
Computer Science and Engineering  College of Engineering  The Ohio State University

Model-View-Controller (MVC) 
Design Pattern

Lecture 23



Computer Science and Engineering  The Ohio State University

Motivation
Basic parts of any application:

Data being manipulated
A user-interface through which this 
manipulation occurs

The data is logically independent from 
how it is displayed to the user

Display should be separately 
designable/evolvable

Example: grade distribution in class
Displayed as both pie chart and/or bar chart

Anti-example: see BigBlob
Presentation, logic, and state all mixed 
together



Computer Science and Engineering  The Ohio State University

Model-View-Controller Pattern

Model
The data (ie state)
Methods for accessing and modifying state

View
Renders contents of model for user
When model changes, view must be 
updated

Controller
Translates user actions (ie interactions 
with view) into operations on the model
Example user actions: button clicks, menu 
selections



Computer Science and Engineering  The Ohio State University

Basic Interactions in MVC

Model

Controller

View

Input

Output

“change data”

“change
display”

“user
action”



Computer Science and Engineering  The Ohio State University

Implementing Basic MVC in Swing

Mapping of classes to MVC parts
View is a Swing widget (like a JFrame & JButtons)
Controller is an ActionListener
Model is an ordinary Java class (or database)

Alternative mapping
View is a Swing widget and includes (inner) 
ActionListener(s) as event handlers
Controller is an ordinary Java class with “business 
logic”, invoked by event handlers in view
Model is an ordinary Java class (or database)

Difference: Where is the ActionListener?
Regardless, model and view are completely 
decoupled (linked only by controller)



Computer Science and Engineering  The Ohio State University

Mechanics of Basic MVC
Setup

Instantiate model
Instantiate view

Has reference to a controller, initially null
Instantiate controller with references to both

Controller registers with view, so view now has a (non-
null) reference to controller

Execution
View recognizes event
View calls appropriate method on controller
Controller accesses model, possibly updating it
If model has been changed, view is updated (via the 
controller)

Example: CalcMVC
CalcModel, CalcView, CalcController
Note: View includes (gratuitous) reference to model
Note 2: The example code has a bug! Can you find it?



Computer Science and Engineering  The Ohio State University

Extended Interactions in MVC

Model

Controller

View

Input

Output

“change data”

“I have
changed”

“user
action”

“give me
data”



Computer Science and Engineering  The Ohio State University

Extended Pattern

Background: Observer pattern
One object is notified of changes in another
In extended MVC, view is an observer of 
model

Application within MVC
Asynchronous model updates

Model changes independent of user actions
Associated view must be notified of change in 
order to know that it must update

A model may have multiple views
But a view has one model
All views have to be updated when model 
changes



Computer Science and Engineering  The Ohio State University

Mechanics of Extended MVC
Setup

Instantiate model
Has reference to view, initially null

Instantiate view with reference to model
View registers with model

Instantiate controller with references to both
Controller registers with view

Execution
View recognizes event
View calls appropriate method on controller
Controller accesses model, possibly updating it
If model has been changed, it notifies all 
registered views
Views then query model for the nature of the 
change, rendering new information as appropriate



Computer Science and Engineering  The Ohio State University

Problems with Classic MVC

Controller might need to produce its own 
output

eg Popup menu
Some state is shared between controller 
and view, but does not belong in model

eg Selection (highlighted text)
Direct manipulation means that user can 
interact (control) visual elements (views)

eg Scrollbar 
Overall issue: Input and output are often 
intermingled in a GUI

Result: View and controller are tightly coupled



Computer Science and Engineering  The Ohio State University

Delegate-Model Pattern

Model
Data, same as before

Delegate
Responsible for both input and output
A combination of both view and controller

Many other names
UI-Model
Document-View



Computer Science and Engineering  The Ohio State University

Basic Interactions in Delegate Model

Model

Controller

View

Input

Output

“change data”

“change
display”

“user
action”



Computer Science and Engineering  The Ohio State University

Basic Interactions in Delegate Model

Model

Controller

View

Input

Output

“change data”

“I have
changed”

“give me
data”

Delegate



Computer Science and Engineering  The Ohio State University

Mechanics of Delegate Model

Setup
Instantiate model

As with MVC, model does not know/care about UI
Instantiate delegate with reference to model

Execution
Delegate recognizes event and executes 
appropriate handler for the event
Delegate accesses model, possibly updating it
If model has been changed, UI is updated

Example: CalcV3
CalcModel, CalcViewController
Note: CalcModel is exactly the same as with 
CalcMVC



Computer Science and Engineering  The Ohio State University

Notes

Litmus test: Swapping out user 
interface

Can the model be used, without 
modification, by a completely different UI?
eg Swing vs console text interface

Model can be easily tested with JUnit
Model actions should be quick

GUI is frozen while model executes
Alternative: multithreading, which gets 
much more complicated



Computer Science and Engineering  The Ohio State University

Supplemental Reading

Sun Developer Network
“Java SE Application Design with MVC”
http://java.sun.com/developer/technicalAr
ticles/javase/mvc/

OnJava article
“A Generic MVC Model in Java”
http://www.onjava.com/pub/a/onjava/20
04/07/07/genericmvc.html

http://java.sun.com/developer/technicalArticles/javase/mvc/
http://java.sun.com/developer/technicalArticles/javase/mvc/
http://www.onjava.com/pub/a/onjava/2004/07/07/genericmvc.html
http://www.onjava.com/pub/a/onjava/2004/07/07/genericmvc.html


Computer Science and Engineering  The Ohio State University

Summary

Motivation: Information hiding
Data (state) vs user interface
State should be agnostic of user interface

Model-View-Controller
Model contains state (data)
View displays model to user (presentation)
Controller modifies model (business logic)

UI-Model
Allows for tight coupling between view and 
controller
Preserves most significant separation


	Model-View-Controller (MVC) Design Pattern
	Motivation
	Model-View-Controller Pattern
	Basic Interactions in MVC
	Implementing Basic MVC in Swing
	Mechanics of Basic MVC
	Extended Interactions in MVC
	Extended Pattern
	Mechanics of Extended MVC
	Problems with Classic MVC
	Delegate-Model Pattern
	Basic Interactions in Delegate Model
	Basic Interactions in Delegate Model
	Mechanics of Delegate Model
	Notes
	Supplemental Reading
	Summary

