Construction of Call Graphs

]
e D. Grove and C. Chambers, “A framework

for call graph construction algorithms,”
ACM TOPLAS, vol. 23, no. 6, 2001

e Java overview slides on web page

Call Graphs

 Widely-used representation of calling relationships
— Key component of interprocedural control-flow analysis
— First step toward interprocedural dataflow analysis

class A {
public static void main(...) {

Xx=new X(); // c1 clva
if (...) x=newY(); // c2

x.m(); // c3 A.main

}}
class X { void m() {...} } C?.Af?'

class Y extends X { void m() {...} } X.m | |Y¥m

Map of what is coming next
e Call graph construction for C

e Call graph construction for object-oriented
languages (focus on Java)
— Class Hierarchy Analysis
— Rapid Type Analysis

e |f you are not familiar with Java: brief overview of
relevant Java features is available on the web page

Call Graph Construction for C
Problem: function pointers

Examples from “Precise Call Graphs for C Programs with Function Pointers”, Ana Milanova, Atanas
Rountev, and Barbara G. Ryder, International Journal of Automated Software Engineering (JASE), 2004
typedef int (*PFB] {);

struct parse table {
char *name;

PFB func; };
int funcl() .
int func2{()
struct parse table table[] = {

{"namel", &funcl},
{"name2", &func2} };

PFB find p func(char *s) {
for (i=0; i<num_func; 1++)
if (stremp(tableli] .name,s)==0)
return table[1i].func;
return NULL; }

int nalr[lﬂt argc, char *argv[]) {

= L B

5 DFB parse func=find p funclargv(l]};
6 1if (parse func)

7 (*parse_func) () ;

8 else { ... | }

Another Example

struct chunk { ... };
struct obstack {
struct _chunk *chunk;
struct chunk *{*chunkfun) (};

void (*freefun) (); };
void chunk fun(struct obstack *h, void *f) {
h-schunkfun = (struct chunk *(*)()) £; }

void free fun(struct obstack *h, void *f)
h-sfreefun = (void (*)()) f; }

int main()
struct obstack h;
chunk fun(&h, &xmalloc) ;
free fun|(&h,&xfree); ... |}

What do we do with these function pointers?

 Simple answer: any function whose address is taken

5

could possibly be called
— Can try to restrict only to functions that “match” the types
at the call site; be carefule.g., void *xmalloc(size t)

Precise Resolution of Function Pointers

 Need interprocedural points-to analysis
— Need a call graph! (flow of pointer values through
parameter passing and procedure return values)

e Simple solution
— Conservative call graph based on address-taken
— Do points-to analysis
— Re-compute the call graph using points-to information

e Or, call graph construction during points-to analysis
— Start without any knowledge of f.p. calls
— When a f.p. “shows up” in Pt(fp) at a call (*fp)(...),
resolve it and update the points-to solution
— Theoretically more precise; hard to design/implement

Call Graph Construction for C (cont’d)
 Problems come not only from function pointers ...

e Library calls: typically, the pre-compiled libraries

are not analyzed
— Standard libraries
— Third-party libraries

e Alibrary call can trigger a callback to the program
— E.g. in stdlib.h: void gsort(void *base, size_t nitems,
size_t size, int (*compar)(const void *, const void*))

e setjimp and longjmp
setimp(jmp_buf env): stores the registers in eny,
including the stack pointer and the program counter
longjmp(env): restores the registers; execution continues
after the setjump program point

Methods Calls (Invocations in Java)

e x.m(a,b): method invocation at compile time
— A target method is associated with the call

A

— “compile-time target”, “static target”

— Based on the declared type of variable x
class A { void m(int p, int q) {...} ... }
class B extends A { void m(intr, ints) {...} ... }
A X;
X = new B();
x.m(1,2);

X has declared type A: compile-time target is A.m

javac encodes this in the bytecode (foo.class)
virtualinvoke x,<A: void m(int,int)>

8

.
Methods Calls (Invocations in Java)

* virtualinvoke x,<A: void m(int,int)> inside the JVM
— Look at the class Z of the object that x refers to at that

particular moment
— Search Z for a method with signature m(int,int) and

return type void
— If Z doesn’t have it, go to Z’s superclass, and so on

upwards, until a match is found
— Invoke the method on the object that is pointed-to by x

Run-time (dynamic) target: “lowest” method that matches

the signature and the return type of the static target
(“lowest” w.r.t. inheritance chain from Z to java.lang.Object)

This process is called virtual dispatch or method lookup

Call Graphs for Software Understanding

* Tools for software understanding
— “smart” development environments (e.g., Eclipse),
maintenance tools, visualization tools, etc.

(or A.class,
B.class,...)

10

Software
Understanding
Tool

Call Graph

!

Other Static
Analyses

Dependence§
 Diagrams

Call Graphs for Optimizations

e Resolution of virtual calls
— e.g. “virtualinvoke” in Java bytecode

classA{voidm(){... }}
class B extends A { void m() { ... } }
Aa;....a.m();

e |f the call has only one outgoing edge in the call
graph, the virtual dispatch at run time will always

produce the same target

— So, before the program is even executed, we can
replace the virtual call with a “normal” call

— Or, alternatively, after the program is loaded in the
JVM, do run-time analysis and optimizations

11

Resolution of Virtual Calls

 Probably the oldest optimization problem for
object-oriented languages
— Smalltalk, C++, Java, many research languages
— Goal 1: remove run-time virtual dispatch

— Goal 2: inlining — insert the body of the called method
in the caller (big performance wm)

 A.class | Bytecode-to- Acclass
" B.class SN bytecode = B.class =| JVM

Optimizer /
e L r T

Vlrtual call resolution + inlining + other
opt/m/zatlons that need the call graph

.® Do this at compile time or at run time

The World of Call Graph Construction erove & chambers 2001]

the perfectcall ... S N 9
graph: cannot be
computed

e T ——
- e T —
-~ — T
H Py Bommmind _.-':i [p—— ----I-'_' L -
analysis O Y
G - G, ot i B | G, G,
I|| —
A ¢ N _ o
| ’ L
\] S -
A - -
T -'--__ _."F'-'...

X is less precise

d
uoisidaid 3uisealdap

v

than Y: G, is a N7
; superset of G,

analysis X

Class Hierarchy Analysis (CHA)

e The simplest method for call graph construction
— At the bottom of the previous slide

e Start from main, and perform reachability
— The only tricky part: virtual calls

 Helper function used in CHA: dispatch

— Simulates the effects of the run-time virtual dispatch (a.k.a.
method lookup)

* Note: even CHA gets tricky in the presence of dynamic

class loading, reflection, native methods, etc.

— “Assumption Hierarchy for a CHA Call Graph Construction
Algorithm”, Jason Sawin and Atanas Rountev, /EEE Int. Working
Conference on Source Code Analysis and Manipulation, 2011

14
D EEEGGEGEERERRERERS

-
dispatch
dispatch(call_site s, receiver_class rc)

sig = signature_of static_target(s)

ret = return_type of static_target(s)

C = rc;

while (c != null)
if class c contains a method m with
signature sig and return type ret

return m

c = superclass(c)

. print “ERROR: this should be unreachable”
D EEEGGEGEERERRERERS

One Possible Implementation of CHA

Queue worklist
CallGraph Graph
worklist.addAtTail(main);

Graph.addNode(main)
while (worklist.notEmpty())
m = worklist.getFromHead();

process_method_body(m);

16

process method body(method m)
for each call site s inside m

if s is a static call or a constructor call or

a call through super
add_edge(s)

if s is a virtual call v.n(...)
rcv_class = type_of(v);
for each non-abstract class c that is a
subclass of rcv_class or rcv_class itself

x = dispatch(s,c)
, add edge(s,x)

-
add_edge
add_edge(call_site s)
// for static calls, constructor calls, and calls through super
m = target(s);
if m is not in Graph
Graph.addNode(m);
worklist.addAtTail(m);
Graph.addEdge(s,m)

add_edge(call_site s, run_time_target x)

// same here

18

R Example .
class A { class B extends A {
void m() { } void m() {
- void n() { } A x = new A();
-~ static void main(...) { x.n(); // c3}}
 Bb=new B(); class C extends B {
b.m(); // c1 void m() { }
A a=b; voidn() { } }
a.m(); // c2}) ,
A.main “t Bm ¢ A.n the “real”
c2) call graph

R Example .
class A { class B extends A {
void m() { } void m() {
- void n() { } A x = new A();
-~ static void main(...) { x.n(); // c3}}
 Bb=new B(); class C extends B {

b.m(); // c1 void m() { }

A a=b; voidn() { } }

a.m(); //c2}}

workist: add and then remove A.main
cl: dispatch for rcv_type B -> target B.m
cl: dispatch for rcv_type C -> target C.m

20

Example

o State after processing cl
— worklist = {B.m,C.m}
— Graph.Nodes = {A.main, B.m, C.m}
— Graph.Edges = {(c1,B.m), (c1,C.m) }

e Edge (c1,C.m) is spurious (infeasible)

— There is no execution of the program in which c1
invokes C.m

 More precise analyses produce fewer spurious
edges

— Typically are more expensive (time/memory)

21

class A {
void m() { }
~ void n() { }

class B extends A {

void m() {
A x = new A();

static void main(...) { x.n(); //c3}}

B b = new B();

class C extends B {

b.m(); // c1 void m() { }
A a=b; void n(){ } }
a.m(); //c2}}

c2: call through a, which is of type A

c2: dispatc
c2: dispatc
c2: dispatc

22

h for rcv_type A -> target A.m
n for rcv_type B -> target B.m

n for rev_type C -> target C.m

Example

o State after processing c2
— worklist = {B.m,C.m,A.m}
— Graph.Nodes = {A.main, B.m, C.m, A.m}
— Graph.Edges = {(c1,B.m),(c1,C.m),
(c2,A.m),(c2,B.m),(c2,C.m) }

e Edges (c2,A.m) and (c2,C.m) are spurious

e After we are done with A.main, take the next

method at the head of the queue
— in this case B.m

23

class A {
void m() { }
- void n() { }

static void main(...) {

B b = new B();

class B extends A {

void m() {
A x = new A();

x.n(); // c3}}

class C extends B {

b.m(); // c1 void m() { }
A a=b; void n(){ } }
a.m(); //c2}}

c3: call through x, which is of type A

c3: dispatc
c3: dispatc

n for rcv_type A -> target A.n
h for rcv_type B -> target A.n

c3: dispatc

24

n for rcv_type C -> target C.n

Example

e State after processing c3
— worklist = {C.m,A.m,A.n,C.n}
— Graph.Nodes = {A.main, B.m, C.m, A.m, C.n}
— Graph.Edges = {(c1,B.m), (c1,C.m), (c2,A.m), (c2,B.m),
(c2,C.m), (c3,A.n), (c3,C.n) }

e Edge (c3,C.n) is spurious

 The rest of the methods in the queue have empty
bodies, so the rest of the algorithm doesn’t create
any new edges/nodes

25

Resulting Call Graph

c2
*A.m
cl
c3 A.n
, c2 3§
A.main " B.m <
cl] c3 C.n
c2 cm
cl v c3 7, 17,
A.main B.m *A.n the “real

c2 i call graph

26

-
Rapid Type Analysis

* An analysis that is the next step after CHA
— Guaranteed to produce a call graph that is a subset of
the call graph produced by CHA
— Still quite imprecise. There are many analyses that are
better than RTA

* “type analysis”
— ldea: given a reference/pointer variable, try to figure
out what types of objects this variable may refer/point
to

27

Rapid Type Analysis

e Basic insight: some classes are never instantiated

in reachable methods
— i.e. there is never a new X() expression

 Main reason: programs that are built on top of

libraries
— Large parts of the library code are unused

 When we try to figure out the possible run-time
targets of a virtual call, we can safely ignore classes
that are not instantiated

28

One Possible Implementation of RTA
Queue worklist

CallGraph Graph
worklist.addAtTail(main);
Set instantiated classes
Map pending call sites
Graph.addNode(main)
while (worklist.notEmpty())

m = worklist.getFromHead();

» process method body(m);
D EEEGGEGEERERRERERS

process method body(method m)

for each expression new X inside m
if (X ¢ instantiated_classes)
add X to instantiated classes
resolve_pending(X)

for each call site s inside m
if s is a static call or a constructor call or
a call through super
add_edge(s)
if s is a virtual call v.n(...)
rcv_class = type_of(v);
for each non-abstract class c that is a
subclass of rcv_class or rcv_class itself
process_rcv_class(c,s)

30
D EEEGGEGEERERRERERS

process_rcv_class
process_rcv_class(class c, call_site s)
x = dispatch(s,c)
if ¢ € instantiated_classes
add_edge(s,x)
else // cis not currently instantiated,
// but in the future it may be, so
// we have to remember this edge
remember (s,x) in pending(c)

31

resolve_pending(class c)
// class c became instantiated, and
// we need to add all pending edges
for each (s,x) in pending(c)
add edge(s,x)

Called by process_method body :
for each expression new X
if (X ¢ instantiated classes)
add X to instantiated classes
resolve pending(X)

32

R Example .
class A { class B extends A {
void m() { } void m() {
- void n() { } A x = new A();
-~ static void main(...) { x.n(); // c3}}
 Bb=new B(); class C extends B {
b.m(); // c1 void m() { }
A a=b; voidn() { } }
a.m(); // c2}) ,
A.main “t Bm ¢ A.n the “real”
c2) call graph

R Example .
class A { class B extends A {
void m() { } void m() {
- void n() { } A x = new A();
-~ static void main(...) { x.n(); // c3}}
 Bb=new B(); class C extends B {

b.m(); // c1 void m() { }

A a=b; voidn() { } }

a.m(); //c2}}

worklist: add and then remove A.main
instantiated classes = {B}

cl: dispatch for rcv_type B -> target B.m
cl: dispatch for rcv_type C -> target C.m

34
D EEEGGEGEERERRERERS

Example

e process_rcv_class(c1,B)
— Since B is instantiated, add edge (c1,B.m)

e process _rcv_class(c1,C)
— Since C is not instantiated, we do not add edge (c1,C.m)
to the call graph
e Remember (c1,C.m) in pending(C)

o State after processing cl
— worklist = {B.m}
— Graph.Nodes = {A.main, B.m}
— Graph.Edges = { (c1,B.m)}

35

class A {
void m() { }
~ void n() { }

class B extends A {

void m() {
A x = new A();

static void main(...) { x.n(); //c3}}

B b = new B();

class C extends B {

b.m(); // c1 void m() { }
A a=b; void n(){ } }
a.m(); //c2}}

c2: call through a, which is of type A

c2: dispatc
c2: dispatc
c2: dispatc

36

h for rcv_type A -> target A.m
n for rcv_type B -> target B.m

n for rev_type C -> target C.m

Example

e (c2,A): add (c2,A.m) to pending(A)
e (c2,B): add (c2,B.m) to Graph
e (c2,C): add (c2,C.m) to pending(C)
o State after processing c2

— worklist = {B.m}

— Graph.Nodes = {A.main, B.m}

— Graph.Edges = {(c1,B.m), (c2,B.m)}

— pending(A) = {(c2,A.m)}

— pending(C) = {(c1,C.m),(c2,C.m)}

37

R Example .
class A { class B extends A {
void m() { } void m() {
- void n() { } A x = new A();
-~ static void main(...) { x.n(); // c3}}
 Bb=new B(); class C extends B {

b.m(); // c1 void m() { }

A a=b; voidn() { } }

a.m(); //c2}}

instantiated classes = {B,A}

triggers a call to resolve_pending(A), with
pending(A) ={ (c2,A.m) }

38
D EEEGGEGEERERRERERS

-
Example

e resolve pending(A)
— Graph.Nodes = {A.main, B.m, A.m}
— Graph.Edges = {(c1,B.m), (c2,B.m), (c2,A.m)}
— worklist = {A.m}
e At call site c3: x.n()
— x is of type A => A, B, or C possible
— A and B are instantiated, there is no B.n; so, edge
(c3,A.n) is added to the graph

e A.m and A.n have empty bodies, and the graph is
completed

39

RTA vs. CHA
c2 [Am
cl
A.main c2 ~B:m c3 “A.n
cz [Am
cl

5 . €3 _JAn
A.main ¢ ~B.m<

RTA vs. CHA

 The key advantage: RTA was able to determine that

C is never instantiated in reachable methods
— This means that C.m and C.n can never be targets

e Of course, this is just one possible source of
Imprecision

— Analyses that are “more aggressive” than RTA focus on
some of these sources

41

Some Existing Analyses

o
/ i
- G.ia: -Bounded G == -Bounded Linear Edge G
| | / VTA

GJ: -Bounded Linear Edge

G

1 -Bounded Lt G
/ / o \
Gn -Bounded Gl-Hmm{led Linear Fdge - Ccra

e

0-Bounded Linear Edge

G

RTA

42

More Existing Analyses

=7
s -2 1: ________ SEEES Gy.iora /
-t | / |)
Gk -CF A | / |
Gy cra PN
G; o.cen Gy 1cra G, acen
7 |
G ocea Gy cra 2-2-CFA
N
3-0-CFA 2-1-CFA
Gy scs G, coa | / |
G

Class Analysis

e Class analysis: given a reference variable x, what
are the classes of the objects that x may refer to?
— a.k.a. “type analysis” (e.g., RTA)
— After a class analysis, it is trivial to construct the call

graph
* As a separate post-processing phase

 Most class analyses construct the call graph on the
fly during the analysis
— For object-oriented languages, “call graph

)«

construction”, “class analysis”, and “type analysis” are
often used as synonyms

e Points-to analysis can be thought of as a particular

form of class/type analysis

— Next: “classic” points-to analysis, closely related to
0-CFA type analysis (see two slides earlier)

	Construction of Call Graphs
	Call Graphs
	Map of what is coming next
	Call Graph Construction for C
	Another Example
	Precise Resolution of Function Pointers
	Call Graph Construction for C (cont’d)
	Methods Calls (Invocations in Java)
	Methods Calls (Invocations in Java)
	Call Graphs for Software Understanding
	Call Graphs for Optimizations
	Resolution of Virtual Calls
	The World of Call Graph Construction [Grove & Chambers 2001]
	Class Hierarchy Analysis (CHA)
	dispatch
	One Possible Implementation of CHA
	process_method_body(method m)
	add_edge
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Resulting Call Graph
	Rapid Type Analysis
	Rapid Type Analysis
	One Possible Implementation of RTA
	process_method_body(method m)
	process_rcv_class
	resolve_pending(class c)
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	RTA vs. CHA
	RTA vs. CHA
	Some Existing Analyses
	More Existing Analyses
	Class Analysis

