
Construction of Call Graphs

• D. Grove and C. Chambers, “A framework
for call graph construction algorithms,”
ACM TOPLAS, vol. 23, no. 6, 2001

• Java overview slides on web page

Call Graphs
• Widely-used representation of calling relationships

– Key component of interprocedural control-flow analysis
– First step toward interprocedural dataflow analysis

2

class A {
 public static void main(…) {
 X x = new X(); // c1
 if (…) x = new Y(); // c2
 x.m(); // c3
 } }
class X { void m() {…} }
class Y extends X { void m() {…} }

A.main

X.X Y.Y

X.m Y.m

c1 c2

c3 c3

Map of what is coming next
• Call graph construction for C
• Call graph construction for object-oriented

languages (focus on Java)
– Class Hierarchy Analysis
– Rapid Type Analysis

• If you are not familiar with Java: brief overview of
relevant Java features is available on the web page

3

Call Graph Construction for C
Problem: function pointers
Examples from “Precise Call Graphs for C Programs with Function Pointers”, Ana Milanova, Atanas
Rountev, and Barbara G. Ryder, International Journal of Automated Software Engineering (JASE), 2004

4

Another Example

5

• What do we do with these function pointers?
• Simple answer: any function whose address is taken

could possibly be called
– Can try to restrict only to functions that “match” the types

at the call site; be careful … .e.g., void *xmalloc(size_t)

Precise Resolution of Function Pointers
• Need interprocedural points-to analysis

– Need a call graph! (flow of pointer values through
parameter passing and procedure return values)

• Simple solution
– Conservative call graph based on address-taken
– Do points-to analysis
– Re-compute the call graph using points-to information

• Or, call graph construction during points-to analysis
– Start without any knowledge of f.p. calls
– When a f.p. “shows up” in Pt(fp) at a call (*fp)(…),

resolve it and update the points-to solution
– Theoretically more precise; hard to design/implement

6

Call Graph Construction for C (cont’d)
• Problems come not only from function pointers …
• Library calls: typically, the pre-compiled libraries

are not analyzed
– Standard libraries
– Third-party libraries

• A library call can trigger a callback to the program
– E.g. in stdlib.h: void qsort(void *base, size_t nitems,

size_t size, int (*compar)(const void *, const void*))
• setjmp and longjmp

setjmp(jmp_buf env): stores the registers in env,
including the stack pointer and the program counter
longjmp(env): restores the registers; execution continues
after the setjump program point
 7

Methods Calls (Invocations in Java)
• x.m(a,b): method invocation at compile time

– A target method is associated with the call
– “compile-time target”, “static target”
– Based on the declared type of variable x

x has declared type A: compile-time target is A.m
javac encodes this in the bytecode (foo.class)

virtualinvoke x,<A: void m(int,int)>
8

class A { void m(int p, int q) {…} … }
class B extends A { void m(int r, int s) {…} … }
A x;
x = new B();
x.m(1,2);

Methods Calls (Invocations in Java)
• virtualinvoke x,<A: void m(int,int)> inside the JVM

– Look at the class Z of the object that x refers to at that
particular moment

– Search Z for a method with signature m(int,int) and
return type void

– If Z doesn’t have it, go to Z’s superclass, and so on
upwards, until a match is found

– Invoke the method on the object that is pointed-to by x
Run-time (dynamic) target: “lowest” method that matches
the signature and the return type of the static target
(“lowest” w.r.t. inheritance chain from Z to java.lang.Object)
This process is called virtual dispatch or method lookup

9

Call Graphs for Software Understanding
• Tools for software understanding

– “smart” development environments (e.g., Eclipse),
maintenance tools, visualization tools, etc.

10

A.java
B.java
C.java

…

Software
Understanding

Tool

Call Graph

Other Static
Analyses

Call Graph
Display

Dependence
Diagrams

UML Diagrams

Slices

(or A.class,
 B.class,…)

…

Call Graphs for Optimizations
• Resolution of virtual calls

– e.g. “virtualinvoke” in Java bytecode

• If the call has only one outgoing edge in the call
graph, the virtual dispatch at run time will always
produce the same target
– So, before the program is even executed, we can

replace the virtual call with a “normal” call
– Or, alternatively, after the program is loaded in the

JVM, do run-time analysis and optimizations
11

class A { void m() { … } }
class B extends A { void m() { … } }
A a; a.m();

Resolution of Virtual Calls
• Probably the oldest optimization problem for

object-oriented languages
– Smalltalk, C++, Java, many research languages
– Goal 1: remove run-time virtual dispatch
– Goal 2: inlining – insert the body of the called method

in the caller (big performance win)

• Do this at compile time or at run time 12

A.class
B.class

…

Bytecode-to-
bytecode
Optimizer

A.class
B.class

…
JVM

Virtual call resolution + inlining + other
optimizations that need the call graph

The World of Call Graph Construction [Grove & Chambers 2001]

13

decreasing precision

analysis X

analysis Y

X is less precise
than Y: GX is a
superset of GY

the perfect call
graph: cannot be
computed

Class Hierarchy Analysis (CHA)
• The simplest method for call graph construction

– At the bottom of the previous slide
• Start from main, and perform reachability

– The only tricky part: virtual calls
• Helper function used in CHA: dispatch

– Simulates the effects of the run-time virtual dispatch (a.k.a.
method lookup)

• Note: even CHA gets tricky in the presence of dynamic
class loading, reflection, native methods, etc.
– “Assumption Hierarchy for a CHA Call Graph Construction

Algorithm”, Jason Sawin and Atanas Rountev, IEEE Int. Working
Conference on Source Code Analysis and Manipulation, 2011

14

dispatch
dispatch(call_site s, receiver_class rc)
 sig = signature_of_static_target(s)
 ret = return_type_of_static_target(s)
 c = rc;
 while (c != null)
 if class c contains a method m with
 signature sig and return type ret
 return m
 c = superclass(c)
 print “ERROR: this should be unreachable”

15

One Possible Implementation of CHA
Queue worklist
CallGraph Graph
worklist.addAtTail(main);
Graph.addNode(main)
while (worklist.notEmpty())
 m = worklist.getFromHead();
 process_method_body(m);

16

process_method_body(method m)

17

for each call site s inside m
 if s is a static call or a constructor call or
 a call through super
 add_edge(s)
 if s is a virtual call v.n(…)
 rcv_class = type_of(v);
 for each non-abstract class c that is a
 subclass of rcv_class or rcv_class itself
 x = dispatch(s,c)
 add_edge(s,x)

add_edge
add_edge(call_site s)
 // for static calls, constructor calls, and calls through super
 m = target(s);
 if m is not in Graph
 Graph.addNode(m);
 worklist.addAtTail(m);
 Graph.addEdge(s,m)

add_edge(call_site s, run_time_target x)
 // same here
 18

Example

19

class A { class B extends A {
 void m() { } void m() {
 void n() { } A x = new A();
 static void main(…) { x.n(); // c3 } }
 B b = new B(); class C extends B {
 b.m(); // c1 void m() { }
 A a = b; void n() { } }
 a.m(); // c2 } }

A.main B.m A.n
c1

c2
c3 the “real”

call graph

Example

20

class A { class B extends A {
 void m() { } void m() {
 void n() { } A x = new A();
 static void main(…) { x.n(); // c3 } }
 B b = new B(); class C extends B {
 b.m(); // c1 void m() { }
 A a = b; void n() { } }
 a.m(); // c2 } }

workist: add and then remove A.main
c1: dispatch for rcv_type B -> target B.m
c1: dispatch for rcv_type C -> target C.m

Example
• State after processing c1

– worklist = {B.m,C.m}
– Graph.Nodes = {A.main, B.m, C.m}
– Graph.Edges = { (c1,B.m), (c1,C.m) }

• Edge (c1,C.m) is spurious (infeasible)
– There is no execution of the program in which c1

invokes C.m
• More precise analyses produce fewer spurious

edges
– Typically are more expensive (time/memory)

21

Example

22

class A { class B extends A {
 void m() { } void m() {
 void n() { } A x = new A();
 static void main(…) { x.n(); // c3 } }
 B b = new B(); class C extends B {
 b.m(); // c1 void m() { }
 A a = b; void n() { } }
 a.m(); // c2 } }

c2: call through a, which is of type A
c2: dispatch for rcv_type A -> target A.m
c2: dispatch for rcv_type B -> target B.m
c2: dispatch for rcv_type C -> target C.m

Example
• State after processing c2

– worklist = {B.m,C.m,A.m}
– Graph.Nodes = {A.main, B.m, C.m, A.m}
– Graph.Edges = {(c1,B.m),(c1,C.m),

(c2,A.m),(c2,B.m),(c2,C.m) }
• Edges (c2,A.m) and (c2,C.m) are spurious
• After we are done with A.main, take the next

method at the head of the queue
– in this case B.m

23

Example

24

class A { class B extends A {
 void m() { } void m() {
 void n() { } A x = new A();
 static void main(…) { x.n(); // c3 } }
 B b = new B(); class C extends B {
 b.m(); // c1 void m() { }
 A a = b; void n() { } }
 a.m(); // c2 } }

c3: call through x, which is of type A
c3: dispatch for rcv_type A -> target A.n
c3: dispatch for rcv_type B -> target A.n
c3: dispatch for rcv_type C -> target C.n

Example
• State after processing c3

– worklist = {C.m,A.m,A.n,C.n}
– Graph.Nodes = {A.main, B.m, C.m, A.m, C.n}
– Graph.Edges = {(c1,B.m), (c1,C.m), (c2,A.m), (c2,B.m),

(c2,C.m), (c3,A.n), (c3,C.n) }
• Edge (c3,C.n) is spurious
• The rest of the methods in the queue have empty

bodies, so the rest of the algorithm doesn’t create
any new edges/nodes

25

Resulting Call Graph

26

A.main B.m A.n
c1

c2
c3 the “real”

call graph

A.main B.m
A.n

c1
c2

c3

C.m

A.m

C.n

c2

c1

c3
c2

Rapid Type Analysis
• An analysis that is the next step after CHA

– Guaranteed to produce a call graph that is a subset of
the call graph produced by CHA

– Still quite imprecise. There are many analyses that are
better than RTA

• “type analysis”
– Idea: given a reference/pointer variable, try to figure

out what types of objects this variable may refer/point
to

27

Rapid Type Analysis
• Basic insight: some classes are never instantiated

in reachable methods
– i.e. there is never a new X() expression

• Main reason: programs that are built on top of
libraries
– Large parts of the library code are unused

• When we try to figure out the possible run-time
targets of a virtual call, we can safely ignore classes
that are not instantiated

28

One Possible Implementation of RTA
Queue worklist

CallGraph Graph

worklist.addAtTail(main);

Set instantiated_classes

Map pending_call_sites

Graph.addNode(main)

while (worklist.notEmpty())

 m = worklist.getFromHead();

 process_method_body(m);

29

process_method_body(method m)

30

for each expression new X inside m
 if (X ∉ instantiated_classes)
 add X to instantiated_classes
 resolve_pending(X)
for each call site s inside m
 if s is a static call or a constructor call or
 a call through super
 add_edge(s)
 if s is a virtual call v.n(…)
 rcv_class = type_of(v);
 for each non-abstract class c that is a
 subclass of rcv_class or rcv_class itself
 process_rcv_class(c,s)

process_rcv_class

31

process_rcv_class(class c, call_site s)
 x = dispatch(s,c)
 if c ∈ instantiated_classes
 add_edge(s,x)
 else // c is not currently instantiated,
 // but in the future it may be, so
 // we have to remember this edge
 remember (s,x) in pending(c)

resolve_pending(class c)

32

// class c became instantiated, and
// we need to add all pending edges
for each (s,x) in pending(c)
 add_edge(s,x)

Called by process_method_body :
for each expression new X
 if (X ∉ instantiated_classes)
 add X to instantiated_classes
 resolve_pending(X)

Example

33

class A { class B extends A {
 void m() { } void m() {
 void n() { } A x = new A();
 static void main(…) { x.n(); // c3 } }
 B b = new B(); class C extends B {
 b.m(); // c1 void m() { }
 A a = b; void n() { } }
 a.m(); // c2 } }

A.main B.m A.n
c1

c2
c3 the “real”

call graph

Example

34

class A { class B extends A {
 void m() { } void m() {
 void n() { } A x = new A();
 static void main(…) { x.n(); // c3 } }
 B b = new B(); class C extends B {
 b.m(); // c1 void m() { }
 A a = b; void n() { } }
 a.m(); // c2 } }

worklist: add and then remove A.main
instantiated_classes = {B}
c1: dispatch for rcv_type B -> target B.m
c1: dispatch for rcv_type C -> target C.m

Example
• process_rcv_class(c1,B)

– Since B is instantiated, add edge (c1,B.m)
• process_rcv_class(c1,C)

– Since C is not instantiated, we do not add edge (c1,C.m)
to the call graph
• Remember (c1,C.m) in pending(C)

• State after processing c1
– worklist = {B.m}
– Graph.Nodes = {A.main, B.m}
– Graph.Edges = { (c1,B.m)}

35

Example

36

class A { class B extends A {
 void m() { } void m() {
 void n() { } A x = new A();
 static void main(…) { x.n(); // c3 } }
 B b = new B(); class C extends B {
 b.m(); // c1 void m() { }
 A a = b; void n() { } }
 a.m(); // c2 } }

c2: call through a, which is of type A
c2: dispatch for rcv_type A -> target A.m
c2: dispatch for rcv_type B -> target B.m
c2: dispatch for rcv_type C -> target C.m

Example
• (c2,A): add (c2,A.m) to pending(A)
• (c2,B): add (c2,B.m) to Graph
• (c2,C): add (c2,C.m) to pending(C)
• State after processing c2

– worklist = {B.m}
– Graph.Nodes = {A.main, B.m}
– Graph.Edges = {(c1,B.m), (c2,B.m)}
– pending(A) = {(c2,A.m)}
– pending(C) = {(c1,C.m),(c2,C.m)}

37

Example

38

class A { class B extends A {
 void m() { } void m() {
 void n() { } A x = new A();
 static void main(…) { x.n(); // c3 } }
 B b = new B(); class C extends B {
 b.m(); // c1 void m() { }
 A a = b; void n() { } }
 a.m(); // c2 } }

instantiated_classes = {B,A}
triggers a call to resolve_pending(A), with
pending(A) = { (c2,A.m) }

Example
• resolve_pending(A)

– Graph.Nodes = {A.main, B.m, A.m}
– Graph.Edges = {(c1,B.m), (c2,B.m), (c2,A.m)}
– worklist = {A.m}

• At call site c3: x.n()
– x is of type A => A, B, or C possible
– A and B are instantiated, there is no B.n; so, edge

(c3,A.n) is added to the graph
• A.m and A.n have empty bodies, and the graph is

completed

39

RTA vs. CHA

40

A.main B.m A.n c2 c3

A.m c2

c1

A.main B.m
A.n

c1
c2

c3

C.m

A.m

C.n

c2

c1

c3
c2

RTA vs. CHA
• The key advantage: RTA was able to determine that

C is never instantiated in reachable methods
– This means that C.m and C.n can never be targets

• Of course, this is just one possible source of
imprecision
– Analyses that are “more aggressive” than RTA focus on

some of these sources

41

Some Existing Analyses

42

More Existing Analyses

43

Class Analysis
• Class analysis: given a reference variable x, what

are the classes of the objects that x may refer to?
– a.k.a. “type analysis” (e.g., RTA)
– After a class analysis, it is trivial to construct the call

graph
• As a separate post-processing phase

• Most class analyses construct the call graph on the
fly during the analysis
– For object-oriented languages, “call graph

construction”, “class analysis”, and “type analysis” are
often used as synonyms

• Points-to analysis can be thought of as a particular
form of class/type analysis
– Next: “classic” points-to analysis, closely related to

0-CFA type analysis (see two slides earlier)

44

	Construction of Call Graphs
	Call Graphs
	Map of what is coming next
	Call Graph Construction for C
	Another Example
	Precise Resolution of Function Pointers
	Call Graph Construction for C (cont’d)
	Methods Calls (Invocations in Java)
	Methods Calls (Invocations in Java)
	Call Graphs for Software Understanding
	Call Graphs for Optimizations
	Resolution of Virtual Calls
	The World of Call Graph Construction [Grove & Chambers 2001]
	Class Hierarchy Analysis (CHA)
	dispatch
	One Possible Implementation of CHA
	process_method_body(method m)
	add_edge
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Resulting Call Graph
	Rapid Type Analysis
	Rapid Type Analysis
	One Possible Implementation of RTA
	process_method_body(method m)
	process_rcv_class
	resolve_pending(class c)
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	RTA vs. CHA
	RTA vs. CHA
	Some Existing Analyses
	More Existing Analyses
	Class Analysis

