Assignment 1

CSE 5239 (Rountev)

Due: Sept 12 (Friday) by 2:20 pm

- 1. (10 pts) Consider a control-flow graph G with an entry node ENTRY (a node without predecessors). Assume that every other node in G is reachable from ENTRY. Consider an arbitrary node $n \neq ENTRY$ and let DOM(n) be the set of nodes m such that (1) $m \neq n$ and (2) m dominates n. (Note that in the paper by Cooper et al. discussed in class, DOM(n) contains n by default, while in this problem we exclude n from DOM(n).)
 - Can DOM(n) be empty? Why?
 - Suppose that G is acyclic. Consider two distinct nodes $p, q \in DOM(n)$. Prove that $p \in DOM(q)$ or $q \in DOM(p)$. (Hint: try a proof by contradiction.)
 - Suppose that G contains cycles. We again want to prove that $p \in DOM(q)$ or $q \in DOM(p)$. Does your proof from the previous bullet still work? If yes, why? If no, generalize your proof.
 - Consider two distinct nodes $p, q \in DOM(n)$. In a general G with cycles, is it possible that $p \in DOM(q)$ and $q \in DOM(p)$? If yes, provide an example. If no, provide a proof.
- 2. (5 pts) Prove that dominance is a transitive relation.
- 3. (5 pts) Consider a node $n \neq ENTRY$ and all its predecessor nodes m_i where $i = 1, \ldots, k$ and k > 0. Consider any node p distinct from n and distinct from all m_i . Prove that p dominates n if and only if it dominates all m_i .