
Control-Flow Analysis 



Control-Flow Graph (CFG) 
• Constructed during static (compile-time) analysis 
• Goal: represent the possible “flow of control” 

between different parts of the code 
• Intraprocedural CFG (our focus): represents the 

code in one single procedure/method 
• Interprocedural CFG: combines the CFG for 

several procedures, and shows their calling 
relationships  

• Uses: compiler optimizations, code rewriting,  
testing, instrumentation for run-time analysis 

 2 



CFG Construction 
• Source-code level: e.g. C/C++/Java/C# source 

– Gets ugly: complicated expressions and statements; 
we will not deal with it 

• Intermediate-representation (IR) level 
– Internal representation in a compiler or similar tool 

• E.g., GIMPLE in gcc; LLVM IR; Jimple in Soot 

– Expressions are broken down into a 3-address form, 
using temporary vars to hold intermediate values  

• Binary-code level: Linux/Windows executables 
– E.g., binary rewriting frameworks 

3 



Basic Blocks 
• Nodes: basic blocks; edges: possible control flow  
• Basic block: maximal sequence of consecutive 

three-address instructions such that 
– The flow of control can enter only through the first 

instruction (i.e., no jumps in the middle of the block) 
– Can exit only at the last instruction 

• Advantages of using basic blocks 
– Reduces the cost and complexity of compile-time 

analysis 
– Intra-BB optimizations are relatively easy 
– Reduces the cost of run-time analysis  

 
4 



CFG Construction 
• Given: the entire sequence of instructions 
• First, find the leaders (starting instructions of all 

basic blocks) 
– The first instruction 
– The target of any conditional/unconditional jump 
– Any instruction that immediately follows a 

conditional or unconditional jump 

• Next, find the basic blocks: for each leader, its 
basic block contains itself and all instructions up 
to (but not including) the next leader 
 5 



Example 

6 

Note: this example sets array 
elements a[i][j] to 0.0, for 1 <= i,j <= 10 
(instructions 1-11). It then sets a[i][i] 
to 1.0, for 1 <= i <= 10 (instructions 12-
17). The array accesses in instructions 
7 and 15 based on offset 
computations, assuming row-major 
order, 8-byte array elements, and 
array indexing that starts from 1, not 
from 0.  

First instruction 
Target of 11 
Target of 9 

Follows 9 

Follows 11 

Target of 17 

1. i = 1 
2. j = 1 
3. t1 = 10 * i 
4. t2 = t1 + j 
5. t3 = 8 * t2 
6. t4 = t3 – 88 
7. a[t4] = 0.0 
8. j = j + 1 
9. if (j <= 10) goto (3) 
10. i = i + 1 
11. if (i <= 10) goto (2) 
12. i = 1 
13. t5 = i – 1 
14. t6 = 88 * t5 
15. a[t6] = 1.0 
16. i = i + 1 
17. if (i <= 10) goto (13) 



CFG Example 

7 

ENTRY 

i = 1 

j = 1 

t1 = 10 * i 
t2 = t1 + j 
t3 = 8 * t2 
t4 = t3 – 88 
a[t4] = 0.0 
j = j + 1 
if (j <= 10) goto B3 

i = i + 1 
if (i <= 10) goto B2  

i = 1 

t5 = i – 1 
t6 = 88 * t5 
a[t6] = 1.0 
i = i + 1 
if (i <= 10) goto B6  

EXIT 

B1 

B2 

B3 

B4 

B5 

B6 

 
• Artificial ENTRY and EXIT nodes are often added 

for convenience 
• There is an edge from Bp to Bq if it is possible for 

the first instruction of Bq to be executed 
immediately after the last instruction of Bp 

• This is conservative: e.g., if (3.14 > 2.78) still 
generates two edges 



Single Exit Node (1/2) 
• Single-exit CFG 

– If there are multiple exits (e.g. multiple return 
statements), redirect them to the artificial EXIT node 

– Use an artificial return variable ret 
– return expr; becomes ret = expr; goto exit; 

• We may even rewrite the code to get a single exit 
– E.g. suppose we want to instrument the code to 

record the values of all local vars at procedure exit 
• If there are M locals and N return statements, need to 

insert M*N instrumentation statements 
• If we rewrite the code to have just one exit: only M 

 8 



Single Exit Node (2/2) 
• It gets ugly with exceptions 

– Java: throw; uncaught exceptions (e.g., null pointer 
exception, or an exception thrown by a callee) 

– C: setjmp and longjmp  
– Usually we will ignore these 

• Common assumption (we will use this) 
– Every node is reachable from the entry node 
– The exit node is reachable from every node 

• Not always true: e.g. a server thread could be while(true) …   

• A number of techniques (e.g. computation of 
control dependencies) depends on having a 
single exit and on the reachability assumption 
 

9 



Simple Dynamic Analysis: BB Profiling 
• How many times did each BB execute? 

– “Node profiling”, “vertex profiling”, “BB profiling” 

• Simple instrumentation  
– Separate counter for each BB; increment upon BB 

entry; record all counters at the end of the program 

• Issue: some of the run-time work is redundant 
– Too many counters are used; the total number of 

increments at run time is unnecessarily large 
• More on this later  

– Important: this is not sampling – here we count every 
run-time “BB enter” event 

10 



Possible Implementations for BB Profiling 
• Source-to-source instrumentation 

– Run a source-to-source transformation tool 
– Compile the resulting code; run the executable 
– Messy – we will stay away from it 

• IR-level instrumentation (requires compiler hacking) 
– Inside a compiler: get the IR, change it by inserting IR 

statement for instrumentation, generate code 
– Run the executable 
– Example: gprof for C/C++; Soot for Java 

• Binary instrumentation (lower level of abstraction) 
– Link-time or run-time code transformation of the binary 

code (after compilation) 
– Example: Valgrind and PIN (run-time); Diablo (link-time)  

 
11 



IR-Level Node Instrumentation 
1. b1++ 
2. sum = 0 
3. i = 1 
4. b2++ 
5. if i > n goto 18 
6. b3++ 
7. t1 = addr(a) – 4 
8. t2 = i * 4 
9. t3 = t1[t2] 
10. t4 = addr(a) – 4 
11. t5 = i * 4 
12. t6 = t4[t5]  
13. t7 = t3 * t6  
14. t8 = sum + t7 
15. sum = t8  
16. i = i + 1 
17. goto 4 
18. b4++ 
19. … 12 



Edge Instrumentation 
• Another possible solution: to obtain a BB profile, we 

can instrument edges instead of nodes 
• Given an edge profile, we can determine the 

corresponding BB profile as a post-processing step 
– Just sum up the counts along all incoming edges 

• To insert edge instrumentation: essentially, create a 
new basic block for each edge, and redirect the flow 
of control appropriately 

• In most cases, we want both a node profile (which 
basic blocks do most of the work?) and an edge 
profile (which branches are hot?) 

• Optimal placement of node/edge counters – paper 
by Tom Ball and Jim Larus 

13 



IR-Level Edge Instrumentation 
1. sum = 0 
2. i = 1 
3. e1++ 
4. if i > n goto 18 
5. e2++ 
6. t1 = addr(a) – 4 
7. t2 = i * 4 
8. t3 = t1[t2] 
9. t4 = addr(a) – 4 
10. t5 = i * 4 
11. t6 = t4[t5]  
12. t7 = t3 * t6  
13. t8 = sum + t7 
14. sum = t8  
15. i = i + 1 
16. e3++ 
17. goto 4 
18. e4++ 
19. … 14 



Profiling vs Tracing 
• A profile gives us the frequency of events 

– How many times was this BB executed? 
– How many times was this CFG edge followed? 

• A trace gives us the sequence of run-time events 
– E.g. for a BB trace: B_1, B_2, …, B_i, …, B_N 

• Simple solution 
– Unique compile-time ID for each BB (e.g., integer value) 
– Instrument the BB entry to write the ID to a trace file 
– Post-mortem analysis: after run-time execution, just 

traverse the trace file 
• More efficient solution: only record IDs for BB that 

are targets of predicates 
• Even better solution: Ball and Larus 

15 



Instrumentation for Tracing 
1. Write(1) 
2. sum = 0 
3. i = 1 
4. Write(2) 
5. if i > n goto 18 
6. Write(3) 
7. t1 = addr(a) – 4 
8. t2 = i * 4 
9. t3 = t1[t2] 
10. t4 = addr(a) – 4 
11. t5 = i * 4 
12. t6 = t4[t5]  
13. t7 = t3 * t6  
14. t8 = sum + t7 
15. sum = t8  
16. i = i + 1 
17. goto 4 
18. Write(4) 
19. … 

Recorded: 
1 
2 
3 
2 
3 
… 
3 
2 
4 

16 



Instrumentation: Only Targets of Predicates 
1. Write(1) 
2. sum = 0 
3. i = 1 
4. Write(2) 
5. if i > n goto 18 
6. Write(3) 
7. t1 = addr(a) – 4 
8. t2 = i * 4 
9. t3 = t1[t2] 
10. t4 = addr(a) – 4 
11. t5 = i * 4 
12. t6 = t4[t5]  
13. t7 = t3 * t6  
14. t8 = sum + t7 
15. sum = t8  
16. i = i + 1 
17. goto 4 
18. Write(4) 
19. … 

Recorded: 
3 
3 
… 
3 
4 

17 



Record Only Targets of Predicates 
• Recovering the entire trace 

 

18 

pc := entry_node(G) 
output(pc) 
do 
 if not IsPredicate(pc) 
 then pc := successor(G,pc) 
 else  pc := read_from_trace() 
 output(pc) 
until pc = exit_node(G)  
 



Instrumentation: Only Targets of Predicates 
1. Write(1) 
2. sum = 0 
3. i = 1 
4. Write(2) 
5. if i > n goto 18 
6. Write(3) 
7. t1 = addr(a) – 4 
8. t2 = i * 4 
9. t3 = t1[t2] 
10. t4 = addr(a) – 4 
11. t5 = i * 4 
12. t6 = t4[t5]  
13. t7 = t3 * t6  
14. t8 = sum + t7 
15. sum = t8  
16. i = i + 1 
17. goto 4 
18. Write(4) 
19. … 

Recorded: 
3 
3 
… 
3 
4 

19 

Recovered: 
1 
2 
3 
2 
3 
2 
… 
3 
2 
4 



Path Profiling 
• Until now: node profiles and edge profiles 
• Path profile for a directed acyclic graph (DAG) 

– E.g., a procedure without loops 
– Or, the body of a loop (without the loop back edge) 
– Assume a single entry node and a single exit node 

• An execution of the DAG is a path from entry to exit 
• Consider many executions of the DAG 

– E.g., many calls to the loop-free procedure 
– Or, many executions of the loop body 

• Profile: how many times was each entry-to-exit path 
executed? 

• Low overhead – comparable with edge profiling! 
20 


	Control-Flow Analysis
	Control-Flow Graph (CFG)
	CFG Construction
	Basic Blocks
	CFG Construction
	Example
	CFG Example
	Single Exit Node (1/2)
	Single Exit Node (2/2)
	Simple Dynamic Analysis: BB Profiling
	Possible Implementations for BB Profiling
	IR-Level Node Instrumentation
	Edge Instrumentation
	IR-Level Edge Instrumentation
	Profiling vs Tracing
	Instrumentation for Tracing
	Instrumentation: Only Targets of Predicates
	Record Only Targets of Predicates
	Instrumentation: Only Targets of Predicates
	Path Profiling

