
Dataflow Analysis 

Dragon book, Chapter 9, Section 9.2, 9.3, 9.4 
 



Dataflow Analysis 
• Dataflow analysis is a sub-area of static program 

analysis 
– Used in the compiler back end for optimizations of 

three-address code and for generation of target code 
– For software engineering: software understanding, 

restructuring, testing, verification 
• Attaches to each CFG node some information that 

describes properties of the program at that point 
– Based on lattice theory 

• Defines algorithms for inferring these properties 
– e.g., fixed-point computation 
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Map of what is coming next 
• Six intraprocedural dataflow analyses 

– Reaching Definitions 
– Live Variables 
– Copy Propagation 
– Available Expressions 
– Very Busy Expressions 
– Constant Propagation 
– Points-to Analysis 

• Foundations of dataflow analysis 
– Framework: lattices and transfer functions 
– Meet-over-all-paths 
– Fixed point algorithms and solutions 
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Analysis 1: Reaching Definitions 
• A classical example of a dataflow analysis 

– We will consider intraprocedural analysis: only inside a 
single procedure, based on its CFG  

• For a minute, assume CFG nodes are individual 
instructions, not basic blocks 
– Each node defines two program points: immediately 

before and immediately after 
• Goal: identify all connections between variable 

definitions (“write”) and variable uses (“read”) 
– x = y + z has a definition of x and uses of y and z 
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Reaching Definitions 
• A definition d reaches a program point p if there 

exists a CFG path that 
– starts at the program point immediately after d 
– ends at p 
– does not contain a definition of d (i.e., d is not “killed”) 

• The CFG path may be infeasible (could never occur) 
– Any compile-time analysis has to be conservative, so we consider 

all paths in the CFG 

• For a CFG node n 
– IN[n] is the set of definitions that reach the program point 

immediately before n 
– OUT[n] is the set of definitions that reach the program point 

immediately after n 
– Reaching definitions analysis: sets IN[n] and OUT[n] for each n 
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ENTRY 

i = m-1 

j = n 

a = u1 

i = i + 1 

d1 

d2 

OUT[n1] = { } 
IN[n2]  = { } 
OUT[n2] = { d1 } 
IN[n3]  = { d1 } 
OUT[n3] = { d1, d2 }  
IN[n4]  = { d1, d2 }  
OUT[n4] = { d1, d2, d3 }  
IN[n5]  = { d1, d2, d3,       d5, d6, d7 }  
OUT[n5] = {       d2, d3, d4, d5, d6 }  
IN[n6]  = {       d2, d3, d4, d5, d6 }   
OUT[n6] = {             d3, d4, d5, d6 }    
IN[n7]  = {             d3, d4, d5, d6 }    
OUT[n7] = {             d3, d4, d5, d6 }    
IN[n8]  = {             d3, d4, d5, d6 }    
OUT[n8] = {                   d4, d5, d6 }   
IN[n9]  = {             d3, d4, d5, d6 }   
OUT[n9] = {             d3,       d5, d6, d7 }   
IN[n10]  = {             d3,       d5, d6, d7 }  
OUT[n10] = {          d3,       d5, d6, d7 }   
IN[n11]  =   {          d3,       d5, d6, d7 }  

d3 

d4 

j = j - 1 d5 

if (…) 

a = u2 d6 

i = u3 d7 

if (…) 

EXIT 

n1 

n2 

n3 

n4 

n5 

n6 

n7 

n8 

n9 

n10 

n11 

Examples of relationships: 
IN[n2] = OUT[n1] 
IN[n5] = OUT[n4] ∪ OUT[n10] 
OUT[n7] = IN[n7] 
OUT[n9] = (IN[n9] – {d1,d4,d7}) ∪ {d7}  
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Formulation as a System of Equations 
• For each CFG node n 

 
 
 
 
 

– GEN[n] is a singleton set containing the definition d at n 
– KILL[n] is the set of all other definitions of the variable 

whose value is changed by d 
• It can be proven that the “smallest” sets IN[n] and 

OUT[n] that satisfy this system are exactly the 
solution for the Reaching Definitions problem 
– To ponder: how do we know that this system has any  

solutions at all? how about a unique smallest one? 7 
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Iteratively Solving the System of Equations 
OUT[n] = ∅ for each CFG node n 
change = true 
While (change)  

1. For each n other than ENTRY 
 OUTold[n] = OUT[n] 

2. For each n other than ENTRY 
 IN[n] = union of OUT[m] for all predecessors m of n 

3. For each n other than ENTRY 
 OUT[n] = ( IN[n] – KILL[n] ) ∪ GEN[n] 

4. change = false 
5. For each n other than ENTRY 

 If (OUTold[n] != OUT[n]) change = true 
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Questions 
• What are the guarantees that this algorithm 

terminates?  
• Does it compute a correct solution for the system 

of equations?  
• Does it compute the smallest solution for the 

system of equations? 
– Assuming that there is a unique smallest solution 

• How do we even know that this solution is the 
desired solution for Reaching Definitions? 

• We will revisit these questions later, when 
considering the general machinery of dataflow 
analysis frameworks 

9 



Better Algorithm: Round-Robin, in Order 
 

OUT[n] = ∅ for each CFG node n 
change = true 
While (change) 
     change = false  
 For each n other than ENTRY, in rev. postorder 

   OUTold[n] = OUT[n] 
   IN[n] = union of OUT[m] for all predecessors m of n 
   OUT[n] = ( IN[n] – KILL[n] ) ∪ GEN[n] 
   If (OUTold[n] != OUT[n]) change = true 
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Alternative: Worklist Algorithm 
IN[n] = ∅ for all n  
Put the successor of ENTRY on worklist 
While (worklist is not empty)  

1. Remove a CFG node m from the worklist 
2. OUT[m] = (IN[m] – KILL[m]) ∪ GEN[m] 
3. For each successor n of m 

 old = IN[n] 
 IN[n] = IN[n] ∪ OUT[m] 
 If (old != IN[n]) add n to worklist 

11 

This is “chaotic” iteration 
• The order of  adding-to/removing-from the worklist is unspecified  

• e.g., could use stack, queue, set, etc. 
• The order of processing of successor nodes is unspecified 
Regardless of order, the resulting solution is always the same 



A Simpler Formulation 
• In practice, an algorithm will only compute IN[n] 

 
 
– Ignore predecessor m if it is ENTRY 

• Worklist algorithm 
– IN[n] = ∅ for all n  
– Put the successor of ENTRY on the worklist 
– While the worklist is not empty, remove m from the 

worklist; for each successor n of m, do 
• old = IN[n] 
• IN[n] = IN[n] ∪ (IN[m] – KILL[m]) ∪ GEN[m] 
• If (old != IN[n]) add n to worklist   
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A Few Notes 
• We sometimes write 

 
 

• PRES[n]: the set of all definitions “preserved” (i.e., 
not killed) by n 

• Efficient implementation: bitvectors 
– Sets are presented by bitvectors; set intersection is 

bitwise AND; set union is bitwise OR 
– GEN[n] and PRES[n] are computed once, at the very 

beginning of the dataflow analysis 
– IN[n] are computed iteratively, using a worklist 
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Reaching Definitions and Basic Blocks 
• For space/time savings, we can solve the problem 

for basic blocks (i.e., CFG nodes are basic blocks) 
– Program points are before/after basic blocks 
– IN[n] is still the union of OUT[m] for predecessors m 
– OUT[n] is still ( IN[n] – KILL[n] ) ∪ GEN[n] 

• KILL[n] = KILL[s1] ∪ KILL[s2] ∪ … ∪ KILL[sk] 
– s1, s2, …, sk are the statements in the basic blocks 

• GEN[n] = GEN[sk] ∪ ( GEN[sk-1] – KILL[sk] ) ∪             
( GEN[sk-2] – KILL[sk-1] – KILL[sk] ) ∪ … ∪                     
( GEN[s1] – KILL[s2] – KILL[s3] – … – KILL[sk] ) 
– GEN[n] contains any definition in the block that is 

downwards exposed (i.e., not killed by a subsequent 
definition in the block) 
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ENTRY 

i = m-1 

j = n 

a = u1 

i = i + 1 

d1 

d2 

KILL[n2]  = { d1, d2, d3, d4, d5, d6, d7 } 
GEN[n2] = { d1, d2, d3 } 
KILL[n3]  = { d1, d2, d4, d5, d7 } 
GEN[n3] = { d4, d5 } 
KILL[n4]  = { d3, d6 } 
GEN[n4] = { d6 } 
KILL[n5]  = { d1, d4, d7 } 
GEN[n5] = { d7 } 
 
IN[n2]  = { } 
OUT[n2] = { d1, d2, d3 }  
 
IN[n3]  = { d1, d2, d3,       d5, d6, d7 }  
OUT[n3] = {              d3, d4, d5, d6 }    
 
IN[n4]  = {              d3, d4, d5, d6 }    
OUT[n4] = {                    d4, d5, d6 }   
 
IN[n5]  = {             d3, d4, d5, d6 }   
OUT[n5] = {             d3,        d5, d6, d7 }   

d3 

d4 

j = j - 1 d5 

if (…) 

a = u2 d6 

i = u3 d7 

if (…) 

EXIT 

n1 

n2 

n3 

n4 

n5 

n6 
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Uses of Reaching Definitions Analysis 
• Def-use (du) chains 

– For a given definition (i.e., write) of a memory location, which 
statements read the value created by the def? 

– For basic blocks: all upward-exposed uses (use of variable does 
not have preceding def in the same basic block) 

• Use-def (ud) chains  
– For a given use (i.e., read) of a memory location, which 

statements performed the write of this value? 
– The reverse of du-chains 

• Goal: potential write-read (flow) data dependences 
– Compiler optimizations 
– Program understanding (e.g., slicing) 
– Dataflow-based testing: coverage criteria 
– Semantic checks: e.g., use of uninitialized variables 
– Could also find write-write (output) dependences 
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ENTRY 

i = m-1 

j = n 

a = u1 

i = i + 1 

d1 

d2 

Upward exposed uses:  
USES[n2] = { m@d1, n@d2, u1@d3 } 
USES[n3] = { i@d4, j@d5, a@c1 } 
USES[n4] = { u2@d6 } 
USES[n5] = { u3@d7, j@c2, a@c2 } 
Reaching definitions:  
IN[n3]  = { d1, d2, d3,       d5, d6, d7 }  
IN[n4]  = {              d3, d4, d5, d6 }    
IN[n5]  = {              d3, d4, d5, d6 }   
Def-use chains across basic blocks:  
DU[d1] = upward exposed uses of variable i in all basic 
blocks n such that d1 ∈ IN[n]  = { i@d4 } 
DU[d2] = { j@d5 } 
DU[d3] = { a@c1, a@c2 } 
DU[d4] = { } 
DU[d5] = { j@d5, j@c2 } 
DU[d6] = { a@c1, a@c2 } 
DU[d7] = { i@d4 } 
Def-use chains inside basic blocks:  
DU[d4] = { i@c1 } 

d3 

d4 

j = j - 1 d5 

if(..i..a) 

a = u2 d6 

i = u3 d7 

if(..j..a) 

EXIT 

n1 

n2 

n3 

n4 

n5 

n6 
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c1 

c2 

Use-def chains: 
UD[m@d1]= { } 
UD[n@d2]= { } 
UD[u1@d3]= { } 
UD[i@d4]= { d1,d7 } 
UD[j@d5]= { d2,d5 } 
UD[i@c1]= { d4 } 
UD[a@c1]= { d3,d6 } 
UD[u2@d6]= { } 
UD[u3@d7]= { } 
UD[j@c2]= { d5 } 
UD[a@c2]= { d3,d6 } 



Analysis 2: Live Variables 
• A variable v is live at a program point p if there 

exists a CFG path that 
– starts at p 
– ends at a statement that reads v 
– does not contain a definition of v  

• Thus, the value that v has at p could be used later 
– “could” because the CFG path may be infeasible 
– If v is not live at p, we say that v is dead at p 

• For a CFG node n 
– IN[n] is the set of variables that are live at the program 

point immediately before n 
– OUT[n] is the set of variables that are live at the 

program point immediately after n 
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ENTRY 

i = m-1 

j = n 

a = u1 

i = i + 1 

OUT[n1] = { m, n, u1, u2, u3 } 
IN[n2]  = { m, n, u1, u2, u3 } 
OUT[n2] = { n, u1, i, u2, u3 } 
IN[n3]  = { n, u1, i, u2, u3 } 
OUT[n3] = { u1, i, j, u2, u3 }  
IN[n4]  = { u1, i, j, u2, u3 }  
OUT[n4] = { i, j, u2, u3 }  
IN[n5]  = { i, j, u2, u3 }  
OUT[n5] = { j, u2, u3 }  
IN[n6]  = { j, u2, u3 }   
OUT[n6] = { u2, u3, j }    
IN[n7]  = { u2, u3, j }    
OUT[n7] = { u2, u3, j }    
IN[n8]  = { u2, u3, j }    
OUT[n8] = { u3, j, u2 }   
IN[n9]  = { u3, j, u2 }   
OUT[n9] = { i, j, u2, u3 }   
IN[n10]  = { i, j, u2, u3 }  
OUT[n10] = { i, j, u2, u3 }   
IN[n11] =  { }  

j = j - 1 

if (…) 

a = u2 

i = u3 

if (…) 

EXIT 

n1 

n2 

n3 

n4 

n5 

n6 

n7 

n8 

n9 

n10 

n11 

Examples of relationships: 
 
OUT[n1] = IN[n2] 
 
OUT[n7] = IN[n8] ∪ IN[n9] 
 
IN[n10] = OUT[n10] 
 
IN[n2] = (OUT[n2] – {i}) ∪ {m} 
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Formulation as a System of Equations 
• For each CFG node n 

 
 
 
 
 

– GEN[n] is the set of all variables that are read by n 
– KILL[n] is a singleton set containing the variable that is 

written by n (even if this variable is live immediately 
after n, it is not live immediately before n) 

• The smallest sets IN[n] and OUT[n] that satisfy this 
system are exactly the solution for the Live 
Variables problem 
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Iteratively Solving the System of Equations 
IN[n] = ∅ for each CFG node n 
change = true 
While (change)  

1. For each n other than EXIT 
 INold[n] = IN[n] 

2. For each n other than EXIT 
 OUT[n] = union of IN[m] for all successors m of n 

3. For each n other than EXIT 
 IN[n] = ( OUT[n] – KILL[n] ) ∪ GEN[n] 

4. change = false 
5. For each n other than EXIT 

 If (INold[n] != IN[n]) change = true 

21 
Better version: round-robin algorithm, in postorder 



Worklist Algorithm 
OUT[n] = ∅ for all n  
Put the predecessors of EXIT on worklist 
While (worklist is not empty)  

1. Remove a CFG node m from the worklist 
2. IN[m] = (OUT[m] – KILL[m]) ∪ GEN[m] 
3. For each predecessor n of m 

 old = OUT[n] 
 OUT[n] = OUT[n] ∪ IN[m] 
 If (old != OUT[n]) add n to worklist 

22 

As with the worklist algorithm for Reaching Definitions, this is 
chaotic iteration. But, regardless of order, the resulting solution is 
always the same. 



A Simpler Formulation 
• In practice, an algorithm will only compute OUT[n] 

 
 
– Ignore successor m if it is EXIT 

• Worklist algorithm 
– OUT[n] = ∅ for all n  
– Put the predecessors of EXIT on the worklist 
– While the worklist is not empty, remove m from the 

worklist; for each predecessor n of m, do 
• old = OUT[n] 
• OUT[n] = OUT[n] ∪ (OUT[m] – KILL[m]) ∪ GEN[m] 
• If (old != OUT[n]) add n to worklist   
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A Few Notes 
• We sometimes write 

 
 
– PRES[n]: the set of all variables “preserved” (i.e., not 

written) by n 
– Efficient implementation: bitvectors 

• Comparison with Reaching Definitions 
– Reaching Definitions is a forward dataflow problem and 

Live Variables is a backward dataflow problem 
– Other than that, they are basically the same 

• Uses of Live Variables 
– Dead code elimination: e.g., when x is not live at x=y+z 
– Register allocation (more on this in CSE 756) 
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Analysis 3: Copy Propagation 
• Copy propagation: for x = y, replace subsequent 

uses of x with y, as long as x and y have not 
changed along the way 
– Creates opportunities for dead code elimination: e.g., 

after copy propagation we may find that x is not live 
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b=a 
c= 4*b 
if (c>b) 

e=a+b 

B1 

true 

B3 

EXIT 

d=b+2 

ENTRY 

B2 

b=a 
c= 4*a 
if (c>a) 

e=a+a 

B1 

true 

B3 

EXIT 

d=a+2 

ENTRY 

B2 

1) Dead code 
elimination: b=a 

2) Strength 
reduction: e=a+a 
use left shift 
instead of 
addition 



Formulation as a System of Equations 
• For each CFG node n (assume nodes = instructions) 

 
 
 
 
 

– IN[n] is a set of copy instructions x=y such that nether x 
nor y is assigned along any path from x=y to n  

– GEN[n] is  
• A singleton set containing the copy instruction, if n is 

a copy instruction 
• The empty set, otherwise 

– KILL[n]: if n assigns to x, kill every y=x and x=y 
– Note that we must use intersection of OUT[m] 
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Worklist Algorithm 
IN[n] = the set of all copy instructions, for all n  
Put the successor of ENTRY on worklist 
While (worklist is not empty)  

1. Remove a CFG node m from the worklist 
2. OUT[m] = (IN[m] – KILL[m]) ∪ GEN[m] 
3. For each successor n of m 

 old = IN[n] 
 IN[n] = IN[n] ∩ OUT[m] 
 If (old != IN[n]) add n to worklist 
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In Reaching Definitions, we initialized IN[n] to the empty set; here 
we cannot do this, because of IN[n] = IN[n] ∩ OUT[m] 
• Here the “meet” operator of the lattice is set intersection; the top 
element of the lattice is the set of all copy instructions 
• In Reaching Definitions, “meet” is set union; “top” is the empty set 



Classification 
• Forward vs backward problems: intuitively, do we 

need to go forward along CFG paths, or backward? 
– Reaching Definitions: forward; Live Variables: 

backward; Copy Propagation: forward 
• May vs must problems 

– Reaching Definitions: a definition may reach (union 
over predecessors – i.e., ∃ path …) 

– Live Variables: a use may be reached (union over 
successors – i.e., ∃ path …)  

– Copy Propagation: x and y must be preserved along all 
paths (intersection over predecessors – i.e., ∀ paths …) 
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Analysis 4: Available Expressions 
• Expression x op y is available at program point p  

1. Every path from ENTRY to p evaluates x op y 
2. After the last evaluation along the path, there are no 

subsequent assignments to x or y 
• Useful for common subexpression elimination 
• Must and forward problem 

– “Every path” – must problem 
– “From ENTRY to p” – forward problem 
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Common Subexpression Elimination 

30 

q:=a*b z:=a*b 
r:=2*z 

u:=a*b 
z:=u/2 

w:=a*b 
Example courtesy of Prof. Barbara Ryder 



Common Subexpression Elimination 

31 Example courtesy of Prof. Barbara Ryder 
31 

t1:=a*b 
q:=t1 

t1:=a*b 
z:=t1 
r:=2*z 

u:=t1 
z:=u/2 

w:=a*b 

Cannot be eliminated 
because does not have  
a*b available on all paths 



Formulation as a System of Equations 
• For each CFG node n 

 
 
 
 
 

– IN[n] is a set of expressions x op y available at n 
– GEN[n] is  

• A singleton set containing the expression x op y, if n 
computes that expression 

• The empty set, otherwise 
– KILL[n]: if n assigns to x, kill every x op y and y op x 
– IN[n] is initialized to the set of all expressions appearing 

on the right-hand size of any instruction 
32 
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Analysis 5: Very Busy Expressions 
• Expression x op y is very busy at p if along every 

path from p we come to a computation of x op y 
before any redefinition of x or y  
– Useful for code motion: hoist x op y to program point p 
– Backward must problem 

 
 
 
 

– Compare with Live Variables: backward may problem  
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Summary of Analyses 1-5 
• Solution at a node is a subset of a finite set (thus, 

sometimes they are called “bitvector” problems) 
• Functions are f(x)=(A∩x)∪B – “rapid” problems 

– Fast convergence w/ reverse postorder (forward 
analysis) or postorder (backward analysis): e.g.  

while (change) 
for each node n in reverse postorder 

IN[n] = … IN[m]…  
d+2 iterations; d is the max CFG loop nesting depth 

– If we use the worklist algorithm (i.e., chaotic iteration) 
non-determinism in worklist order and in order of 
successors 

 
 

34 



Analysis 6: Constant Propagation 
• Can we guarantee that the value of a variable v at 

a program point p is always a known constant? 
• Compile-time constants are quite useful 

– Constant folding: e.g., if we know that v is always 3.14 
immediately before w = 2*v;  replace it w = 6.28 
• Often due to symbolic constants 

– Dead code elimination: e.g., if we know that v is always 
false at if (v) … 

– Program understanding, restructuring, verification, 
testing, etc. 
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Basic Ideas 
• At each CFG node n, IN[n] is a map Vars → Values 

– Each variable v is mapped to a value x ∈ Values 
– Values = all possible constant values ∪ { nac , undef }  

• Special “value” nac (not-a-constant) means that the 
variable cannot be definitely proved to be a compile-
time constant at this program point 
– E.g., the value comes from user input, file I/O, network 
– E.g., the value is 5 along one branch of an if statement, and 

6 along another branch of the if statement 
– E.g., the value comes from some nac variable 

• Special “value” undef (undefined): used temporarily 
during the analysis 
– Means “we have no information about  v yet” 
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Formulation as a System of Equations 
• OUT[ENTRY] = a map which maps each v to undef 
• For any other CFG node n  

– IN[n] = Merge(OUT[m]) for all predecessors m of n 
– OUT[n] = Update(IN[n]) 

• Merging two maps: if v is mapped to c1 and c2 
respectively, in the merged map v is mapped to: 
– If c1 = undef, the result is c2 
– Else if c2 = undef, the result is c1 
– Else if c1 = nac or c2 = nac, the result it nac 
– Else if c1 ≠ c2, the result is nac 
– Else the result is c1 (in this case we know that c1 = c2) 
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Formulation as a System of Equations 
• Updating a map at an assignment v = … 

– If the statement is not an assignment, OUT[n] = IN[n] 
• The map does not change for any w ≠ v 
• If we have v = c, where c is a constant: in OUT[n], v 

is now mapped to c 
• If we have v = p + q (or similar binary operators) 

and IN[n] maps p and q to c1 and c2 respectively 
– If both c1 and c2 are constants: result is c1+c2  
– Else if either c1 or c2 is nac: result is nac 
– Else: result is undef 
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ENTRY 

a = 1 

b = 2 

c = a+b 

a=1+c 

OUT[n1] = {a → undef, b → undef, c → undef, d → undef } 
OUT[n2] = {a → 1, b → undef, c → undef, d → undef } 
OUT[n3] = {a → 1, b → 2, c → undef, d → undef }  
OUT[n4] = {a → 1, b → 2, c → 3, d → undef } 
  
OUT[n6] = {a → 4, b → 2, c → 3, d → undef }    
OUT[n7] = {a → 4, b → 7, c → 3, d → undef }    
OUT[n8] = {a → 4, b → 7, c → 3, d → 11 }  
          
OUT[n9] = {a → 5, b → 2, c → 3, d → undef }    
OUT[n10] = {a → 5, b → 6, c → 3, d → undef } 
 
IN[n11] = {a → nac, b → nac, c → 3, d → 11 } 
OUT[n11] = {a → nac, b → nac, c → 3, d → 11 } 
 
OUT[n12] = {a → nac, b → nac, c → 3, d → 11 } 
 
Note: in reality, d could be uninitialized at n11 and n12 (see 
Section 9.4.6 for a good discussion on this issue) 

b = 4+c 

a = 2+c 

b = 3+c 

a=a+b 

b=a+c 

n1 

n2 

n3 

n4 

n6 n9 

n8 

n12 

n10 

n11 
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if (…) n5 

n7 

d = a+b 

EXIT n13 

Merge 



Analysis 7: Points-To Analysis 
• Question (oversimplified): can variable x contain 

the address of variable y at program point p? 
• First abstraction: no arrays, no structs, no objects, 

no heap-allocated memory, no pointer arithmetic, 
no calls 

• Instructions of interest 
– x = &y 
– x = y 
– x = *y 
– *x = y 
– x = null 
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Basic Ideas 
• At each CFG node n, IN[n] is a set ⊆ Vars × Vars 

– That is, a set of pairs of variables (x,y) 
– Alternative formulation: map Vars → PowerSet(Vars) 

• For each variable x, its points-to set Pt(x) 

• If for some path from ENTRY to n the value of x is 
the address of y (when n is reached), then (x,y) 
must be an element of IN[n] 
– Often defined as “points-to graph”: an edge x → y 

shows that x may point to y 

• Similarly defined OUT[n]  
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Formulation as a System of Equations 
• OUT[ENTRY] = empty set 
• For any other CFG node n  

– IN[n] = Merge(OUT[m]) for all predecessors m of n 
– OUT[n] = Update(IN[n]) 

• Merging two points-to graphs: just the union of 
their edge sets 

1. if (…) goto (4)  
2. x = &a OUT[2] = { (x,a) }  
3. goto (5) 
4. x = &b OUT[4] = { (x,b) } 
5. z = x  IN[5] = { (x,a), (x,b) }; OUT[5] = { (z,a), (z,b), (x,a), (x,b) } 
6. w = &c OUT[6] = { (z,a), (z,b), (x,a), (x,b), (w,c) }  
7. *z = w OUT[7] = { (z,a), (z,b), (x,a), (x,b), (w,c), (a,c), (b,c) } 
8. v = *x OUT[8] = { (z,a), (z,b), (x,a), (x,b), (w,c), (a,c), (b,c), (v,c) }   
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Formulation as a System of Equations 
• Updating at an assignment v = … or *v = …  
• x = null: OUT[n] = IN[n] – {x}×Vars  
• x = &y: OUT[n] = (IN[n] – {x}×Vars) ∪ { (x,y) }  
• x = y: OUT[n] = (IN[n] – {x}×Vars) ∪ { (x,z) | (y,z)∈ 

IN[n]}  
• x = *y: OUT[n] = (IN[n] – {x}×Vars) ∪ { (x,z) | (y,w)∈ 

IN[n] ∧ (w,z) ∈ IN[n] } 
• *x = y: OUT[n] = (IN[n] – nothing) ∪ { (w,z) | 

(x,w)∈ IN[n] ∧ (y,z) ∈ IN[n] } 
– Why not kill (w,…)? In general, we cannot assert that x 

definitely points to w, even if (x,w)∈ IN[n]; more later … 
 

43 



How About Real Programs? 
• x = malloc(…) or x = new X(…): artificial name 

heapi : OUT[n] = (IN[n] – {x}×Vars) ∪ { (x,heapi) }  

• a[x] = y: treat array a as one uniform block of data 
OUT[n] = IN[n] ∪ { (a,z) | (y,z)∈ IN[n] } 

• x = a[y]: OUT[n] = (IN[n] – {x}×Vars)∪{ (x,y)|(a,y)∈ IN[n] } 

• Fields of structs/objects: labels on points-to edges 
struct S { int* f1; float* f2; }; 
struct S* x = malloc(sizeof(struct S));  (x,heap1) 
(*x).f1 = &a; (*x).f2 = &b;   (heap1,f1,a) (heap1,f2,b) 
y = (*x).f1;     (y, a) 

• Many complications: e.g., pointer arithmetic 
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Approximations 
• Flow-insensitive analysis: ignore the flow of 

control and compute one points-to graph for the 
entire program (rather than a separate points-to 
graph for each CFG node) 

• Field-insensitive: do not distinguish between fields 
(*x).f1 = &a; (*x).f2 = &b; y = (*x).f1; treated as *x = &a; *x = &b; y = *x;  
(heap1,f1,a) (heap1,f2,b), (y,a) becomes (heap1,a) (heap1,b), (y,a), (y,b)  

• Base-object-insensitive: treat (*x).f1 as f1  
Java: x = new A; y = new A; x.f = new C; y.f = new D; z = y.f should lead 
to (x,heap1), (y,heap2), (heap1,f,heap3), (heap2,f,heap4), (z,heap4) 
Instead, it is treated as x = new A; y = new A; f = new C; f = new D; z = f  
and leads to (x,heap1), (y,heap2), (f,heap3), (f,heap4), (z,heap3),(z,heap4)  
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Flow-Insensitive Points-to Analysis 
• A points-to graph could be O(n2) in size; a separate 

graph at each node is often too expensive 
• “Fake” CFG with arbitrary sequences of statements 

while …  
 switch ….  
  case 1: statement 1  
  case 2: statement 2 …. 

• Points-to graph at the merge point of the switch 
• Simplified functions without “kill” (more efficient):  
OUT[n] = (IN[n] – {x}×Vars) ∪ ... becomes 
OUT[n] = IN[n] ∪ … 
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Loss of Precision: FI, FS, and Beyond 
1. x = &a FS: OUT[1] = { (x,a) }  
2. y = &b FS: OUT[2] = { (x,a), (y,b) } 
3. z = &c FS: OUT[3] = { (x,a), (y,b), (z,c) } 
4. *x = y FS: OUT[4] = { (x,a), (y,b), (z,c), (a,b) } 
5. *a = …  dependence between these statements: 
6. … = c+1    FI: yes; FS: no 
7. *x = z FS: OUT[7] = { (x,a), (y,b), (z,c), (a,b), (a,c) } 
8. *a = …  dependence between these statements: 
9. … = b+2    FI and FS: yes (wrong!) 
FI solution: (x,a), (y,b), (z,c), (a,b), (a,c)  
Can we improve FS to eliminate (a,b) from OUT[7]? 
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FS with Strong Updates 
• Updating at an assignment v = … or *v = …  

– If the statement is not an assignment, OUT[n] = IN[n] 
• x = …: OUT[n] = (IN[n] – {x}×Vars) ∪ ...  
• *x = y: OUT[n] = (IN[n] – nothing) ∪ …  

– Why not kill (w,…) for when x points to w? In general, 
we cannot assert that x definitely points to w 

• But what if the points-to set of x is a singleton set? 
– E.g., in the previous example, Pt(x) = { a }: can we kill 

(a,…) at *x = y?   
– If we can, OUT[7] will become { (x,a), (y,b), (z,c), (a,c) } 

and the precision is improved 
• False dependence between 8 and 9 disappears 
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FS with Strong Updates 
• Proposal: at *x = y, if Pt(x) is a singleton set { w }, 

perform a strong update on w:  
– OUT[n] = (IN[n] – {w} ×Vars) ∪ …  

• Not so fast … remember that w is just a static 
abstraction of a set of run-time memory locations; 
this set itself must be a singleton set 

Example: recall field-insensitive analysis 
x = malloc; (*x).f1 = &a; (*x).f2 = &b; y = (*x).f1; treated as x = &heap1, 
*x = &a; *x = &b; y = *x;  
• FI without strong updates: at *x=&b, IN = { (x,heap1), (heap1,a)}, 

OUT = { (x,heap1),  (heap1,a), (heap1,b)} and later we get (y,a) , (y,b)  
• With strong updates: OUT = { (x,heap1),(heap1,b)} but (y,a) is lost! 
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“Dangerous” Strong Update 
Which points-to graph node may correspond to multiple memory 
locations (and should not be strongly updated)? 
• Array: one name for the entire array 
• Local variable of a recursive procedures 
• Dynamically allocated memory (even with field sensitivity) 
curr = null 
while (…) { 
1. prev = curr IN[1] = {(prev,heap1),(curr,heap1),(y,heap2),(heap1,fld,heap2)}   
2. curr = new X 
3. y = new Y 
4. curr.fld = y 
}           IN[5] = {(prev,heap1),(curr,heap1),(y,heap2),(heap1,fld,heap2)}  
5. prev.fld = new Z   OUT[5] = {(prev,heap1),(curr,heap1),(y,heap2),(heap1,fld,heap3)}   
6. … curr.fld.fld2 …       Dependence between these statements? Yes 
7. … y.fld2 …                  With strong updates: No, because heap3.fld2 ≠ heap2.fld2  
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Foundations of Dataflow Analysis 



Partial Order 
• Given a set S, a relation r between elements of S is 

a set r ⊆ S × S 
– Notation: if (x,y) ∈ r, write “x r y” 
– Example: “less than” relation over integers 

• A relation is a partial order if and only if 
– Reflexive: x r x  
– Anti-symmetric: x r y and y r x implies x = y 
– Transitive: x r y and y r z implies x r z  
– Example: “less than or equal to” over integers 
– By convention, the symbol used for a partial order is ≤ 

or something similar to it (e.g. )  
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Partially Ordered Set 
• Partially ordered set (S, ≤) is a set S with a defined 

partial order ≤ 
• Greatest element: x such that y ≤ x for all y ∈ S; 

often denoted by 1 or      (top) 
• Least element: x such that x ≤ y for all y ∈ S; often 

denoted by 0 or      (bottom) 
• It is not necessary to have 1 or 0 in a partially 

ordered set 
– e.g. S = { a, b, c, d } and only a ≤ b and c ≤ d  

• We can always add an artificial top or bottom to 
the set (if we need one) 
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Displaying Partially Ordered Sets 
• Represented by an undirected graph 

– Nodes = elements of S 
– If a ≤ b, a is shown below b in the picture 

• If a ≤ b, there is an edge (a,b) 
– But: transitive edges are typically not shown 

• Example: S = {0,a,b,c,1}  

0 ≤ a ≤ b ≤ 1 
0 ≤ c ≤ 1 
 

1 

0 
a 

c b 

Implicit  
transitive 

edges:  
0 ≤ b, 

0 ≤ 1, a ≤ 1 
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Meet 
• S – partially ordered set, a∈S, b∈S 
• A meet of a and b is c∈S such that  

– c ≤ a and c ≤ b 
– For any x: x ≤ a and x ≤ b implies x ≤ c  
– Also referred to as “the greatest lower bound of a 

and b” 
– Typically denoted by a Λ b  

a Λ b = a    a Λ 0 = 0 
a Λ c = 0    a Λ 1 = a 
b Λ c = 0    b Λ 1 = b 
b Λ 0 = 0    . . . .  

1 

0 
a 

c b 



56 

Join 
• A join of a and b is c∈S such that  

– a ≤ c and b ≤ c 
– For any x: a ≤ x and b ≤ x implies c ≤ x  
– Also referred to as “the least upper bound of a and b” 
– Typically denoted by a V b  

 

a V b = b    a V 0 = a 
a V c = 1    a V 1 = 1 
b V c = 1    b V 1 = 1 
b V 0 = b    . . . .  

1 

0 
a 

c b 
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Lattices 
• Any pair (a,b) has either zero or one meets 

– Why can’t there be two meets? 
– Similarly for joins 

 
 
 

• If every pair (a,b) has is a meet and a join, the set is 
a lattice with operators Λ and V  
– If only a meet operator is defined: a meet semilattice 

• Finite lattice: the underlying set is finite 
• Finite-height lattice: any chain x < y < z < …  is finite  

a b 

d c 
a Λ b does not exist 
“x ≤ a and x ≤ b implies x ≤ meet”: NO!  
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Cross-Product Lattice 
• Given a lattice ( L , ≤ ,  Λ , V )  
• Let Ln = L × L × … × L  (elements are n-tuples) 
• Partial order: (a1,…,an) ≤ (b1,…,bn) iff ai ≤ bi for all i 
• Meet: (a1,…,an) Λ (b1,…,bn) = (a1Λ b1,…,anΛ bn)  

– Same for join 
• Cross-product lattice: ( Ln , ≤ ,  Λ , V )  
• If L has a bottom element 0, Ln has a bottom 

element (0,…,0) 
• If L has a top element 1, Ln has a top element 

(1,…,1) 
• If L has finite height, so does Ln  
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So What? 
• All of this is basic discrete math. What does it have 

to do with compile-time code analysis and code 
optimizations? 

• For many analysis problems, program properties 
can be conveniently encoded as lattice elements 

• If a ≤ b, in some sense the property encoded by a is 
weaker (or stronger) than the one encoded by b 
– Exactly what “weaker”/“stronger” means depends on 

the problem 
• We usually care only about “going in one direction” 

(down) in the lattice, so typically it is enough to 
have a meet semilattice 
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The Most Basic Lattice 
• Many dataflow analyses use a lattice L that is the 

power set P(X) of some set X 
– P(X) is the set of all subsets of X 
– A lattice element is a subset of X 
– Partial order ≤ is the ⊇ relation 
– Meet is set union ∪; join is set intersection ∩ 
– 0 = X; 1 = ∅  

{ } 

{a} {b} {c} 

{a,b} {b,c} {a,c} 

{a,b,c} 
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Reaching Definitions and Live Variables 
• Let D be the set of all definitions in the CFG 
• Reaching definitions: the lattice L is P(D)  

– The solution for every CFG node is a lattice element 
• IN[n] ∈ P(D) is the set of definitions reaching n 

– The complete solution is a map Nodes → L 
• Actually, an element of the cross-product lattice    

L|Nodes|;  basically, an n-tuple 
• Let V be the set of all variables that are read 

anywhere in the CFG 
• Live variables: the lattice L is P(V)  

– The solution for every CFG node is a lattice element 
• OUT[n] ∈ P(V) is the set of variables live at n 

– The complete solution is a map Nodes → L 
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The Role of Meet 
• The partial order encodes some notion of 

strength for properties 
– if x ≤ y, then x is “less precise” than y  

• Reaching Definitions: x ≤ y iff x ⊇ y 
– x tells us that more things are possible, so x is less 

precise than y 
– Extreme case: if x = 0 = D, this tells us that any 

definition may reach 
• x Λ y is less precise than x and y 

– greatest lower bound is the most precise lattice 
element that “describes” both x and y 

– E.g., the union of two sets of reaching definitions is 
the smallest (most precise) way to describe both 
• Any superset of the union has redundancy in it 
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The Role of Meet (cont’d) 
• Recall the Constant Propagation problem 

– At each CFG node n, IN[n] is a map Vars → Values 
– Values = all possible constant values ∪ { nac , undef }  
– Values is an infinite lattice with finite height 

• nac ≤ any constant value ≤ undef 
• two different constant values are not comparable 

• Meet operation in Values: 
– If c1 = undef, the result is c2 
– Else if c2 = undef, the result is c1 
– Else if c1 = nac or c2 = nac, the result it nac 
– Else if c1 ≠ c2, the result is nac 
– Else the result is c1 (in this case we know that c1 = c2) 

• Problem lattice L: cross-product Values|Vars| 
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Transfer Functions 
• A dataflow analysis defines a meet semilattice L 

that encodes some program properties 
• It also has to define the effects of program 

statements on these properties 
– A transfer function fn: L → L is associated with each 

CFG node n 
– For forward problems: if the properties before the 

execution of n were encoded by x∈L, the properties 
after the execution of n are encoded by fn(x) 

• Reaching Definitions 
– fn(x) = (x ∩ PRES[n]) ∪ GEN[n] 
– Expressed with meet and join: f(x) = (x V a) Λ b 
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Function Space and Dataflow Framework 
• Given: meet semilattice (L,≤,Λ,1) with finite height 

– This is what we typically want as the part of the 
definition of the dataflow analysis 

• A monotone functions space for L is a set F of 
functions f : L → L such that 
– Each f is monotone: x ≤ y implies f(x) ≤ f(y) 

• This is equivalent to f(x Λ y) ≤ f(x) Λ f(y) 
– F contains the identity function 
– F is closed under composition and meet: f °g and f Λ g 

are in F [Note: (f °g)(x) = f(g(x)) and (fΛg)(x) = f(x)Λg(x)] 
• Dataflow framework: (L,F) 

– Forward or backward; we will consider only forward 
– Framework instance (G,M): G=(N,E) is a CFG; M: NF 

associates a transfer function f∈F with each node n∈N 



Intraprocedural Dataflow Analysis 
• Given: an intraprocedural CFG, a lattice L, and 

transfer functions 
– Plus a lattice element η ∈ L that describes the 

properties that hold at the entry node of the CFG 
• The effects of one particular CFG path 

p=(n0,n1,…,nk) are 
 
 
– i.e., fp(η), where fp is the composition of the transfer 

functions for nodes in the path 
–  n0  is the entry node of the CFG 
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Intraprocedural Dataflow Analysis 
• Analysis goal: for each CFG node n, compute a 

meet-over-all-paths solution 
 

 

– Paths(n0,n) the set of all paths from the entry node 
to n (the paths do not include n) 

• This solution “summarizes” all properties that 
could hold immediately before n 
– Many execution paths: “meet” ensures that we get 

the greatest lower bound of their effects 
• E.g., the smallest set of reachable definitions 
 

MOP(n) = ∧    fp(η) 
p∈Paths(n0,n) 
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The MOP Solution 
• The MOP solution encodes everything that could 

potentially happen at run time 
– e.g., for Reaching Definitions: if there exists a run-time 

execution in which variable x is assigned at m and read 
at n, set MOP(n) is guaranteed to contain the definition 
of x at m 

• Problems for computing MOP(n):  
– Potentially infinite # paths due to loops 
– Even if there is a finite number of paths, there are too 

many of them: too expensive to compute MOP(n) by 
considering each path separately 

• Finding the MOP solution is undecidable for 
general monotone dataflow frameworks 
– Or even just for the constant propagation problem 
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Approximating the MOP Solution 
• A compromise: compute an approximation of the 

MOP solution 
• A correct approximation: S(n) ≤ MOP(n) 

– Recall that ≤ means “less precise” 
– e.g., for Reaching Definitions IN[n] ⊇ MOP(n) 
– “safe solution” = “correct solution” 

• A precise approximation: S(n) should be as close to 
MOP(n) as possible 
– In the best case, S(n)=MOP(n) 
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Standard Approximation Algorithm 
• Idea: define a system of equations and then 

solve it with fixed-point computation 
 
 
 

• This system has the form S = F(S) 
– S: Nodes → L is map from CFG nodes to lattice 

elements (S is in the cross-product lattice L|Nodes|) 
– F: (Nodes → L) → (Nodes → L) is a function that 

computes the new solution from the old one, based 
on the node-level transfer functions fn 

S(n) = ∧            fm(S(m)) 
m∈Pred(n) 
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Computing a Fixed Point 
• Discrete math: if f is a function, a fixed point of f 

is a value x such that x = f(x) 
– We want to compute a fixed point of F 
– Standard algorithm (fixed-point computation) 

 
 S := [1,1,…,1]  

change := true 
while (change)  
   old_S := S;  
   S := F(S) 
   if (S ≠ old_S) change := true  
   else             change := false 

at exit  
S=old_S,  
so S=F(S) 
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Does This Really Work? 
• Does not necessarily terminate 
• Common case: finite-height lattice + monotone 

function space (as described earlier) 
• In this case, the algorithm provably terminates 

with the greatest (maximum) fixed point MFP 
– Note: be careful with the difference between maximal 

(no one is > x) and maximum (x > everyone) 
• MFP is a safe approximation of the MOP solution: 

MFP(n) ≤ MOP(n) 
– For some categories of problems, the computed 

solution is the same as the MOP solution 
• e.g., for Reaching Definitions, but not for Constant 

Propagation 
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Outline of Proofs 
• Termination with a fixed point 
• monotonicity: 1n ≥ F(1n) ≥ F2(1n) ≥ F3(1n) ≥ …   
• Finite height for L implies finite height for Ln, which 

gives us termination with Fm(1n) = Fm+1(1n)  
– Fm(1n) is a fixed point of F, and a solution to the system  

• Is it the greatest (maximum) fixed point?  
– For any other fixed point S: 1n ≥ S, F(1n) ≥ F(S) = S, …  

• By induction on j, Fj(1n) ≥ S  
• Why is MOP ≥ MFP? 

– For each CFG path p=(n0,n1,…,nk), fp(η) ≥ MFP for any 
successor of nk 

– Proof by induction on the length of paths 
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Distributive Frameworks 
• Each f is monotone: x ≤ y implies f(x) ≤ f(y) 

– This is equivalent to f(x Λ y) ≤ f(x) Λ f(y) 
• Distributive: f(x Λ y) = f(x) Λ f(y) 

– Each distributive function is also monotone 
– Examples: Reaching Defs, Live Variables, Available 

Expressions, Very Busy Expressions, Copy Propagation 
• In this case, MFP = MOP 

– Proof outline: Since we already know that MOP ≥ MFP, 
enough to show that MFP ≥ MOP 

– Show by induction on j that Fj(1n) ≥ MOP 
– Enough to show that F(MOP) = MOP: that is, MOP(n) = 

meet of fm(MOP(m)) over all predecessors m of n 
– By definition, MOP(m) is a meet over all paths leading 

to m; fm(meet of paths) = meet(fm(path))  
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An Approximation: Flow-Insensitive Analysis 
• Some problems are too complex/expensive to 

compute a solution specific to each CFG node 
– Typical example: pointer analysis (more later) 

• Approximation: “pretend” that statements can 
execute in any order 
– Not only in the order defined by CFG paths 

• Completely ignore all CFG edges – just consider the 
transfer functions at nodes 
– For technical reasons, make the functions “non-kill”: 

f(x) ≤ x [e.g. as if KILL set was empty for Reaching Defs] 
• Single solution (lattice element) for the entire CFG 
• Naïve algo: start from 1 and apply the transfer 

functions in arbitrary order; get to a fixed point 
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