
Dynamic Dependence Analysis
• CFGs relevant for dynamic analysis: constructed at

instrumentation time
– For simplicity of presentation, we will discuss

• Intraprocedural: one procedure/method
• Nodes are individual three-address instructions rather than

basic blocks

• Goal 1: tracing (already discussed)
• Goal 2: dynamic control dependences
• Goal 3: dynamic data dependences

1

Tracing and Dependences
• Each three-address instruction in the code is given

an integer ID at instrumentation time
• The simplest possible trace is a sequence of trace

events tei: trace = (te0, te1, …, ten)
– Each event contains an instruction ID

• Dependence: pair (tei, tek) with i<k such that the
first event must happen before the second one
– E.g., tei computes a value and writes it to memory;

then tek reads this value from the same location in
memory (data dependence)

2

Dynamic Dependence Analysis
• Online: as the instructions get executed, their

dependences are discovered on the fly
– Possible output: trace annotated with dependence

info: each trace event has a list of prior events on
which it is dependent

– Another possibility: while the program is running, the
on-the-fly dependences are used for correctness
checking, computing various metrics, etc.

• Offline: just output the trace; after the run, the
trace is analyzed for dependences
– Need more info in the trace: e.g., if an instruction

instance reads/writes a memory location, the memory
address is recorded in the trace event

3

Dominance
• Detour into (mild) graph theory for static analysis
• A CFG node d dominates another node n if every

path from ENTRY to n goes through d
– Implicit assumption: every node is reachable from

ENTRY (i.e., there is no dead code)
• Many uses of this info

– E.g., to perform analysis of loops in a CFG
• Back edge: a CFG edge (n,h) where h dominates n
• Natural loop for (n,h): the set of all nodes m that can reach

node n without going through node h (trivially, includes h)
• h dominates all such nodes m
• h is the header of the natural loop

4

Post-Dominance
• A CFG node d post-dominates another node n if

every path from n to EXIT goes through d
– Implicit assumption: EXIT is reachable from every node
– A relation pdom ⊆ Nodes × Nodes: d pdom n
– The relation is trivially reflexive: d pdom d

• Post-dominance on a CFG is equivalent to
dominance on the reverse CFG (all edges reversed)

5

Control Dependence: Informally
• A node n is control dependent on a node c if

– There exists an edge e1 coming out of c that definitely
causes n to execute

– There exists some edge e2 coming out of c that is the
start of some path that avoids the execution of n

• The decision made at c affects whether n gets
executed: if e1 is followed, n definitely is executed;
if e2 is followed, there is the possibility that n is
not executed at all
– Thus, n is control dependent on c – whether n gets

executed depends on what c does
6

Control Dependence: Formally
• (part 1) n is control dependent on c (where n ≠ c) if

– n does not post-dominate c
– there exists a path from c to n such that n post-

dominates every node on the path except c

• (part 2) n is control dependent on n if
– there exists a path from n to n (with at least one edge)

such that n post-dominates every node on the path
• this implies that n has two outgoing edges
• this case applies to the header of a loop

7

ENTRY

1

2

3

4

5 6

7

8

9 10

Consider all branch nodes c: 1, 4, 7, 8, 10

ENTRY does not post-dominate any other n
1 pdom ENTRY, 1, 9
2 does not post-dominate any other n
3 pdom ENTRY, 1, 2, 3, 9
4 pdom ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 pdom ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT pdom n for any n

2 is control dependent on 1
3, 4, 5, 6 are control dependent on 4
4, 7 are control dependent on 7
9, 1, 3, 4, 7, 8 are control dependent on 8
7, 8, 10 are control dependent on 10

EXIT 8
Note: a node may be control dependent on
several other nodes (e.g., node 3)

Dynamic Control Dependences
• Static control dependences are computed at

instrumentation time
• Dynamic control dependence (tei, tek) for i<k

– Event tei is an instance of CFG node c
– Event tek is an instance of CFG node n
– Node n is statically control dependent on c
– There does not exist an event tej (for i<j<k) such that n

is statically control dependent on the CFG node
corresponding to tej

• For any tek there is a unique tei with this property
– Or, no such tei exists

9

Online Detection of Control Dependences
• Goal: whenever we write an event tek to the trace,

also write the control dep (tei, tek) if it exists
• Maintain a global timestamp TS: the number of

events produced up to this point
– Initialized/incremented as necessary

• For each CFG node c that is a branch, maintain extra
info last(c): the value of TS recorded when the last
instance of c was executed
– E.g., map integer instruction ID  integer timestamp

• When tek occurs: if the corresp. CFG node is n, look at
all c on which n is statically control dependent, and
pick the one with the largest value of last(c)
– This largest timestamp is the i for tei

10

Static Data Dependence Analysis
• Goal: identify all connections between variable

definitions (“write”) and variable uses (“read”)
– x = y + z has a definition of x and uses of y and z

• A definition d reaches a use u if there exists a CFG
path that (1) starts at d, (2) ends at u, and (3) does
not contain a re-definition (i.e., d is not “killed”)
– Reaching definitions: standard compile-time analysis
– Def-use pairs represent static data dependences

• Static analysis is good for scalar variables, but bad
for arrays and pointers
– E.g., a[t1]=… and …=a[t2] , or *p=… and …=*q

11

Dynamic Data Dependence Analysis
• We cannot simply do what we did for control dep

– Cannot just maintain timestamp last(n) for each CFG
node n, and look at all static data dependences

• Solution: for each memory location m that could
be read or written, maintain last(m): the value of
TS recorded the last time m was written
– Implementation: shadow memory

• Whenever an event tek occurs: if this event reads
m, the value of last(m) is the value of i for a
dynamic data dependence (tei, tek)

• Many possible optimizations to reduce cost 12

	Dynamic Dependence Analysis
	Tracing and Dependences
	Dynamic Dependence Analysis
	Dominance
	Post-Dominance
	Control Dependence: Informally
	Control Dependence: Formally
	Slide Number 8
	Dynamic Control Dependences
	Online Detection of Control Dependences
	Static Data Dependence Analysis
	Dynamic Data Dependence Analysis

