
Construction of Call Graphs 

• D. Grove and C. Chambers, “A framework 
for call graph construction algorithms,” 
ACM TOPLAS, vol. 23, no. 6, 2001 

• Java overview slides on web page 
 



Call Graphs 
• Widely-used representation of calling relationships 

– Key component of interprocedural control-flow analysis 
– First step toward interprocedural dataflow analysis 
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class A {  
  public static void main(…) {  
     X x = new X(); // c1 
     if (…) x = new Y(); // c2 
     x.m(); // c3 
  } } 
class X { void m() {…} } 
class Y extends X { void m() {…} } 

A.main 

X.X Y.Y 

X.m Y.m 

c1 c2 

c3 c3 



Map of what is coming next 
• Call graph construction for C 
• Call graph construction for object-oriented 

languages (focus on Java) 
– Class Hierarchy Analysis 
– Rapid Type Analysis 

• If you are not familiar with Java: brief overview of 
relevant Java features is available on the web page 
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Call Graph Construction for C 
Problem: function pointers 
Examples from “Precise Call Graphs for C Programs with Function Pointers”, Ana Milanova, Atanas 
Rountev, and Barbara G. Ryder, International Journal of Automated Software Engineering (JASE), 2004 
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Another Example 
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• What do we do with these function pointers? 
• Simple answer: any function whose address is taken 

could possibly be called 
– Can try to restrict only to functions that “match” the types 

at the call site; be careful … .e.g., void *xmalloc(size_t) 



Precise Resolution of Function Pointers 
• Need interprocedural points-to analysis 

– Need a call graph! (flow of pointer values through 
parameter passing and procedure return values) 

• Simple solution 
– Conservative call graph based on address-taken 
– Do points-to analysis 
– Re-compute the call graph using points-to information 

• Or, call graph construction during points-to analysis 
– Start without any knowledge of f.p. calls 
– When a f.p. “shows up” in Pt(fp) at a call (*fp)(…), 

resolve it and update the points-to solution 
– Theoretically more precise; hard to design/implement  
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Call Graph Construction for C (cont’d) 
• Problems come not only from function pointers … 
• Library calls: typically, the pre-compiled libraries 

are not analyzed 
– Standard libraries 
– Third-party libraries 

• A library call can trigger a callback to the program 
– E.g. in stdlib.h: void qsort(void *base, size_t nitems, 

size_t size, int (*compar)(const void *, const void*)) 
• setjmp and longjmp 

setjmp(jmp_buf env): stores the registers in env, 
including the stack pointer and the program counter 
longjmp(env): restores the registers; execution continues 
after the setjump program point 
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Methods Calls (Invocations in Java) 
• x.m(a,b): method invocation at compile time 

– A target method is associated with the call  
– “compile-time target”, “static target” 
– Based on the declared type of variable x 

 
 
 
 
 
 
 

x has declared type A: compile-time target is A.m 
javac encodes this in the bytecode (foo.class) 

virtualinvoke x,<A: void m(int,int)> 
8 

class A { void m(int p, int q) {…} … } 
class B extends A { void m(int r, int s) {…} … } 
A x; 
x = new B(); 
x.m(1,2); 



Methods Calls (Invocations in Java) 
• virtualinvoke x,<A: void m(int,int)> inside the JVM 

– Look at the class Z of the object that x refers to at that 
particular moment 

– Search Z for a method with signature m(int,int) and 
return type void 

– If Z doesn’t have it, go to Z’s superclass, and so on 
upwards, until a match is found 

– Invoke the method on the object that is pointed-to by x 
Run-time (dynamic) target: “lowest” method that matches 
the signature and the return type of the static target 
(“lowest” w.r.t. inheritance chain from Z to java.lang.Object) 
This process is called virtual dispatch or method lookup 
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Call Graphs for Software Understanding 
• Tools for software understanding 

– “smart” development environments (e.g., Eclipse), 
maintenance tools, visualization tools, etc. 
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A.java 
B.java 
C.java 

… 

Software 
Understanding 

Tool 
 

Call Graph 
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Analyses 

Call Graph 
Display 

Dependence 
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UML Diagrams 
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(or A.class, 
 B.class,…) 

… 



Call Graphs for Optimizations 
• Resolution of virtual calls  

– e.g. “virtualinvoke” in Java bytecode 
 
 
 

• If the call has only one outgoing edge in the call 
graph, the virtual dispatch at run time will always 
produce the same target 
– So, before the program is even executed, we can 

replace the virtual call with a “normal” call 
– Or, alternatively, after the program is loaded in the 

JVM, do run-time analysis and optimizations 
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class A { void m() { … } } 
class B extends A { void m() { … } } 
A a; . . . . a.m();      



Resolution of Virtual Calls 
• Probably the oldest optimization problem for 

object-oriented languages   
– Smalltalk, C++, Java, many research languages 
– Goal 1: remove run-time virtual dispatch 
– Goal 2: inlining – insert the body of the called method 

in the caller (big performance win) 
 
 
 
 
 
 
 

• Do this at compile time or at run time 12 

A.class 
B.class 

… 

Bytecode-to- 
bytecode 
Optimizer 

A.class 
B.class 

… 
JVM 

Virtual call resolution + inlining + other 
optimizations that need the call graph  



The World of Call Graph Construction [Grove & Chambers 2001] 

13 

decreasing precision 

analysis X 

analysis Y 

X is less precise  
than Y: GX is a 
superset of GY 

the perfect call 
graph: cannot be  
computed 



Class Hierarchy Analysis (CHA) 
• The simplest method for call graph construction 

– At the bottom of the previous slide 
• Start from main, and perform reachability  

– The only tricky part: virtual calls 
• Helper function used in CHA: dispatch 

– Simulates the effects of the run-time virtual dispatch (a.k.a. 
method lookup) 

• Note: even CHA gets tricky in the presence of dynamic 
class loading, reflection, native methods, etc. 
– “Assumption Hierarchy for a CHA Call Graph Construction 

Algorithm”, Jason Sawin and Atanas Rountev, IEEE Int. Working 
Conference on Source Code Analysis and Manipulation, 2011  
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dispatch 
dispatch(call_site s, receiver_class rc) 
   sig = signature_of_static_target(s) 
   ret = return_type_of_static_target(s) 
   c = rc; 
   while (c != null)   
 if class c contains a method m with  
          signature sig and return type ret 
  return m 
          c = superclass(c)  
   print “ERROR: this should be unreachable” 
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One Possible Implementation of CHA 
Queue worklist 
CallGraph Graph 
worklist.addAtTail(main); 
Graph.addNode(main) 
while (worklist.notEmpty())  
       m = worklist.getFromHead(); 
       process_method_body(m); 
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process_method_body(method m) 
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for each call site s inside m 
   if s is a static call or a constructor call or  
   a call through super 
 add_edge(s) 
   if s is a virtual call v.n(…) 
 rcv_class = type_of(v); 
 for each non-abstract class c that is a   
 subclass of rcv_class or rcv_class itself  
       x = dispatch(s,c) 
                add_edge(s,x) 



add_edge 
add_edge(call_site s) 
   // for static calls, constructor calls, and calls through super 
   m = target(s); 
   if m is not in Graph 
 Graph.addNode(m); 
 worklist.addAtTail(m); 
   Graph.addEdge(s,m) 
 
add_edge(call_site s, run_time_target x) 
   // same here 
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Example 
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class A {    class B extends A { 
  void m() { }      void m() {  
  void n() { }     A x = new A(); 
  static void main(…) {  x.n(); // c3 } }  
    B b = new B();  class C extends B { 
    b.m(); // c1     void m() { }  
    A a = b;      void n() { } } 
    a.m(); // c2 } }  

A.main B.m A.n 
c1 

c2 
c3 the “real” 

call graph 



Example 
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class A {    class B extends A { 
  void m() { }      void m() {  
  void n() { }     A x = new A(); 
  static void main(…) {  x.n(); // c3 } }  
    B b = new B();  class C extends B { 
    b.m(); // c1     void m() { }  
    A a = b;      void n() { } } 
    a.m(); // c2 } }  

workist: add and then remove A.main 
c1: dispatch for rcv_type B -> target B.m 
c1: dispatch for rcv_type C -> target C.m 



Example 
• State after processing c1 

– worklist = {B.m,C.m} 
– Graph.Nodes = {A.main, B.m, C.m} 
– Graph.Edges = { (c1,B.m), (c1,C.m) } 

• Edge (c1,C.m) is spurious (infeasible) 
– There is no execution of the program in which c1 

invokes C.m 
• More precise analyses produce fewer spurious 

edges 
– Typically are more expensive (time/memory) 
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Example 
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class A {    class B extends A { 
  void m() { }      void m() {  
  void n() { }     A x = new A(); 
  static void main(…) {  x.n(); // c3 } }  
    B b = new B();  class C extends B { 
    b.m(); // c1     void m() { }  
    A a = b;      void n() { } } 
    a.m(); // c2 } }  

c2: call through a, which is of type A 
c2: dispatch for rcv_type A -> target A.m 
c2: dispatch for rcv_type B -> target B.m 
c2: dispatch for rcv_type C -> target C.m 



Example 
• State after processing c2 

– worklist = {B.m,C.m,A.m} 
– Graph.Nodes = {A.main, B.m, C.m, A.m} 
– Graph.Edges = {(c1,B.m),(c1,C.m), 

(c2,A.m),(c2,B.m),(c2,C.m) } 
• Edges (c2,A.m) and (c2,C.m) are spurious  
• After we are done with A.main, take the next 

method at the head of the queue  
– in this case B.m 
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Example 
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class A {    class B extends A { 
  void m() { }      void m() {  
  void n() { }     A x = new A(); 
  static void main(…) {  x.n(); // c3 } }  
    B b = new B();  class C extends B { 
    b.m(); // c1     void m() { }  
    A a = b;      void n() { } } 
    a.m(); // c2 } }  

c3: call through x, which is of type A 
c3: dispatch for rcv_type A -> target A.n 
c3: dispatch for rcv_type B -> target A.n 
c3: dispatch for rcv_type C -> target C.n 



Example 
• State after processing c3 

– worklist = {C.m,A.m,A.n,C.n} 
– Graph.Nodes = {A.main, B.m, C.m, A.m, C.n} 
– Graph.Edges = {(c1,B.m), (c1,C.m), (c2,A.m), (c2,B.m), 

(c2,C.m), (c3,A.n), (c3,C.n) } 
• Edge (c3,C.n) is spurious  
• The rest of the methods in the queue have empty 

bodies, so the rest of the algorithm doesn’t create 
any new edges/nodes 
 
 

25 



Resulting Call Graph 
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A.main B.m A.n 
c1 

c2 
c3 the “real” 

call graph 

A.main B.m 
A.n 

c1 
c2 

c3 

C.m 

A.m 

C.n 

c2 

c1 

c3 
c2 



Rapid Type Analysis 
• An analysis that is the next step after CHA 

– Guaranteed to produce a call graph that is a subset of 
the call graph produced by CHA 

– Still quite imprecise. There are many analyses that are 
better than RTA 

• “type analysis”  
– Idea: given a reference/pointer variable, try to figure 

out what types of objects this variable may refer/point 
to 
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Rapid Type Analysis 
• Basic insight: some classes are never instantiated 

in reachable methods 
– i.e. there is never a new X() expression 

• Main reason: programs that are built on top of 
libraries 
– Large parts of the library code are unused 

• When we try to figure out the possible run-time 
targets of a virtual call, we can safely ignore classes 
that are not instantiated 
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One Possible Implementation of RTA 
Queue worklist 

CallGraph Graph 

worklist.addAtTail(main); 

Set instantiated_classes 

Map pending_call_sites 

Graph.addNode(main) 

while (worklist.notEmpty())  

       m = worklist.getFromHead(); 

       process_method_body(m); 
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process_method_body(method m) 
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for each expression new X inside m 
       if (X ∉ instantiated_classes)  
             add X to instantiated_classes 
             resolve_pending(X) 
for each call site s inside m 
      if s is a static call or a constructor call or  
      a call through super 
            add_edge(s) 
   if s is a virtual call v.n(…) 
 rcv_class = type_of(v); 
 for each non-abstract class c that is a   
 subclass of rcv_class or rcv_class itself  
        process_rcv_class(c,s) 



process_rcv_class 
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process_rcv_class(class c, call_site s) 
   x = dispatch(s,c)  
   if c ∈ instantiated_classes  
       add_edge(s,x) 
  else // c is not currently instantiated, 
          // but in the future it may be, so 
 // we have to remember this edge 
       remember (s,x) in pending(c) 



resolve_pending(class c) 
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// class c became instantiated, and  
// we need to add all pending edges 
for each (s,x) in pending(c) 
     add_edge(s,x) 

Called by process_method_body : 
for each expression new X  
   if (X ∉ instantiated_classes)  
     add X to instantiated_classes 
       resolve_pending(X) 



Example 
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class A {    class B extends A { 
  void m() { }      void m() {  
  void n() { }     A x = new A(); 
  static void main(…) {  x.n(); // c3 } }  
    B b = new B();  class C extends B { 
    b.m(); // c1     void m() { }  
    A a = b;      void n() { } } 
    a.m(); // c2 } }  

A.main B.m A.n 
c1 

c2 
c3 the “real” 

call graph 



Example 
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class A {    class B extends A { 
  void m() { }      void m() {  
  void n() { }     A x = new A(); 
  static void main(…) {  x.n(); // c3 } }  
    B b = new B();  class C extends B { 
    b.m(); // c1     void m() { }  
    A a = b;      void n() { } } 
    a.m(); // c2 } }  

worklist: add and then remove A.main 
instantiated_classes = {B} 
c1: dispatch for rcv_type B -> target B.m 
c1: dispatch for rcv_type C -> target C.m 



Example 
• process_rcv_class(c1,B) 

– Since B is instantiated, add edge (c1,B.m) 
• process_rcv_class(c1,C) 

– Since C is not instantiated, we do not add edge (c1,C.m) 
to the call graph 
• Remember (c1,C.m) in pending(C) 

• State after processing c1 
– worklist = {B.m} 
– Graph.Nodes = {A.main, B.m} 
– Graph.Edges = { (c1,B.m)} 
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Example 
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class A {    class B extends A { 
  void m() { }      void m() {  
  void n() { }     A x = new A(); 
  static void main(…) {  x.n(); // c3 } }  
    B b = new B();  class C extends B { 
    b.m(); // c1     void m() { }  
    A a = b;      void n() { } } 
    a.m(); // c2 } }  

c2: call through a, which is of type A 
c2: dispatch for rcv_type A -> target A.m 
c2: dispatch for rcv_type B -> target B.m 
c2: dispatch for rcv_type C -> target C.m 



Example 
• (c2,A): add (c2,A.m) to pending(A) 
• (c2,B): add (c2,B.m) to Graph 
• (c2,C): add (c2,C.m) to pending(C) 
• State after processing c2 

– worklist = {B.m} 
– Graph.Nodes = {A.main, B.m} 
– Graph.Edges = {(c1,B.m), (c2,B.m)} 
– pending(A) = {(c2,A.m)}  
– pending(C) = {(c1,C.m),(c2,C.m)} 
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Example 
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class A {    class B extends A { 
  void m() { }      void m() {  
  void n() { }     A x = new A(); 
  static void main(…) {  x.n(); // c3 } }  
    B b = new B();  class C extends B { 
    b.m(); // c1     void m() { }  
    A a = b;      void n() { } } 
    a.m(); // c2 } }  

instantiated_classes = {B,A}  
triggers a call to resolve_pending(A), with  
pending(A) = { (c2,A.m) }  



Example 
• resolve_pending(A)  

– Graph.Nodes = {A.main, B.m, A.m} 
– Graph.Edges = {(c1,B.m), (c2,B.m), (c2,A.m)} 
– worklist = {A.m} 

• At call site c3: x.n() 
– x is of type A => A, B, or C possible 
– A and B are instantiated, there is no B.n; so, edge 

(c3,A.n) is added to the graph  
• A.m and A.n have empty bodies, and the graph is 

completed 
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RTA vs. CHA 
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A.main B.m A.n c2 c3 

A.m c2 

c1 

A.main B.m 
A.n 

c1 
c2 

c3 

C.m 

A.m 

C.n 

c2 

c1 

c3 
c2 



RTA vs. CHA 
• The key advantage: RTA was able to determine that 

C is never instantiated in reachable methods 
– This means that C.m and C.n can never be targets 

• Of course, this is just one possible source of 
imprecision 
– Analyses that are “more aggressive” than RTA focus on 

some of these sources 
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Some Existing Analyses 
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More Existing Analyses 
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Class Analysis 
• Class analysis: given a reference variable x, what 

are the classes of the objects that x may refer to? 
– a.k.a. “type analysis” (e.g., RTA) 
– After a class analysis, it is trivial to construct the call 

graph  
• As a separate post-processing phase 

• Most class analyses construct the call graph on the 
fly during the analysis 
– For object-oriented languages, “call graph 

construction”, “class analysis”, and “type analysis” are 
often used as synonyms 

• Points-to analysis can be thought of as a particular 
form of class/type analysis 
– Next: “classic” points-to analysis, closely related to       

0-CFA type analysis (see two slides earlier) 
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