Object-Oriented Languages

[
Chapter 9

e
Classes

* Aclass is a blueprint for creating objects

class Rectangle {
public double height, width;
public double area() {
return height * width;

}

— This is Java code; the equivalent C++ code is very
similar

e Class members: methods and fields

Objects

 The central concept of object-oriented
programming

e In C++ and Java, they are instances of classes,
created through new

— E.g., when expression new Rectangle() is evaluated, a

new object of class Rectangle is created and
initialized

— “instance” = “object”

— “class X is instantiated” = “an instance of X is created”

e
References in Java/Pointers in C++

e Objects are manipulated indirectly through object
references (pointers)
main(...) { // Java code
Rectangle x;
X = new Rectangle(); // 1) Create a Rectangle object in memory
// 2) Produce a reference value which is
// ahandle to this object
// 3) Assign this reference value to x
x.width = 3.14; // 1) Use the r-value of x to get to the object
} // 2) Assign based on the I-value of field width

— X is a variable of type “reference to Rectangle objects”

e C++: Rectangle* x; x = new Rectangle();

— X is a variable of type “pointer to Rectangle objects” .
e

-
Creation of Objects

 During the evaluation of X = new Rectangle()

— A new instance (object) of class Rectangle is created
on the heap

— A reference (pointer) to this instance is produced
e This is the result of evaluating the new expression

— The appropriate constructor of the class is called to
initialize the new object

— x is assigned this reference (pointer) value

e e.g. the value may be the address of the first byte of the
object’s memory

e or the value may be some internal handle to the actual
object (e.g., index in some internal table, which itself
contains the address of the first byte)

5

-
Destruction of Objects

e C++: each new must have a corresponding delete
— X = new Rectangle(); ... delete x;

* Java: dead objects are reclaimed automatically
by a garbage collector (GC)

— X = new Rectangle(); // after you stop using the
object, GC may figure out it is dead

e C++ destructors: called when the programmer
manually destroys the object with delete

— class Rectangle { ... “Rectangle() {...} // destructor }
e Java finalizers: called when the object is collected
— class Rectangle { ... void finalize() {...} // finalizer }

6

s
Members: Fields and Methods

 Two separate kinds: instance members and static
members

— Instance members: each instance of the class has a
separate copy of this member

Rectangle a, b, c; object1
height:1.0

a = new Rectangle(); a " widthas

b = new Rectangle(); . /'

a.height = 1.0; a.width = 3.6; ,
object2

b.height = 2.2; b.width = 5.0; b [—» height:2.2
width:5.0

c=a;

e
Members: Fields and Methods (C++)

e C++: x->f is shorthand (syntactic sugar) for (*x).f

e Expression x evaluates to pointer value that points to the
object; expression *x evaluates to the actual object; *x->f
evaluates to the field f of that object (f is not static — why?)

Rectangle *a, *b, *c;
objectl
- . height:1.0
a = new Rectangle(); a [—» Sl
b = new Rectangle();] /'
a->height = 1.0; a->width = 3.6; .
object2
b->height = 2.2; b->width = 5.0; i I s

c=a;

s
Instance Methods

 An instance method operates on objects
— Method m is invoked on the object

double area() { return height*width;}

in reality, this is syntactic sugar for

double area(Rectangle this) { // Java
return this.height * this.width; }

double area(Rectangle* this) { // C++
return this->height * this->width; }

 Thereis an implicit formal parameter this: a reference to
the object on which the method was invoked

— Calls x.area() and x->area() are, in essence, calls area(x)
9

s
Methods Calls

e Calling an instance method: there is an object on
which we are calling it

— x.m() in Java, x->m() in C++

Rectangle *a, *b, *c;
objectl
a = new Rectangle(); height:1.0
a H—» .

. width:3.6
a->height = 1.0; /VI
a->width = 3.6; ‘

C=a; this
for
double result = c->area(); method

Method Overloading (Java)

A class may have more than one method with
the same name

— the name is “overloaded”

All overloaded methods must have different
signatures

— Signature: method name + types of formal
parameters

double area() { ... } 2 signature area()

double area(int precision) { ... } 2 signature
area(int)

11

e
Constructors

e Constructors are used to set up the initial state of
new objects

public Rectangle(double height, double width) {
this.height = height; this.width=width; }

* x = new Rectangle(1.1, 2.3);

— A new object is created: with default values 0.0 in
Java, and undefined values in C++

 The constructor is invoked on this object; the fields are
initialized with 1.1 and 2.3

— A reference to the object is assigned to x

12

e
Inheritance

e classBextendsA{... }

— Single inheritance: only one superclass (Java)
e class B : public A1, A2, A3{...}

— Multiple inheritance: several superclasses (C++)
e Every member of A is inherited by B

— If a field f is defined in A, every object of class B has
an f field

— If a method m is defined in A, this method can be
invoked on an object of class B

* B may declare new members

13

-
Example

class Rectangle {
private double height, width;
public Rectangle(double h, double w){ ... }
public double getHeight() { return height; }
public double getWidth() { return width; }
public double area() { ... } }

class SwissRectangle extends Rectangle {
private int hole_size;
public SwissRectangle(double h, double w, int hs) { ... }
public void shrinkHole() { hole_size--; }
public double area() { ... } // overridden }

14

e
Constructors and Inheritance

e Constructors are not inherited

e A constructor in a subclass B must invoke a
constructor in the superclass A

— (this is a bit of an oversimplification)

 The constructor of superclass A initializes the
part of the “object state” that is declared in A

— Sets up values for fields declared in A and inherited
by the subclasses
class SwissRectangle extends Rectangle {
private int hole_size;
public SwissRectangle(double h, double w, int hs)
{ super(h,w); hole_size = hs; }

15

s
Inheritance of Methods

e |f a subclass declares a method with the same
name but a different signature, we have
overloading
— Either method can be invoked on an instance of the

subclass

e |f a subclass declares a method with the same
signature, we have overriding

— Only the new method applies to instances of the
subclass

-
Polymorphism of References

 Reference variables for A objects also may points
to B objects
— A x=new B() in Java; A* x = new B() in C++

e Simplistic view: the type of x is pointer
(reference) to instances of A

e Correct view: pointer to instances of A or
instances of any subclass of A

— If Cis a subclass of B, variable x can also point to
instances of C

— Poly (many) morph (form) ism

17

-
Method Invocation — Compile Time

 What happens when we have a method
invocation of the form x.m(a,b)?

 Two very different things are done
— At compile time, by the Java compiler (javac)
— At run time, by the Java Virtual Machine
At compile time, a target method is associated
with the invocation expression
— Terms: compile-time target, static target
— The static target is based on the declared type of x

-
Method Invocation — Compile Time

class A { void m(int p, int q) {...} ... }

class B extends A { void m(intr, ints) {...} ... }
A X;

X = new B();

x.m(1,2);

* Since x has declared type A, the compile-time target is
method m in class A

 javac encodes this in the bytecode (classname.class)

e virtualinvoke x,<A: void m(int,int)>

e
Method Invocation — Run Time

 The Java virtual machine loads the bytecode and
starts executing it

e When it tries to execute instruction virtualinvoke
X,<A: void m(int,int)>
— Looks at the class Z of the object referenced by x

— Searches Z for a method with signature m(int,int) and
return type void

— If Z does not have it, goes to Z's superclass, and so on
upwards, until a match is found

Method Invocation — Run Time

 The run-time (dynamic) target: “lowest” method
that matches the signature and the return type
of the static target method

— “Lowest” with respect to the inheritance chain from Z
to java.lang.Object

* Once the JVM determines the run-time target
method, it invokes it on the object that is
referenced by x

 Terms: virtual dispatch, method lookup

21

s
Virtual Methods in C++

class A { virtual void m(int p, int q) {...} ... }
class B : public A
{ virtual void m(intr, ints) {...} ... }
A* x;
X = new B();

x->m(1,2);

e Since x has declared type A*, the compile-time target is
method m in class A

e The run-time targetisminB

e Without the keyword virtual, the run-time target will be the

same as the compile-time target
22

-
Terminology

* |[nvocation x.m(a,b) “sends a message m” to the
object referenced by x
— This object is the receiver object

— The method that contains call x.m(a,b) belongs to the
sender object

e Dynamic binding of the message/call (virtual
dispatch): mapping the message (i.e., the call) to
a method

 Polymorphic call: more than one possible run-
time target

23

s
Abstract Classes and Methods

e Abstract class: instances of it cannot be created

— Only instances of its subclasses
e Abstract methods

— No code: just name, parameter types, and return
type

— Abstract methods must be overridden in subclasses,
by concrete methods

e “concrete” = “non-abstract”

24

s
Abstract Classes

e Abstract class: class that contains abstract methods
— abstract void m(int x); // Java
— virtual void m(int x) = 0; // C++

 We cannot say new X() if X is abstract. Why?

* An abstract method can be the compile-time target of a
method call

— But not the run-time target, obviously

e Sometimes non-abstract classes are referred to as
“concrete classes”

Interfaces in Java

e Very similar to abstract classes in which all
methods are abstract

e A Java class has only one superclass, but can
implement many interfaces
— class Y extends X implements A, B{ ... }

* A reference variable can be of interface type, and
can refer to any instance of a class that
implements the interface

 An interface method can be the compile-time
target of a method call

Example

interface X { void m(); }
interface Y { void n(); }
abstract class A implements X {
void m() { ... }
abstract void m2();

}
class B extends A implements Y {
void m2(){ ... }
void n() {...}
}
X x = new B(); x.m();
Yy = new B(); y.n(); compile-time
A a = new B(); a.m2(); targets

27

s
Static Methods and Fields

e Static field: a single copy for the entire class
e Static method: not invoked on an object

— Just like a regular procedure (function) in a
procedural language (e.g.. C, Pascal, etc.)

 Terminology
— static method/field = class method/field
— instance method/field = non-static method/field

.
Classic Example (Java)

class X { ...
private static int num = 0;
// constructor
public X() { num++; }
public static int numinstances()
{ return num; }
}
in_ main:
X x1 = new X(); X x2 = new X();
int n = X.numlInstances(); memmsp> returns 2

29

s
Classic Example (C++)

class X { ...

private: static int num;

public: X();

public: static int numinstances();
}
int X::num =0;
X::X() { num++; }
int X::numlinstances() { return num; }
in main:

X* x1 = new X; X* x2 = new X;
int num = X::numinstances(); mssssd returns 2

30

-
Example: Singleton Pattern (Java)

class Logger {
private Logger() { }
private static Logger instance = null;
public static Logger getinstance() {
if (instance == null)
instance = new Logger();
return instance;

}

client code: Logger.getinstance().writeLog(...)

31

-
Objects in C++: Pointers vs. Values

main() { ...
Rectangle* x; // Pointer variable on the call stack
X = new Rectangle(2.3,7.8); // New object on the heap
Rectangle y(4.5,0.1); // Object variable on the call stack
// y’s constructor called when execution reaches the declaration
double z = f(x,y);
// y’s destructor called at the end of the method

}

double f(Rectangle* a, Rectangle b) {
// a: Pointer variable on the call stack
// b: Object variable on the call stack
// Parameter passing: the copy constructor of b is called
// Equivalent to a call b.Rectangle(y)
return a->width + b.height;

}

e A default copy constructor provided by the compiler: copies field-by-field
 The programmer may choose to implement her own copy constructor
— Rectangle(Rectangle& other) { ... }

32

-
Implementation Techniques for Java

e The compiler takes as input source code

— Oracle/Sun provides a standard compiler; others can
build their own compilers if they want

— Typically, class A is stored in file A.java
e Exception: nested classes
e Compiler output: Java bytecode
— A.java -> A.class

— A standardized platform-independent representation
of Java code

— Essentially, a programming language that is
understood by the Java Virtual Machine

-
Rectangle.class

class Rectangle extends java.lang.Object {
public double height; public double width;
Rectangle();
public double area();
}
Rectangle()
O aload_0
1 invokespecial #3 <Method java.lang.Object()>
4 return
double area()
Oaload 0
1 getfield #4 <Field double height>
4 aload_0
5 getfield #5 <Field double width>
8 dmul
9 dreturn

34

s
Execution Model

e Java bytecode is executed by a Java Virtual
Machine (JVM)

— Oracle/Sun provides several kinds of JVMs for various
platforms (e.g., Solaris, Wintel, etc.)

— Several other vendors for JVMs

e E.g., IBM sells a JVM that is performance-tuned for
enterprise server applications

e Platform independence: as long as there are
JVMs available, the exact same Java bytecode
can be executed anywhere

JVM

 There are two ways to execute the bytecode
* Interpretation: the VM just executes each
bytecode instruction itself
— Initial JVMs used this model

 Compilation: the VM uses its own internal

compiler to translate bytecode to native code for
the platform

— The native code is executed by the platform
— Faster than interpretation

Compilation Inside a VM

e Just-in-time: the first time some bytecode needs

to be executed, it is compiled to native code on
the fly

— Typically done at method level: the first time a
method is invoked, the compiler kicks in

— Problems: compilation has overhead, and the overall
running time may actually increase

* Profile-driven compilation

— Start executing through interpretation, but track “hot
spots” (e.g., frequently executed methods), and after
a certain threshold is reached, point compile them

Lifetimes and Memory Management

e Static allocation: address determined once and
retained throughout the execution of the program

— E.g., static fields in C++, Java

e Stack-based allocation: local variables of
methods, plus the formal parameters (incl. this)

 Heap-based allocation: space allocated and
deallocated manually by the programmer
— C: A* a = (A*)malloc(sizeof(A)); ... free (a);
— C++: A* a = new A(); ... delete a;

— Java: A a = new A(); but deallocation is done

automatically, through garbage collection N
s

-
Garbage Collection

e Slides based on course materials by Prof. Kathryn
McKinley, UT Austin and Microsoft Research

e Explicit (manual) memory management
— More code to maintain
— Correctness

* Free an object too soon - crash
* Free an object too late - waste space
 Never free - at best waste, at worst fail

— Efficiency can be very high

— Gives programmers more control over the run-time
behavior of the program

39

-
Garbage Collection

 Automatic management through garbage collection

— Reduces programmer burden: less user code compared to
manual memory management

— Eliminates sources of errors

e Less user code to get correct

e Protects against some classes of memory errors: no free(), thus
no premature free(), no double free(), or forgetting to free()

— Not perfect, memory can still leak

 Programmers still need to eliminate all pointers to objects the
program no longer needs

— Integral to modern object-oriented languages
e Java, C#, PHP, JavaScript

— Mainstream
— Challenge: performance

40

-
Key Issues

 For both mechanisms
— Fast allocation
— Fast reclamation
— Low fragmentation (wasted space)
— How to organize the memory space

 Garbage collection

— Discriminating live objects and garbage
 Live object will be used in the future
e Prove that object is not live (i.e., dead), and deallocate it
e Deallocate as soon as possible after last use

41

-
What is Garbage?

* In theory, any object the program will never
reference again

— But compiler & runtime system cannot figure that out

* |n practice, any object the program cannot reach
IS garbage
— Approximate liveness with reachability

* Managed languages couple GC with “safe”
pointers

— Programs may not access arbitrary addresses in
memory (e.g., Java/C# vs. C/C++)

— The compiler can identify and provide to the garbage
collector all the pointers, thus enforcing “Once
garbage, always garbage”

— Runtime system can move objects by updating
pointers

42

Reachability

 The runtime memory management system
examines all global variables, stack variables, and

live registers that could refer to objects on the heap
(i.e., the roots of reachability)

 We can trace these pointers through the heap
(following object fields that themselves point to
heap objects) to find all reachable objects

R
- ro

globals stack registers

Reachability

* Tracing collector

— Marks the objects reachable from the roots as
live objects, and then performs a reachability
computation from them

ro

globals stack registers

Reachability

* Tracing collector

— Marks the objects reachable from the roots as
live objects, and then performs a reachability
computation from them

ro

globals stack registers

Reachability

* Tracing collector

— Marks the objects reachable from the roots as
live objects, and then performs a reachability
computation from them

ro

globals stack registers

Reachability

* Tracing collector

— Marks the objects reachable from the roots as
live objects, and then performs a reachability
computation from them

e All unmarked objects are dead

ro

globals stack registers

47

Reachability

* Tracing collector

— Marks the objects reachable from the roots as
live objects, and then performs a reachability
computation from them

e All unmarked objects are dead

sweep

ro

globals stack registers

Mark-and-Sweep Implementation

* Free-lists organized by size
— blocks of same size, or
— individual objects of same size

 Most objects are small < 128 bytes

L S i e B
= et

I S o B o
16 4, ...

28 | 41— ... O heap)

free lists

Mark-and-Sweep Implementation

e Allocation

— Grab a free object off the free list

4

8

12

16

128

>

free lists

C heap)

Mark-and-Sweep Implementation

e Allocation
— Grab a free object off the free list

a (L N
4 g O g B s B
8 (DR g R e
12 (1 1]
16 | |1,
28 | 1— ... O heap)
free lists 51

Mark-and-Sweep Implementation

e Allocation
— Grab a free object off the free list

4 (B

: =

e d 1 1)

6 | 1 ...

128 | 1— ... C heap)

free lists s2

Mark-and-Sweep Implementation

e Allocation
— Grab a free object off the free list

— If there is no more memory of the right size, a garbage
collection is triggered

— Mark phase - find the live objects
— Sweep phase - put free ones on the free list

" 1-m

=R s
+— —{ — ONNe

16 1 .. O/(') O/ O

128 | 41— ... C heap)

free lists 53

Mark-and-Sweep Implementation
 Mark phase

— Reachability computation on the heap, marking all live
objects

 Sweep phase
— Sweep the memory for free objects, and populate the

free lists
I

/ N
4 Ak
s | - : .O O\d/.
e | o 1 - O
6 | 1. .. O/(; O../ O
28 | 1. ... O heap)

free lists 54

Mark-and-Sweep Implementation
 Mark phase

— Reachability computation on the heap, marking all live
objects

 Sweep phase
— Sweep the memory for free objects, and populate the

free lists
I

/ N
4 XN
: -—:[) 50 ®
e | o 1 - O
6 | 1. .. O/(; O../ O
28 | 41— ... O heap)

free lists 55

Mark-and-Sweep Implementation
 Mark phase

— Reachability computation on the heap, marking all live
objects

 Sweep phase
— Sweep the memory for free objects, and populate the

free lists
I
/ N

4 XN

L U } ®
182 (D w - ® O O\d/

al O
6 | 1. .. O/(;O.’/ O
28 | 41— ... O heap)

free lists s6

Mark-and-Sweep Implementation
 Mark phase

— Reachability computation on the heap, marking all live
objects

 Sweep phase
— Sweep the memory for free objects, and populate the

free lists
| | |
/ N
. -

L S e B L o
8 " 1] o O ‘/
12 g! —{ — O 0O
128 | 1— ... C heap)

free lists 57

The Big Picture

 Heap organization; basic algorithmic components

Allocation Identification Reclamation
Sweep-to-Free
Free List Tracing [[| | JDCD[E
(implicit) Compact
|) | - k) CDes 00
Evacuate

Reference Counting

B Allocati
ump Allocation (explicit) /Q
3

| J |

|

	Object-Oriented Languages
	Classes
	Objects
	References in Java/Pointers in C++
	Creation of Objects
	Destruction of Objects
	Members: Fields and Methods
	Members: Fields and Methods (C++)
	Instance Methods
	Methods Calls
	Method Overloading (Java)
	Constructors
	Inheritance
	Example
	Constructors and Inheritance
	Inheritance of Methods
	Polymorphism of References
	Method Invocation – Compile Time
	Method Invocation – Compile Time
	Method Invocation – Run Time
	Method Invocation – Run Time
	Virtual Methods in C++
	Terminology
	Abstract Classes and Methods
	Abstract Classes
	Interfaces in Java
	Example
	Static Methods and Fields
	Classic Example (Java)
	Classic Example (C++)
	Example: Singleton Pattern (Java)
	Objects in C++: Pointers vs. Values
	Implementation Techniques for Java
	Rectangle.class
	Execution Model
	JVM
	Compilation Inside a VM
	Lifetimes and Memory Management
	Garbage Collection
	Garbage Collection
	Key Issues
	What is Garbage?
	Reachability
	Reachability
	Reachability
	Reachability
	Reachability
	Reachability
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	The Big Picture

