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Control-Flow Graphs 
• Control-flow graph (CFG) for a procedure/method 

– A node is a basic block: a single-entry-single-exit 
sequence of three-address instructions 

– An edge represents the potential flow of control from 
one basic block to another 

• Uses of a control-flow graph 
– Inside a basic block: local code optimizations; done as 

part of the code generation phase 
– Across basic blocks: global code optimizations; done as 

part of the code optimization phase 
– Aspects of code generation: e.g., global register 

allocation 
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Control-Flow Analysis 
• Part 1: Constructing a CFG 
• Part 2: Finding dominators and post-dominators 
• Part 3: Finding loops in a CFG 

– What exactly is a loop?We cannot simply say “whatever 
CFG subgraph is generated by while, do-while, and for 
statements” – need a general graph-theoretic definition 

• Part 4: Static single assignment form (SSA) 
• Part 5: Finding control dependences 

– Necessary as part of constructing the program 
dependence graph (PDG), a popular IR for software 
tools for slicing, refactoring, testing, and debugging  
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Part 1: Constructing a CFG 
• Basic block: maximal sequence of consecutive 

three-address instructions such that 
– The flow of control can enter only through the first 

instruction (i.e., no jumps into the middle of the block) 
– The flow of control can exit only at the last instruction 

• Given: the entire sequence of instructions 
• First, find the leaders (starting instructions of all 

basic blocks) 
– The first instruction 
– The target of any conditional/unconditional jump 
– Any instruction that immediately follows a conditional 

or unconditional jump 
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Constructing a CFG 
• Next, find the basic blocks: for each leader, its 

basic block contains itself and all instructions up to 
(but not including) the next leader 

1. i = 1 
2. j = 1 
3. t1 = 10 * i 
4. t2 = t1 + j 
5. t3 = 8 * t2 
6. t4 = t3 – 88 
7. a[t4] = 0.0 
8. j = j + 1 
9. if (j <= 10) goto (3) 
10. i = i + 1 
11. if (i <= 10) goto (2) 
12. i = 1 
13. t5 = i – 1 
14. t6 = 88 * t5 
15. a[t6] = 1.0 
16. i = i + 1 
17. if (i <= 10) goto (13) 5 

Note: this example sets array 
elements a[i][j] to 0.0, for 1 <= i,j <= 10 
(instructions 1-11). It then sets a[i][i] 
to 1.0, for 1 <= i <= 10 (instructions 12-
17). The array accesses in instructions 
7 and 15 are done with offsets 
computed as described in Section 
6.4.3, assuming row-major order, 8-
byte array elements, and array 
indexing that starts from 1, not from 0.  

First instruction 
Target of 11 
Target of 9 

Follows 9 

Follows 11 
Target of 17 



ENTRY 

i = 1 

j = 1 

t1 = 10 * i 
t2 = t1 + j 
t3 = 8 * t2 
t4 = t3 – 88 
a[t4] = 0.0 
j = j + 1 
if (j <= 10) goto B3 

i = i + 1 
if (i <= 10) goto B2  

i = 1 

t5 = i – 1 
t6 = 88 * t5 
a[t6] = 1.0 
i = i + 1 
if (i <= 10) goto B6  

EXIT 

B1 

B2 

B3 

B4 

B5 

B6 

Artificial ENTRY and EXIT nodes are often 
added for convenience.  
 
There is an edge from Bp to Bq if it is possible 
for the first instruction of Bq to be executed 
immediately after the last instruction of Bp . 
This is conservative: e.g., if (3.14 > 2.78) still 
generates two edges.  



Practical Considerations 
• The usual data structures for graphs can be used 

– The graphs are sparse (i.e., have relatively few edges), 
so an adjacency list representation is the usual choice 
• Number of edges is at most 2 * number of nodes 

• Nodes are basic blocks; edges are between basic 
blocks, not between instructions 
– Inside each node, some additional data structures for 

the sequence of instructions in the block (e.g., a linked 
list of instructions) 

– Often convenient to maintain both a list of successors 
(i.e., outgoing edges) and a list of predecessors (i.e., 
incoming edges) for each basic block 
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Part 2: Dominance 
• A CFG node d dominates another node n if every 

path from ENTRY to n goes through d 
– Implicit assumption: every node is reachable from 

ENTRY (i.e., there is no dead code) 
– A dominance relation dom ⊆ Nodes × Nodes: d dom n 
– The relation is trivially reflexive: d dom d 

• Node m is the immediate dominator of n if  
– m ≠ n  
– m dom n 
– For any d ≠ n such d dom n, we have d dom m 

• Every node has a unique immediate dominator 
– Except ENTRY, which is dominated only by itself 
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ENTRY 

1 

2 

3 

4 

5 6 

7 

8 

9 10 

 

ENTRY dom n for any n 
1 dom n for any n except ENTRY 
2 does not dominate any other node 
3 dom 3, 4, 5, 6, 7, 8, 9, 10, EXIT 
4 dom 4, 5, 6, 7, 8, 9, 10, EXIT 
5 does not dominate any other node 
6 does not dominate any other node 
7 dom 7, 8, 9, 10, EXIT 
8 dom 8, 9, 10, EXIT 
9 does not dominate any other node 
10 dom 10, EXIT  
 
Immediate dominators:  
1 → ENTRY 2 → 1  
3 → 1  4 → 3   
5 → 4  6 → 4  
7 → 4  8 → 7 
9 → 8  10 → 8 
  EXIT → 10  

EXIT 9 



A Few Observations 
• Dominance is a transitive relation: a dom b and      

b dom c means a dom c 
• Dominance is an anti-symmetric relation: a dom b 

and b dom a means that a and b must be the same 
– Reflexive, anti-symmetric, transitive: partial order 

• If a and b are two dominators of some n, either a 
dom b or b dom a 
– Therefore, dom is a total order for n’s dominator set 
– Corollary: for any acyclic path from ENTRY to n, all 

dominators of n appear along the path, always in the 
same order; the last one is the immediate dominator  

 10 



Dominator Tree 
• The parent of n is its immediate dominator 
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ENTRY 

1 

2 3 

4 

5 6 7 

8 

9 10 

The path from n to the root contains 
all and only dominators of n  
 

Constructing the dominator tree: the 
classic O(Nα(N)) approach is from 
T. Lengauer and R. E. Tarjan. A fast 
algorithm for finding dominators in a 
flowgraph. ACM Transactions on 
Programming Languages and 
Systems, 1(1): 121–141, July 1979. 
 

Many other algorithms: e.g., see 
K. D. Cooper, T. J. Harvey and K. 
Kennedy. A simple, fast dominance 
algorithm. Software – Practice and 
Experience, 4:1–10, 2001. 



Post-Dominance 
• A CFG node d post-dominates another node n if 

every path from n to EXIT goes through d 
– Implicit assumption: EXIT is reachable from every node 
– A relation pdom ⊆ Nodes × Nodes: d pdom n 
– The relation is trivially reflexive: d pdom d 

• Node m is the immediate post-dominator of n if 
– m ≠ n; m pdom n; ∀d≠ n.  d pdom n ⇒ d pdom m 
– Every n has a unique immediate post-dominator 

• Post-dominance on a CFG is equivalent to 
dominance on the reverse CFG (all edges reversed) 

• Post-dominator tree: the parent of n is its 
immediate post-dominator; root is EXIT 
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ENTRY 
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9 10 

 
 

ENTRY does not post-dominate any other n 
1 pdom ENTRY, 1, 9 
2 does not post-dominate any other n 
3 pdom ENTRY, 1, 2, 3, 9 
4 pdom ENTRY, 1, 2, 3, 4, 9   
5 does not post-dominate any other n 
6 does not post-dominate any other n 
7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9   
8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9  
9 does not post-dominate any other n 
10 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
EXIT pdom n for any n 
 

Immediate post-dominators:  
ENTRY → 1 1 → 3  
2 → 3  3 → 4  
4 → 7  5 → 7  
6 → 7  7 → 8 
8 → 10   9 → 1   
10 → EXIT EXIT 13 



Post-Dominator Tree 
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EXIT 

10 

8 

7 

4 5 6 

1 

The path from n to the root 
contains all and only post-
dominators of n  
 

Constructing the post-
dominator tree: use any 
algorithm for constructing 
the dominator tree; just 
“pretend” that the edges are 
reversed 3 

2 

ENTRY 9 



Computing the Dominator Tree 
• Theoretically superior algorithms are not  

necessarily the most desirable in practice 
• Our choice: Cooper et al., 2001 
• Formulation and algorithm based on insights from 

dataflow analysis 
– Essentially, solving a system of mutually-recursive 

equations – more later … 
• You should read the paper carefully and implement 

the algorithm for computing the dominator tree 
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Details on the Algorithm 
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• Given: CFG G=(N,E,n0), compute DOM(n) for each n 
– All nodes dominating n, including n itself 

• Assumption: all nodes are reachable from n0 
– Issue: unreachable code in catch(Exception e) … 

• Visit the nodes in reverse postorder 
– Recall depth-first search: it grows a DFS spanning tree 

• Postorder in this DSF spanning tree 
• During DSF, whenever a node becomes “black” (p. 604 

of CLRS-3), it is postorder-visited 
– Do DFS from ENTRY, put the nodes on a list (e.g., ArrayList in 

Java) in the reverse of this order 



Details on the Algorithm 
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Details on the Algorithm 
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Note: DOM(ENTRY) = { ENTRY } and this node is never processed by 
the algorithm (so, it should be “for all nodes other than ENTRY ….”) 



Details on the Algorithm 
• (Re-)compute DOM(n) as the intersection of 

DOM(m) for all predecessor nodes m, union { n } 
– If any DOM set changes, recompute everything 

• Reverse postorder guarantees efficient algorithm 
– d(G)+2 iterations of the while(Changed) loop; d(G) = 

max number “retreating” edges on any acyclic path 
• Problem: representation and intersection of sets 

are expensive, in terms of time and memory 
– Also, we do not find the immediate dominators 

• Solution: careful algorithm design (Fig 3 in the paper) 
– You will implement this algorithm in a project 
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Part 3: Loops in CFGs 
• Cycle: sequence of edges that starts and ends at 

the same node 
– Example: 

• Strongly-connected component (SCC): a maximal 
set of nodes such as each node in the set is 
reachable from every other node in the set 
– Example: 

 
• Loop: informally, a strongly-connected component 

with a single entry point 
– An SCC that is not a loop: 
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Back Edges and Natural Loops 
• Back edge: a CFG edge (n,h) where h dominates n 

– Easy to see that n and h belong to the same SCC 
• Natural loop for a back edge (n,h) 

– The set of all nodes m that can reach node n without 
going through node h (trivially, this set includes h)  

– Easy to see that h dominates all such nodes m 
– Node h is the header of the natural loop 

• Trivial algorithm to find the natural loop of (n,h)  
– Mark h as visited 
– Perform depth-first search (or breadth-first) starting 

from n, but follow the CFG edges in reverse direction 
– All and only visited nodes are in the natural loop 
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Immediate dominators:  
1 → ENTRY 2 → 1  3 → 1 
4 → 3  5 → 4  6 → 4 
7 → 4  8 → 7  9 → 8 
10 → 8  EXIT → 10 
 
Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1, 
10 → 7 
 
Loop(10 → 7) = { 7, 8, 10 } 
 

Loop(7 → 4) = { 4, 5, 6, 7, 8, 10 } 
      Note: Loop(10 → 7) ⊆ Loop(7 → 4)  
 

Loop(4 → 3) = { 3, 4, 5, 6, 7, 8, 10 } 
      Note: Loop(7 → 4) ⊆ Loop(4 → 3) 
 

Loop(8 → 3) = { 3, 4, 5, 6, 7, 8, 10 } 
      Note: Loop(8 → 3) = Loop(4 → 3) 
 

Loop(9 → 1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } 
      Note: Loop(4 → 3) ⊆ Loop(9 → 1) EXIT 22 



Loops in the CFG 
• Find all back edges; each target h of at least one 

back edge defines a loop L with header(L) = h 
• body(L) is the union of the natural loops of all back 

edges whose target is header(L) 
– Note that header(L) ∈ body(L)   

• Example: this is a single                                                       
loop with header node 1 

• For two CFG loops L1 and L2  
– header(L1) is different from header(L2) 
– body(L1) and body(L2) are either disjoint, or one is a 

proper subset of the other (nesting – inner/outer) 
23 
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Graph Algorithms 
• DFS again (p. 604 of CLRS-3) 

– Set each node’s color as white 
– Call DFS(ENTRY) 
– DFS(n) 

• Set the color of n to grey 
• For each successor m: if color is white, call DFS(m) 
• Set the color of n to black 

• Inside DFS(n), seeing a grey successor m means 
that (n,m) is a retreating edge 
– Note: m could be n itself, if there is an edge (n,n) 

• The order in which we consider the successors 
matters: the set of retreating edges depends on it 
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Reducible Control-Flow Graphs 
• For reducible CFGs, the retreating edges 

discovered during DFS are all and only back edges 
– The order during DFS traversal is irrelevant: all DFS 

traversals produce the same set of retreating edges 
• For irreducible CFGs: a DFS traversal may produce 

retreating edges that are not back edges 
– Each traversal may produce different retreating edges 
– Example:  

 

• No back edges 
• One traversal produces the retreating edge 3 → 2 
• The other one produces the retreating edge 2 → 3  

25 
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Reducibility 
• A number of equivalent definitions 

– One of them we already saw 
• The graph can be reduced to a single node with the 

application of the following two rules 
– Given a node n with a single predecessor m, merge n 

into m; all successors of n become successors of m 
– Remove an edge n  n 

• Try this on the graphs from the previous slides 
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Reducibility 
• The essence of irreducibility: a SCC with multiple 

possible entry points 
– If the original program was written using if-then, if-

then-else, while-do, do-while, break, and continue, 
the resulting CFG is always reducible 

– If goto was used by the programmer, the CFG could be 
irreducible (but, in practice, it typically is reducible) 

• Optimizations of the intermediate code, done by 
the compiler, could introduce irreducibility 

• Code obfuscation: e.g., Java bytecode can be 
transformed to be irreducible, making it impossible 
to reverse-engineer a valid Java source program 
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Part 4: Static Single Assignment (SSA) Form 
• Source: Cytron et al., ACM TOPLAS, Oct. 1991 

– Section 1 (ignore Section 1.1) 
– Section 2 
– Section 3 (ignore Section 3.1) 
– Section 4 (ignore the detailed proofs in Section 4.3) 

• Key ideas 
– Insert φ-functions at join points (Sections 3 and 4) 

• Based on dominance frontiers 
– Rename the variables so that each use (read) of a 

variable is reached by exactly one definition (write) of 
that variable – i.e., by a single assignment  
• Section 5.2 discusses this issue, but we will not 
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Examples 
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Placement of φ Functions 
• φ functions are used in “fake” assignments of the 

form Vk ← φ(Vi,Vj) 
– Along one edge, variable V has the value of Vi; along 

the other, the value of Vj 
– If multiple incoming edges:  φ(Vi,Vj,…, Vm) 

• Naïve: for each V, check each pair of assignments 
to V; do they reach a common join point? 

• Better: for each V, consider each assignment to V 
and find its dominance frontier; place φ for V 
– And then find the dominance frontier of each φ, and 

place φ there as well, and so on … 
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Dominance Frontier (DF) 
• Suppose node x is an assignment to V 
• DF(x) = { y | for some edge z → y, x dominates z 

but x does not strictly dominate y }   
• A few observations 

– y must be a join point. Why?  
– If the flow of control reaches y from z, the value of V is 

either the one assigned at x, or at some node 
“between” x and z 

– If the flow of control reaches y from some other 
predecessor (not z), the value of V may come from a 
different assignment to V 

• DF algorithm: Sec 5; alternative: Cooper et al. 2001  32 



Part 5: Control Dependence: Informally 
• A node n is control dependent on a node c if 

– There exists an edge e1 coming out of c that definitely 
causes n to execute 

– There exists some edge e2 coming out of c that is the 
start of some path that avoids the execution of n 

• The decision made at c affects whether n gets 
executed: if e1 is followed, n definitely is executed; 
if e2 is followed, there is the possibility that n is not 
executed at all 
– Thus, n is control dependent on c – the control-flow 

leading to n depends on what c does 
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Control Dependence: Formally 
• (part 1) n is control dependent on c if  

– n ≠ c 
– n does not post-dominate c 
– there exists a path from c to n such that n post-

dominates every node on the path except c 
• (part 2) n is control dependent on n if  

– there exists a path from n to n (with at least one edge) 
such that n post-dominates every node on the path 
• this implies that n has two outgoing edges 
• this case applies to the header of a loop 

• See Cytron et al., 1991, Section 6 for more details 
– c belongs to DF(n) but computed on the reverse CFG 
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Consider all branch nodes c: 1, 4, 7, 8, 10  
 

ENTRY does not post-dominate any other n 
1 pdom ENTRY, 1, 9 
2 does not post-dominate any other n 
3 pdom ENTRY, 1, 2, 3, 9 
4 pdom ENTRY, 1, 2, 3, 4, 9   
5 does not post-dominate any other n 
6 does not post-dominate any other n 
7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9   
8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9  
9 does not post-dominate any other n 
10 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
EXIT pdom n for any n 
 
2 is control dependent on 1 
3, 4, 5, 6 are control dependent on 4 
4, 7 are control dependent on 7 
9, 1, 3, 4, 7, 8 are control dependent on 8 
7, 8, 10 are control dependent on 10 
 

EXIT 35 



Finding All Control Dependences 
• Consider all CFG edges (c,x) such that x does not 

post-dominate c  (therefore, c is a branch node) 
• Traverse the post-dominator tree bottom-up 

– n = x 
– while (n != parent of c in the post-dominator tree) 

• report that n is control dependent on c 
• n = parent of n in the post-dominator tree 

– Example: for CFG edge (8,9) from the previous slide, 
traverse and report 9, 1, 3, 4, 7, 8 (stop before 10) 

• Other algorithms exist, but this one is simple and 
works quite well 
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