\right.$, heap $\left._{1}\right),\left(\right.$ heap $\left.\left._{1}, a\right)\right\}$, OUT $=\left\{\left(x\right.\right.$, heap $\left._{1}\right),\left(\right.$ heap $\left._{1}, a\right),\left(\right.$ heap $\left.\left._{1}, b\right)\right\}$ and later we get $(y, a),(y, b)$
- With strong updates: OUT $=\left\{\left(x\right.\right.$, heap $\left._{1}\right),\left(\right.$ heap $\left.\left._{1}, \mathrm{~b}\right)\right\}$ but (y, a) is lost !

"Dangerous" Strong Update

Which points-to graph node may correspond to multiple memory locations (and should not be strongly updated)?

- Array: one name for the entire array
- Local variable of a recursive procedures
- Dynamically allocated memory (even with field sensitivity) curr = null
while (...) \{

1. $\operatorname{prev}=$ curr $\operatorname{IN}[1]=\left\{\left(\right.\right.$ prev, heap $\left._{1}\right),\left(\right.$ curr, heap $\left._{1}\right),\left(\mathrm{y}\right.$, heap $\left._{2}\right),\left(\right.$ heap $_{1}$, fld, heap $\left.\left._{2}\right)\right\}$
2. curr = new X
3. $y=n e w Y$
4. curr.fld =y
$\} \quad \operatorname{IN}[5]=\left\{\left(\right.\right.$ prev,heap $\left._{1}\right),\left(\right.$ curr,heap $\left.{ }_{1}\right),\left(\right.$ y, heap $\left.{ }_{2}\right),\left(\right.$ heap $_{1}$, fld $^{\prime}$, heap 2$\left.)\right\}$
5. \quad prev.fld $=$ new Z OUT[5] $=\left\{\left(\right.\right.$ prev, heap $\left._{1}\right),\left(\right.$ curr, heap $\left.{ }_{1}\right),\left(y\right.$, heap $\left._{2}\right),\left(\right.$ heap $_{1}$, fld, heap $\left.\left._{3}\right)\right\}$
6. ... curr.fld.fld2 ... Dependence between these statements? Yes
7. ... y.fld2 ...

With strong updates: No, because heap3.fld2 \neq heap2.fld2

Foundations of Dataflow Analysis

Partial Order

- Given a set \mathbf{S}, a relation \mathbf{r} between elements of \mathbf{S} is a set $\mathbf{r} \subseteq \mathbf{S} \times \mathbf{S}$
- Notation: if $(x, y) \in r$, write "x ry"
- Example: "less than" relation over integers
- A relation is a partial order if and only if
- Reflexive: x rx
- Anti-symmetric: x r y and y $r x$ implies $x=y$
- Transitive: x ry and y r z implies x r z
- Example: "less than or equal to" over integers
- By convention, the symbol used for a partial order is \leq or something similar to it (e.g. \square

Partially Ordered Set

- Partially ordered set (S, \leq) is a set S with a defined partial order \leq
- Greatest element: x such that $y \leq x$ for all $y \in S$; often denoted by 1 or $T^{\text {(top) }}$
- Least element: x such that $\mathrm{x} \leq \mathrm{y}$ for all $\mathrm{y} \in \mathrm{S}$; often denoted by $\mathbf{0}$ or (bottom)
- It is not necessary to have 1 or 0 in a partially ordered set
- e.g. $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and only $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{c} \leq \mathrm{d}$
- We can always add an artificial top or bottom to the set (if we need one)

Displaying Partially Ordered Sets

- Represented by an undirected graph
- Nodes = elements of S
- If $a \leq b, a$ is shown below b in the picture
- If $a \leq b$, there is an edge (a, b)
- But: transitive edges are typically not shown
- Example: $\mathrm{S}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$

$$
\begin{aligned}
& 0 \leq a \leq b \leq 1 \\
& 0 \leq c \leq 1
\end{aligned}
$$

Implicit transitive edges:
$0 \leq b$,
$0 \leq 1, \mathrm{a} \leq 1$

Meet

- S - partially ordered set, $a \in S, b \in S$
- A meet of a and b is $c \in S$ such that
$-\mathrm{c} \leq \mathrm{a}$ and $\mathrm{c} \leq \mathrm{b}$
- For any $\mathrm{x}: \mathrm{x} \leq \mathrm{a}$ and $\mathrm{x} \leq \mathrm{b}$ implies $\mathrm{x} \leq \mathrm{c}$
- Also referred to as "the greatest lower bound of a and $\mathrm{b}^{\prime \prime}$
- Typically denoted by a \wedge b

$$
\begin{array}{ll}
a \wedge \mathrm{~b}=\mathrm{a} & \mathrm{a} \wedge 0=0 \\
a \wedge \mathrm{C}=0 & a \wedge 1=a \\
b \wedge \mathrm{C}=0 & \mathrm{~b} \wedge 1=b \\
b \wedge 0=0 & \ldots
\end{array}
$$

Join

- A join of a and b is $c \in S$ such that
$-\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{c}$
- For any $\mathrm{x}: \mathrm{a} \leq \mathrm{x}$ and $\mathrm{b} \leq \mathrm{x}$ implies $\mathrm{c} \leq \mathrm{x}$
- Also referred to as "the least upper bound of a and b"
- Typically denoted by a V b

$a \vee b=b \quad a V 0=a$
$a V c=1 \quad a V 1=1$
$b \vee c=1 \quad b V 1=1$
bVO=b \ldots

Lattices

- Any pair (a, b) has either zero or one meets
- Why can't there be two meets?
- Similarly for joins

$\mathrm{a} \boldsymbol{\wedge} \mathrm{b}$ does not exist " $x \leq a$ and $x \leq b$ implies $x \leq$ meet": NO!
- If every pair (a, b) has is a meet and a join, the set is a lattice with operators $\boldsymbol{\Lambda}$ and \mathbf{V}
- If only a meet operator is defined: a meet semilattice
- Finite lattice: the underlying set is finite
- Finite-height lattice: any chain $x<y<z<\ldots$ is finite

Cross-Product Lattice

- Given a lattice ($\mathrm{L}, \leq, \mathrm{\Lambda}, \mathrm{~V}$)
- Let $\mathrm{L}^{\mathrm{n}}=\mathrm{L} \times \mathrm{L} \times \ldots \times \mathrm{L}$ (elements are n -tuples)
- Partial order: $\left(a_{1}, \ldots, a_{n}\right) \leq\left(b_{1}, \ldots, b_{n}\right)$ iff $a_{i} \leq b_{i}$ for all i
- Meet: $\left(a_{1}, \ldots, a_{n}\right) \wedge\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1} \wedge b_{1}, \ldots, a_{n} \wedge b_{n}\right)$
- Same for join
- Cross-product lattice: (Ln $, \leq, \Lambda, V)$
- If \mathbf{L} has a bottom element $\mathbf{0}, \mathrm{L}^{\mathrm{n}}$ has a bottom element (0,..., 0)
- If \mathbf{L} has a top element $\mathbf{1 ,} \mathrm{L}^{\mathrm{n}}$ has a top element (1,...,1)
- If L has finite height, so does L^{n}

So What?

- All of this is basic discrete math. What does it have to do with compile-time code analysis and code optimizations?
- For many analysis problems, program properties can be conveniently encoded as lattice elements
- If $a \leq b$, in some sense the property encoded by a is weaker (or stronger) than the one encoded by b - Exactly what "weaker"/"stronger" means depends on the problem
- We usually care only about "going in one direction" (down) in the lattice, so typically it is enough to have a meet semilattice

The Most Basic Lattice

- Many dataflow analyses use a lattice L that is the power set $\mathcal{P}(X)$ of some set X
- $\mathcal{P}(X)$ is the set of all subsets of X
- A lattice element is a subset of X
- Partial order \leq is the \supseteq relation
- Meet is set union \cup; join is set intersection \cap
$-0=\mathrm{X} ; 1$ = \varnothing

Reaching Definitions and Live Variables

- Let D be the set of all definitions in the CFG
- Reaching definitions: the lattice L is $\mathcal{P}(D)$
- The solution for every CFG node is a lattice element
- $\operatorname{IN}[n] \in P(D)$ is the set of definitions reaching n
- The complete solution is a map Nodes $\rightarrow L$
- Actually, an element of the cross-product lattice LINodes|; basically, an n-tuple
- Let V be the set of all variables that are read anywhere in the CFG
- Live variables: the lattice L is $\mathcal{P}(\mathrm{V})$
- The solution for every CFG node is a lattice element - OUT $[n] \in \mathcal{P}(\mathrm{V})$ is the set of variables live at n
- The complete solution is a map Nodes $\rightarrow \mathrm{L}$

The Role of Meet

- The partial order encodes some notion of strength for properties
- if $x \leq y$, then x is "less precise" than y
- Reaching Definitions: $x \leq y$ iff $x \supseteq y$
$-x$ tells us that more things are possible, so x is less precise than y
- Extreme case: if $x=0=D$, this tells us that any definition may reach
- $\mathrm{x} \wedge \mathrm{y}$ is less precise than x and y
- greatest lower bound is the most precise lattice element that "describes" both x and y
- E.g., the union of two sets of reaching definitions is the smallest (most precise) way to describe both - Any superset of the union has redundancy in it

The Role of Meet (cont'd)

- Recall the Constant Propagation problem
- At each CFG node n, IN[n] is a map Vars \rightarrow Values
- Values = all possible constant values $\cup\{n a c$, undef $\}$
- Values is an infinite lattice with finite height
- nac \leq any constant value \leq undef
- two different constant values are not comparable
- Meet operation in Values:
- If $c_{1}=$ undef, the result is c_{2}
- Else if $c_{2}=$ undef, the result is c_{1}
- Else if $c_{1}=n a c$ or $c_{2}=n a c$, the result it nac
- Else if $c_{1} \neq c_{2}$, the result is nac
- Else the result is c_{1} (in this case we know that $c_{1}=c_{2}$)
- Problem lattice L: cross-product Values ${ }^{\mid \text {Vars } \mid}$

Transfer Functions

- A dataflow analysis defines a meet semilattice L that encodes some program properties
- It also has to define the effects of program statements on these properties
- A transfer function $f_{n}: L \rightarrow L$ is associated with each CFG node n
- For forward problems: if the properties before the execution of n were encoded by $\mathbf{x} \in \mathrm{L}$, the properties after the execution of n are encoded by $f_{n}(x)$
- Reaching Definitions
$-\mathrm{f}_{n}(\mathbf{x})=(\mathrm{x} \cap \operatorname{PRES}[n]) \cup \operatorname{GEN}[n]$
- Expressed with meet and join: $f(x)=(x \vee a) \wedge b$

Function Space and Dataflow Framework

- Given: meet semilattice ($L, \leq, \Lambda, 1$) with finite height
- This is what we typically want as the part of the definition of the dataflow analysis
- A monotone functions space for L is a set F of functions $f: L \rightarrow L$ such that
- Each f is monotone: $x \leq y$ implies $f(x) \leq f(y)$
- This is equivalent to $f(x \wedge y) \leq f(x) \wedge f(y)$
$-F$ contains the identity function
$-F$ is closed under composition and meet: $f{ }^{\circ} g$ and $f \wedge g$ are in $F\left[\right.$ Note: $\left(\mathbf{f}^{\circ} \mathrm{g}\right)(\mathbf{x})=\mathrm{f}(\mathrm{g}(\mathbf{x}))$ and $\left.(\mathrm{f} \wedge \mathrm{g})(\mathbf{x})=\mathrm{f}(\mathbf{x}) \wedge \mathrm{g}(\mathbf{x})\right]$
- Dataflow framework: (L,F)
- Forward or backward; we will consider only forward
- Framework instance (G,M): G=(N,E) is a CFG; M: $N \rightarrow F$ associates a transfer function $f \in F$ with each node $n \in N$

Intraprocedural Dataflow Analysis

- Given: an intraprocedural CFG, a lattice L, and transfer functions
- Plus a lattice element $\eta \in L$ that describes the properties that hold at the entry node of the CFG
- The effects of one particular CFG path $\mathrm{p}=\left(\mathrm{n}_{0}, \mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}\right)$ are

$$
f_{n_{k}}\left(f_{n_{k-1}}\left(\ldots f_{1}\left(f_{0}(\eta)\right) \ldots\right)\right)
$$

- i.e., $f_{p}(\eta)$, where f_{p} is the composition of the transfer functions for nodes in the path
- n_{0} is the entry node of the CFG

Intraprocedural Dataflow Analysis

- Analysis goal: for each CFG node n, compute a meet-over-all-paths solution

$$
\operatorname{MOP}(n)=\wedge_{p \in \operatorname{Paths}\left(n_{0}, n\right)} \quad f_{p}(\eta)
$$

- Paths $\left(\mathbf{n}_{0}, \mathbf{n}\right)$ the set of all paths from the entry node to n (the paths do not include n)
- This solution "summarizes" all properties that could hold immediately before n
- Many execution paths: "meet" ensures that we get the greatest lower bound of their effects
- E.g., the smallest set of reachable definitions

The MOP Solution

- The MOP solution encodes everything that could potentially happen at run time
- e.g., for Reaching Definitions: if there exists a run-time execution in which variable x is assigned at m and read at n, set $\operatorname{MOP}(n)$ is guaranteed to contain the definition of x at m
- Problems for computing MOP(n):
- Potentially infinite \# paths due to loops
- Even if there is a finite number of paths, there are too many of them: too expensive to compute $\operatorname{MOP}(n)$ by considering each path separately
- Finding the MOP solution is undecidable for general monotone dataflow frameworks
- Or even just for the constant propagation problem

Approximating the MOP Solution

- A compromise: compute an approximation of the MOP solution
- A correct approximation: $\mathrm{S}(\mathrm{n}) \leq \mathrm{MOP}(\mathrm{n})$
- Recall that \leq means "less precise"
- e.g., for Reaching Definitions $\operatorname{IN}[n] \supseteq \operatorname{MOP}(n)$
- "safe solution" = "correct solution"
- A precise approximation: $\mathrm{S}(\mathrm{n})$ should be as close to MOP(n) as possible
- In the best case, $S(n)=M O P(n)$

Standard Approximation Algorithm

- Idea: define a system of equations and then solve it with fixed-point computation

$$
S(n)=\wedge_{m \in \operatorname{Pred}(n)} \quad f_{m}(S(m))
$$

- This system has the form $\mathbf{S}=\mathrm{F}(\mathbf{S})$
- S: Nodes \rightarrow L is map from CFG nodes to lattice elements (S is in the cross-product lattice $L^{\mid \text {Nodes } \mid}$)
- F: (Nodes $\rightarrow \mathrm{L}) \rightarrow$ (Nodes $\rightarrow \mathrm{L}$) is a function that computes the new solution from the old one, based on the node-level transfer functions f_{n}

Computing a Fixed Point

- Discrete math: if \mathbf{f} is a function, a fixed point of f is a value x such that $x=f(x)$
- We want to compute a fixed point of F
- Standard algorithm (fixed-point computation)
$S:=[1,1, \ldots, 1]$
change := true
while (change)
old_S := S;
$\mathrm{S}:=\mathrm{F}(\mathrm{S})$
if ($\mathrm{S} \neq$ old_S) change := true
else change := false

Does This Really Work?

- Does not necessarily terminate
- Common case: finite-height lattice + monotone function space (as described earlier)
- In this case, the algorithm provably terminates with the greatest (maximum) fixed point MFP
- Note: be careful with the difference between maximal (no one is $>\mathrm{x}$) and maximum ($\mathrm{x}>$ everyone)
- MFP is a safe approximation of the MOP solution: $\operatorname{MFP}(\mathrm{n}) \leq \operatorname{MOP}(\mathrm{n})$
- For some categories of problems, the computed solution is the same as the MOP solution
- e.g., for Reaching Definitions, but not for Constant Propagation

Outline of Proofs

- Termination with a fixed point
- monotonicity: $1^{n} \geq F\left(1^{n}\right) \geq F^{2}\left(1^{n}\right) \geq F^{3}\left(1^{n}\right) \geq \ldots$
- Finite height for L implies finite height for L^{n}, which gives us termination with $F^{m}\left(1^{n}\right)=F^{m+1}\left(1^{n}\right)$
$-F^{m}\left(1^{n}\right)$ is a fixed point of F, and a solution to the system
- Is it the greatest (maximum) fixed point?
- For any other fixed point $S: 1^{n} \geq S, F\left(1^{n}\right) \geq F(S)=S, \ldots$
- By induction on $\mathrm{j}, \mathrm{F}^{\mathrm{j}}\left(1^{\mathrm{n}}\right) \geq \mathrm{S}$
- Why is MOP \geq MFP?
- For each CFG path $\mathrm{p}=\left(\mathrm{n}_{0}, \mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}\right), \mathrm{f}_{\mathrm{p}}(\eta) \geq$ MFP for any successor of n_{k}
- Proof by induction on the length of paths

Distributive Frameworks

- Each \mathbf{f} is monotone: $\mathbf{x} \leq \mathrm{y}$ implies $\mathrm{f}(\mathrm{x}) \leq \mathrm{f}(\mathrm{y})$
- This is equivalent to $f(x \wedge y) \leq f(x) \wedge f(y)$
- Distributive: $\mathrm{f}(\mathrm{x} \wedge \mathrm{y})=\mathrm{f}(\mathrm{x}) \wedge \mathrm{f}(\mathrm{y})$
- Each distributive function is also monotone
- Examples: Reaching Defs, Live Variables, Available Expressions, Very Busy Expressions, Copy Propagation
- In this case, MFP = MOP
- Proof outline: Since we already know that MOP \geq MFP, enough to show that MFP \geq MOP
- Show by induction on j that $\mathrm{F}^{\mathrm{j}}\left(1^{\mathrm{n}}\right) \geq \mathrm{MOP}$
- Enough to show that $\mathrm{F}(\mathrm{MOP})=\mathrm{MOP}$: that is, $\operatorname{MOP}(\mathrm{n})=$ meet of $f_{m}(\operatorname{MOP}(m))$ over all predecessors m of n
- By definition, $\operatorname{MOP}(m)$ is a meet over all paths leading to $\mathrm{m} ; \mathrm{f}_{m}($ meet of paths $)=\operatorname{meet}\left(\mathrm{f}_{m}(\right.$ path $\left.)\right)$

An Approximation: Flow-Insensitive Analysis

- Some problems are too complex/expensive to compute a solution specific to each CFG node - Typical example: pointer analysis (more later)
- Approximation: "pretend" that statements can execute in any order
- Not only in the order defined by CFG paths
- Completely ignore all CFG edges - just consider the transfer functions at nodes
- For technical reasons, make the functions "non-kill": $\mathrm{f}(\mathrm{x}) \leq \mathrm{x}$ [e.g. as if KILL set was empty for Reaching Defs]
- Single solution (lattice element) for the entire CFG
- Naïve algo: start from 1 and apply the transfer functions in arbitrary order; get to a fixed point

