
Control-Flow Analysis

“Dragon book” [Ch. 8, Section 8.4; Ch. 9, Section 9.6]
Compilers: Principles, Techniques, and Tools, 2nd ed. by

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jerey D. Ullman
on reserve in 18th Ave Library (ask for CSE 5343 textbook)

URL from the course web page [copyrighted material, please do not link to it or

distribute it]

Control-Flow Graphs
• Control-flow graph (CFG) for a procedure/method

– A node is a basic block: a single-entry-single-exit
sequence of three-address instructions

– An edge represents the potential flow of control from
one basic block to another

• Uses of a control-flow graph
– Inside a basic block: local code optimizations; done as

part of the code generation phase
– Across basic blocks: global code optimizations; done as

part of the code optimization phase
– Aspects of code generation: e.g., global register

allocation
2

Control-Flow Analysis
• Part 1: Constructing a CFG
• Part 2: Finding dominators and post-dominators
• Part 3: Finding loops in a CFG

– What exactly is a loop?We cannot simply say “whatever
CFG subgraph is generated by while, do-while, and for
statements” – need a general graph-theoretic definition

• Part 4: Static single assignment form (SSA)
• Part 5: Finding control dependences

– Necessary as part of constructing the program
dependence graph (PDG), a popular IR for software
tools for slicing, refactoring, testing, and debugging

3

Part 1: Constructing a CFG
• Basic block: maximal sequence of consecutive

three-address instructions such that
– The flow of control can enter only through the first

instruction (i.e., no jumps into the middle of the block)
– The flow of control can exit only at the last instruction

• Given: the entire sequence of instructions
• First, find the leaders (starting instructions of all

basic blocks)
– The first instruction
– The target of any conditional/unconditional jump
– Any instruction that immediately follows a conditional

or unconditional jump
4

Constructing a CFG
• Next, find the basic blocks: for each leader, its

basic block contains itself and all instructions up to
(but not including) the next leader

1. i = 1
2. j = 1
3. t1 = 10 * i
4. t2 = t1 + j
5. t3 = 8 * t2
6. t4 = t3 – 88
7. a[t4] = 0.0
8. j = j + 1
9. if (j <= 10) goto (3)
10. i = i + 1
11. if (i <= 10) goto (2)
12. i = 1
13. t5 = i – 1
14. t6 = 88 * t5
15. a[t6] = 1.0
16. i = i + 1
17. if (i <= 10) goto (13) 5

Note: this example sets array
elements a[i][j] to 0.0, for 1 <= i,j <= 10
(instructions 1-11). It then sets a[i][i]
to 1.0, for 1 <= i <= 10 (instructions 12-
17). The array accesses in instructions
7 and 15 are done with offsets
computed as described in Section
6.4.3, assuming row-major order, 8-
byte array elements, and array
indexing that starts from 1, not from 0.

First instruction
Target of 11
Target of 9

Follows 9

Follows 11
Target of 17

ENTRY

i = 1

j = 1

t1 = 10 * i
t2 = t1 + j
t3 = 8 * t2
t4 = t3 – 88
a[t4] = 0.0
j = j + 1
if (j <= 10) goto B3

i = i + 1
if (i <= 10) goto B2

i = 1

t5 = i – 1
t6 = 88 * t5
a[t6] = 1.0
i = i + 1
if (i <= 10) goto B6

EXIT

B1

B2

B3

B4

B5

B6

Artificial ENTRY and EXIT nodes are often
added for convenience.

There is an edge from Bp to Bq if it is possible
for the first instruction of Bq to be executed
immediately after the last instruction of Bp .
This is conservative: e.g., if (3.14 > 2.78) still
generates two edges.

Practical Considerations
• The usual data structures for graphs can be used

– The graphs are sparse (i.e., have relatively few edges),
so an adjacency list representation is the usual choice
• Number of edges is at most 2 * number of nodes

• Nodes are basic blocks; edges are between basic
blocks, not between instructions
– Inside each node, some additional data structures for

the sequence of instructions in the block (e.g., a linked
list of instructions)

– Often convenient to maintain both a list of successors
(i.e., outgoing edges) and a list of predecessors (i.e.,
incoming edges) for each basic block

7

Part 2: Dominance
• A CFG node d dominates another node n if every

path from ENTRY to n goes through d
– Implicit assumption: every node is reachable from

ENTRY (i.e., there is no dead code)
– A dominance relation dom ⊆ Nodes × Nodes: d dom n
– The relation is trivially reflexive: d dom d

• Node m is the immediate dominator of n if
– m ≠ n
– m dom n
– For any d ≠ n such d dom n, we have d dom m

• Every node has a unique immediate dominator
– Except ENTRY, which is dominated only by itself

8

ENTRY

1

2

3

4

5 6

7

8

9 10

ENTRY dom n for any n
1 dom n for any n except ENTRY
2 does not dominate any other node
3 dom 3, 4, 5, 6, 7, 8, 9, 10, EXIT
4 dom 4, 5, 6, 7, 8, 9, 10, EXIT
5 does not dominate any other node
6 does not dominate any other node
7 dom 7, 8, 9, 10, EXIT
8 dom 8, 9, 10, EXIT
9 does not dominate any other node
10 dom 10, EXIT

Immediate dominators:
1 → ENTRY 2 → 1
3 → 1 4 → 3
5 → 4 6 → 4
7 → 4 8 → 7
9 → 8 10 → 8
 EXIT → 10

EXIT 9

A Few Observations
• Dominance is a transitive relation: a dom b and

b dom c means a dom c
• Dominance is an anti-symmetric relation: a dom b

and b dom a means that a and b must be the same
– Reflexive, anti-symmetric, transitive: partial order

• If a and b are two dominators of some n, either a
dom b or b dom a
– Therefore, dom is a total order for n’s dominator set
– Corollary: for any acyclic path from ENTRY to n, all

dominators of n appear along the path, always in the
same order; the last one is the immediate dominator

 10

Dominator Tree
• The parent of n is its immediate dominator

11

ENTRY

1

2 3

4

5 6 7

8

9 10

The path from n to the root contains
all and only dominators of n

Constructing the dominator tree: the
classic O(Nα(N)) approach is from
T. Lengauer and R. E. Tarjan. A fast
algorithm for finding dominators in a
flowgraph. ACM Transactions on
Programming Languages and
Systems, 1(1): 121–141, July 1979.

Many other algorithms: e.g., see
K. D. Cooper, T. J. Harvey and K.
Kennedy. A simple, fast dominance
algorithm. Software – Practice and
Experience, 4:1–10, 2001.

Post-Dominance
• A CFG node d post-dominates another node n if

every path from n to EXIT goes through d
– Implicit assumption: EXIT is reachable from every node
– A relation pdom ⊆ Nodes × Nodes: d pdom n
– The relation is trivially reflexive: d pdom d

• Node m is the immediate post-dominator of n if
– m ≠ n; m pdom n; ∀d≠ n. d pdom n ⇒ d pdom m
– Every n has a unique immediate post-dominator

• Post-dominance on a CFG is equivalent to
dominance on the reverse CFG (all edges reversed)

• Post-dominator tree: the parent of n is its
immediate post-dominator; root is EXIT

12

ENTRY

1

2

3

4

5 6

7

8

9 10

ENTRY does not post-dominate any other n
1 pdom ENTRY, 1, 9
2 does not post-dominate any other n
3 pdom ENTRY, 1, 2, 3, 9
4 pdom ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT pdom n for any n

Immediate post-dominators:
ENTRY → 1 1 → 3
2 → 3 3 → 4
4 → 7 5 → 7
6 → 7 7 → 8
8 → 10 9 → 1
10 → EXIT EXIT 13

Post-Dominator Tree

14

EXIT

10

8

7

4 5 6

1

The path from n to the root
contains all and only post-
dominators of n

Constructing the post-
dominator tree: use any
algorithm for constructing
the dominator tree; just
“pretend” that the edges are
reversed 3

2

ENTRY 9

Computing the Dominator Tree
• Theoretically superior algorithms are not

necessarily the most desirable in practice
• Our choice: Cooper et al., 2001
• Formulation and algorithm based on insights from

dataflow analysis
– Essentially, solving a system of mutually-recursive

equations – more later …
• You should read the paper carefully and implement

the algorithm for computing the dominator tree

15

Details on the Algorithm

16

• Given: CFG G=(N,E,n0), compute DOM(n) for each n
– All nodes dominating n, including n itself

• Assumption: all nodes are reachable from n0
– Issue: unreachable code in catch(Exception e) …

• Visit the nodes in reverse postorder
– Recall depth-first search: it grows a DFS spanning tree

• Postorder in this DSF spanning tree
• During DSF, whenever a node becomes “black” (p. 604

of CLRS-3), it is postorder-visited
– Do DFS from ENTRY, put the nodes on a list (e.g., ArrayList in

Java) in the reverse of this order

Details on the Algorithm

17

Details on the Algorithm

18

Note: DOM(ENTRY) = { ENTRY } and this node is never processed by
the algorithm (so, it should be “for all nodes other than ENTRY ….”)

Details on the Algorithm
• (Re-)compute DOM(n) as the intersection of

DOM(m) for all predecessor nodes m, union { n }
– If any DOM set changes, recompute everything

• Reverse postorder guarantees efficient algorithm
– d(G)+2 iterations of the while(Changed) loop; d(G) =

max number “retreating” edges on any acyclic path
• Problem: representation and intersection of sets

are expensive, in terms of time and memory
– Also, we do not find the immediate dominators

• Solution: careful algorithm design (Fig 3 in the paper)
– You will implement this algorithm in a project

 19

Part 3: Loops in CFGs
• Cycle: sequence of edges that starts and ends at

the same node
– Example:

• Strongly-connected component (SCC): a maximal
set of nodes such as each node in the set is
reachable from every other node in the set
– Example:

• Loop: informally, a strongly-connected component

with a single entry point
– An SCC that is not a loop:

20

2 3 4 5 1

2
3

5 6 1
4

1

2

3

Back Edges and Natural Loops
• Back edge: a CFG edge (n,h) where h dominates n

– Easy to see that n and h belong to the same SCC
• Natural loop for a back edge (n,h)

– The set of all nodes m that can reach node n without
going through node h (trivially, this set includes h)

– Easy to see that h dominates all such nodes m
– Node h is the header of the natural loop

• Trivial algorithm to find the natural loop of (n,h)
– Mark h as visited
– Perform depth-first search (or breadth-first) starting

from n, but follow the CFG edges in reverse direction
– All and only visited nodes are in the natural loop

21

ENTRY

1

2

3

4

5 6

7

8

9 10

Immediate dominators:
1 → ENTRY 2 → 1 3 → 1
4 → 3 5 → 4 6 → 4
7 → 4 8 → 7 9 → 8
10 → 8 EXIT → 10

Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1,
10 → 7

Loop(10 → 7) = { 7, 8, 10 }

Loop(7 → 4) = { 4, 5, 6, 7, 8, 10 }
 Note: Loop(10 → 7) ⊆ Loop(7 → 4)

Loop(4 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
 Note: Loop(7 → 4) ⊆ Loop(4 → 3)

Loop(8 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
 Note: Loop(8 → 3) = Loop(4 → 3)

Loop(9 → 1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
 Note: Loop(4 → 3) ⊆ Loop(9 → 1) EXIT 22

Loops in the CFG
• Find all back edges; each target h of at least one

back edge defines a loop L with header(L) = h
• body(L) is the union of the natural loops of all back

edges whose target is header(L)
– Note that header(L) ∈ body(L)

• Example: this is a single
loop with header node 1

• For two CFG loops L1 and L2
– header(L1) is different from header(L2)
– body(L1) and body(L2) are either disjoint, or one is a

proper subset of the other (nesting – inner/outer)
23

2
3

1
4

Graph Algorithms
• DFS again (p. 604 of CLRS-3)

– Set each node’s color as white
– Call DFS(ENTRY)
– DFS(n)

• Set the color of n to grey
• For each successor m: if color is white, call DFS(m)
• Set the color of n to black

• Inside DFS(n), seeing a grey successor m means
that (n,m) is a retreating edge
– Note: m could be n itself, if there is an edge (n,n)

• The order in which we consider the successors
matters: the set of retreating edges depends on it

24

Reducible Control-Flow Graphs
• For reducible CFGs, the retreating edges

discovered during DFS are all and only back edges
– The order during DFS traversal is irrelevant: all DFS

traversals produce the same set of retreating edges
• For irreducible CFGs: a DFS traversal may produce

retreating edges that are not back edges
– Each traversal may produce different retreating edges
– Example:

• No back edges
• One traversal produces the retreating edge 3 → 2
• The other one produces the retreating edge 2 → 3

25

1

2

3

Reducibility
• A number of equivalent definitions

– One of them we already saw
• The graph can be reduced to a single node with the

application of the following two rules
– Given a node n with a single predecessor m, merge n

into m; all successors of n become successors of m
– Remove an edge n n

• Try this on the graphs from the previous slides

26

Reducibility
• The essence of irreducibility: a SCC with multiple

possible entry points
– If the original program was written using if-then, if-

then-else, while-do, do-while, break, and continue,
the resulting CFG is always reducible

– If goto was used by the programmer, the CFG could be
irreducible (but, in practice, it typically is reducible)

• Optimizations of the intermediate code, done by
the compiler, could introduce irreducibility

• Code obfuscation: e.g., Java bytecode can be
transformed to be irreducible, making it impossible
to reverse-engineer a valid Java source program

27

Part 4: Static Single Assignment (SSA) Form
• Source: Cytron et al., ACM TOPLAS, Oct. 1991

– Section 1 (ignore Section 1.1)
– Section 2
– Section 3 (ignore Section 3.1)
– Section 4 (ignore the detailed proofs in Section 4.3)

• Key ideas
– Insert φ-functions at join points (Sections 3 and 4)

• Based on dominance frontiers
– Rename the variables so that each use (read) of a

variable is reached by exactly one definition (write) of
that variable – i.e., by a single assignment
• Section 5.2 discusses this issue, but we will not

28

Examples

29

30

Placement of φ Functions
• φ functions are used in “fake” assignments of the

form Vk ← φ(Vi,Vj)
– Along one edge, variable V has the value of Vi; along

the other, the value of Vj
– If multiple incoming edges: φ(Vi,Vj,…, Vm)

• Naïve: for each V, check each pair of assignments
to V; do they reach a common join point?

• Better: for each V, consider each assignment to V
and find its dominance frontier; place φ for V
– And then find the dominance frontier of each φ, and

place φ there as well, and so on …
31

Dominance Frontier (DF)
• Suppose node x is an assignment to V
• DF(x) = { y | for some edge z → y, x dominates z

but x does not strictly dominate y }
• A few observations

– y must be a join point. Why?
– If the flow of control reaches y from z, the value of V is

either the one assigned at x, or at some node
“between” x and z

– If the flow of control reaches y from some other
predecessor (not z), the value of V may come from a
different assignment to V

• DF algorithm: Sec 5; alternative: Cooper et al. 2001 32

Part 5: Control Dependence: Informally
• A node n is control dependent on a node c if

– There exists an edge e1 coming out of c that definitely
causes n to execute

– There exists some edge e2 coming out of c that is the
start of some path that avoids the execution of n

• The decision made at c affects whether n gets
executed: if e1 is followed, n definitely is executed;
if e2 is followed, there is the possibility that n is not
executed at all
– Thus, n is control dependent on c – the control-flow

leading to n depends on what c does

33

Control Dependence: Formally
• (part 1) n is control dependent on c if

– n ≠ c
– n does not post-dominate c
– there exists a path from c to n such that n post-

dominates every node on the path except c
• (part 2) n is control dependent on n if

– there exists a path from n to n (with at least one edge)
such that n post-dominates every node on the path
• this implies that n has two outgoing edges
• this case applies to the header of a loop

• See Cytron et al., 1991, Section 6 for more details
– c belongs to DF(n) but computed on the reverse CFG
 34

ENTRY

1

2

3

4

5 6

7

8

9 10

Consider all branch nodes c: 1, 4, 7, 8, 10

ENTRY does not post-dominate any other n
1 pdom ENTRY, 1, 9
2 does not post-dominate any other n
3 pdom ENTRY, 1, 2, 3, 9
4 pdom ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT pdom n for any n

2 is control dependent on 1
3, 4, 5, 6 are control dependent on 4
4, 7 are control dependent on 7
9, 1, 3, 4, 7, 8 are control dependent on 8
7, 8, 10 are control dependent on 10

EXIT 35

Finding All Control Dependences
• Consider all CFG edges (c,x) such that x does not

post-dominate c (therefore, c is a branch node)
• Traverse the post-dominator tree bottom-up

– n = x
– while (n != parent of c in the post-dominator tree)

• report that n is control dependent on c
• n = parent of n in the post-dominator tree

– Example: for CFG edge (8,9) from the previous slide,
traverse and report 9, 1, 3, 4, 7, 8 (stop before 10)

• Other algorithms exist, but this one is simple and
works quite well

36

	Control-Flow Analysis
	Control-Flow Graphs
	Control-Flow Analysis
	Part 1: Constructing a CFG
	Constructing a CFG
	Slide Number 6
	Practical Considerations
	Part 2: Dominance
	Slide Number 9
	A Few Observations
	Dominator Tree
	Post-Dominance
	Slide Number 13
	Post-Dominator Tree
	Computing the Dominator Tree
	Details on the Algorithm
	Details on the Algorithm
	Details on the Algorithm
	Details on the Algorithm
	Part 3: Loops in CFGs
	Back Edges and Natural Loops
	Slide Number 22
	Loops in the CFG
	Graph Algorithms
	Reducible Control-Flow Graphs
	Reducibility
	Reducibility
	Part 4: Static Single Assignment (SSA) Form
	Examples
	Slide Number 30
	Placement of Functions
	Dominance Frontier (DF)
	Part 5: Control Dependence: Informally
	Control Dependence: Formally
	Slide Number 35
	Finding All Control Dependences

