
Computer Science and Engineering College of Engineering The Ohio State University

CSE 421 Course Overview
and Introduction to Java

Lecture 1

Computer Science and Engineering The Ohio State University

Learning Objectives

Knowledgeable in how sound software
engineering principles for component-
based design are manifested in a
current popular programming language

SE principles: Resolve
Programming language: Java

Proficient at Java programming
Proficient at use of industrial-strength
software development tools
Informed in good programming
practices

Computer Science and Engineering The Ohio State University

Pre- and Post-requisites

Required background: CSE 321
Typed imperative programming paradigm

Control flow, types, variables, arrays
Encapsulation and information hiding

Client view vs implementation view
Abstract vs concrete templates/instances

Behavioral specifications
Mathematical model and constraints
Abstraction correspondence and conventions
Requires, ensures, and alters clauses

Preparation for: CSE 560
Practical programming patterns
Tool support for software development

Computer Science and Engineering The Ohio State University

Course Content

Language
Tools
Good programming practices

Computer Science and Engineering The Ohio State University

Course Content 1: Language

Core syntax and features
Declarations, assignment, control flow
Methods, objects, classes, interfaces
Inheritance, polymorphism
Generics, exceptions

Packages (ie Java component catalogs)
Collections (eg Map, Set, Queue, List…)
Logging, IO, Swing for GUIs

Computer Science and Engineering The Ohio State University

Course Content 2: Tools

Eclipse
Industrial-strength open source IDE
Many (free) extensions available

Javadoc
Industry-standard documentation utility for Java
programs

JUnit
Industry-standard library for unit testing
programs

CVS/SVN
Widely-adopted versioning systems for co-
ordinating team development

Computer Science and Engineering The Ohio State University

Course Content 3: Good Practices

Problem:
Complex language mechanisms make it easy to
produce code that is wrong, brittle, inextensible,
and hard to maintain

“Solution”:
Good programming practices form a discipline
that helps (but does not guarantee) developers
write better code

Simple syntactic idioms
Naming conventions, coding conventions
Decoupling by “programming to the interface”

Complex design patterns
Single-point of control (eg factories, MVC)
Maintaining an invariant (eg immutable,
singleton)

Computer Science and Engineering The Ohio State University

What is Java?
Developed by Sun Microsystems

James Gosling
Birth: 1994 (progenesis from Oak)

Based on C/C++
Similar syntax, control, data structures
Imperative, object-oriented

Originally designed for building
Web/Internet applications

Now often viewed as a “general purpose”
programming language

Currently enjoys wide-spread acceptance
Had immediate impact, then continued
success

Computer Science and Engineering The Ohio State University

Volume of Google Searches

Java C#C++ PHPPerl

Computer Science and Engineering The Ohio State University

Major Java Myths

1. Java is a small, simple language
True initially, but every revision to the
language has added functionality and
complexity

2. Java does not have pointers
References (ie pointers) are ubiquitous

3. Once I start using Java, I can forget
all that Resolve/C++ stuff

Understanding sound principles for
component-based software is even more
important

Computer Science and Engineering The Ohio State University

Resources

On line tutorials from Sun (“trails”)
http://java.sun.com/docs/books/tutorial

On line API documentation
http://java.sun.com/javase/6/docs/api

Carmen
http://carmen.osu.edu
class news, discussions, grades
lab submission (in “dropbox”)

Class website
Handouts, lecture notes, lab assignments
Pointers to more resources

Computer Science and Engineering The Ohio State University

OS / architecture

The Java Virtual Machine (JVM)

An abstract computer architecture
The software that executes Java programs
Part of Java Runtime Environment (JRE)

Java program compiled into bytecode
Java bytecode then interpreted by JVM

MyProg.java

MyProg.class

javac

Java program
(text file)

Java bytecode
(binary)

java

compile
interpret

JVM

Computer Science and Engineering The Ohio State University

Implications of JVM

Portability
Sun slogan: “Write once, run anywhere”
JVM is ubiquitous

Environment configuration
path variable

for shell to find java / javac executables
classpath variable

for JVM to find bytecode at execution time
Dynamic extensibility

JVM can find bytecode on-the-fly
Performance

Extra layer comes at (small) penalty in
performance

Computer Science and Engineering The Ohio State University

Environment Setup: JDK 1.5

Version 1.5 == version 5
Lab: CL 112 (& Baker 310 if available)
http://www.cse.ohio-state.edu/cs/labs.shtml
Follow these steps:

log into the solaris (ie stdsun) or linux (ie stdlogin)
environment
subscribe to JDK-CURRENT
$ subscribe JDK-CURRENT
log out and log back in

Confirm set-up
$ java –version
java version “1.5.0_08”
. . .

Computer Science and Engineering The Ohio State University

Install Java Platform at Home

Can be installed on different platforms:
Solaris, Windows, Linux, …

Trail: Getting Started > “Hello World!”
Download OS-specific Java Development Kit (JDK)

Tools for program development (eg javac)
JRE

Create simple program (with a text editor)
Compile (with javac)
Run (with java)

Make sure to download:
J2SE JDK (not J2EE, not JRE)
Version 6 (1.6.0_07, ie update 7)

Computer Science and Engineering The Ohio State University

Getting Started:
1. Creating Source File

Using any text editor:
Create a file HelloWorldApp.java
Copy the following code into this file:

public class HelloWorldApp {
public static void main(String[] args) {

// Display "Hello World!"
System.out.println("Hello World!");

}
}

Note:
Class name must match file name
Java is CASE SENSITIVE!

Computer Science and Engineering The Ohio State University

Getting Started:
2. Compiling the Program

Compile using javac
$ javac HelloWorldApp.java

Generates a file named HelloWorldApp.class
$ ls
HelloWorldApp.class HelloWorldApp.java

Problem
javac: command not found

Cause
Shell can not find javac executable

Solutions
Use full path on command line
$ /usr/local/jdk1.5.0_08/bin/javac HelloWorldApp.java

Set path environment variable
$ export PATH=$PATH:/usr/local/jdk1.5.0_08/bin/javac

Computer Science and Engineering The Ohio State University

Getting Started:
3. Running the Program

From same directory, run using java
$ java HelloWorldApp
Hello World!

Note:
argument is HelloWorldApp, not a file (.java or .class)

Problem
Exception in thread "main" java.lang.NoClassDefFoundError:

HelloWorldApp

Cause
JVM can not find HelloWorldApp bytecode (ie .class file)

Solutions
Explicitly set classpath on command line
$ java –classpath ~/421/example HelloWorldApp

Set classpath using environment variable
$ export CLASSPATH=.:~/421/example

Computer Science and Engineering The Ohio State University

Language Basics: Statements
Similar to C/C++
Control flow:

if, if-else, if-else if
switch
for, while, do-while
break
continue

Statements
Separation with ;
Blocks with { . . . }

Comments with // or /* . . . */
Operators

arthmetic: + - * / % ++ -- …
logical (for booleans): & | ^ ! && ||
bit (for integer types): & | ^ ~ << >> >>>
relational: == != < > <= >=

Computer Science and Engineering The Ohio State University

Good Practice: Single-Statement Conditionals

Always include body of if-else in
braces, even if it is a single statement
The following is correct, but
discouraged:

if (!isDone)
retry = true;

Instead, write:
if (!isDone) {

retry = true;
}

Computer Science and Engineering The Ohio State University

Supplemental Reading

Sun trails
Getting Started
Learning the Java Language > Language Basics

Java overview white paper
http://java.sun.com/docs/white/langenv/

Another walk-through of simple application
“Essentials of the Java Programming Language,
Part 1”
http://developer.java.sun.com/developer/onlineTr
aining/Programming/BasicJava1/compile.html
Lessons 1 and 2

Computer Science and Engineering The Ohio State University

Summary

Main course learning objective
Applying solid SE principles in Java
programming

Course content
Language, tools, good practices

JVM
.java (source) vs .class (bytecode)
javac (compiler) vs java (interpretter)

Environment configuration
Setting class and classpath

Sample program: Hello World

	CSE 421 Course Overview and Introduction to Java
	Learning Objectives
	Pre- and Post-requisites
	Course Content
	Course Content 1: Language
	Course Content 2: Tools
	Course Content 3: Good Practices
	What is Java?
	Volume of Google Searches
	Major Java Myths
	Resources
	The Java Virtual Machine (JVM)
	Implications of JVM
	Environment Setup: JDK 1.5
	Install Java Platform at Home
	Getting Started:�1. Creating Source File
	Getting Started:�2. Compiling the Program
	Getting Started:�3. Running the Program
	Language Basics: Statements
	Good Practice: Single-Statement Conditionals
	Supplemental Reading
	Summary

