
Object-Oriented Languages

Chapter 9

Classes
• A class is a blueprint for creating objects

– This is Java code; the equivalent C++ code is very

similar

• Class members: methods and fields

2

class Rectangle {
 public double height, width;
 public double area() {
 return height * width;
 }
}

Objects
• The central concept of object-oriented

programming
• In C++ and Java, they are instances of classes,

created through new
– E.g., when expression new Rectangle() is evaluated, a

new object of class Rectangle is created and
initialized

– “instance” = “object”
– “class X is instantiated” = “an instance of X is created”

3

References in Java/Pointers in C++
• Objects are manipulated indirectly through object

references (pointers)
main(…) { // Java code
 Rectangle x;
 x = new Rectangle(); // 1) Create a Rectangle object in memory
 // 2) Produce a reference value which is
 // a handle to this object
 // 3) Assign this reference value to x
 x.width = 3.14; // 1) Use the r-value of x to get to the object
 } // 2) Assign based on the l-value of field width

– x is a variable of type “reference to Rectangle objects”

• C++: Rectangle* x; x = new Rectangle();
– x is a variable of type “pointer to Rectangle objects” 4

Creation of Objects
• During the evaluation of x = new Rectangle()

– A new instance (object) of class Rectangle is created
on the heap

– A reference (pointer) to this instance is produced
• This is the result of evaluating the new expression

– The appropriate constructor of the class is called to
initialize the new object

– x is assigned this reference (pointer) value
• e.g. the value may be the address of the first byte of the

object’s memory
• or the value may be some internal handle to the actual

object (e.g., index in some internal table, which itself
contains the address of the first byte)

5

Destruction of Objects
• C++: each new must have a corresponding delete

– x = new Rectangle(); … delete x;
• Java: dead objects are reclaimed automatically

by a garbage collector (GC)
– x = new Rectangle(); // after you stop using the

object, GC may figure out it is dead
• C++ destructors: called when the programmer

manually destroys the object with delete
– class Rectangle { … ~Rectangle() {…} // destructor }

• Java finalizers: called when the object is collected
– class Rectangle { … void finalize() {…} // finalizer }

 6

Members: Fields and Methods
• Two separate kinds: instance members and static

members
– Instance members: each instance of the class has a

separate copy of this member

7

Rectangle a, b, c;
a = new Rectangle();
b = new Rectangle();
a.height = 1.0; a.width = 3.6;
b.height = 2.2; b.width = 5.0;
c = a;

a

object1
height:1.0
width:3.6

b

object2
height:2.2
width:5.0

c

Members: Fields and Methods (C++)
• C++: x->f is shorthand (syntactic sugar) for (*x).f

• Expression x evaluates to pointer value that points to the
object; expression *x evaluates to the actual object; *x->f
evaluates to the field f of that object (f is not static – why?)

8

Rectangle *a, *b, *c;

a = new Rectangle();

b = new Rectangle();

a->height = 1.0; a->width = 3.6;

b->height = 2.2; b->width = 5.0;

c = a;

a

object1
height:1.0
width:3.6

b

object2
height:2.2
width:5.0

c

Instance Methods
• An instance method operates on objects

– Method m is invoked on the object
double area() { return height*width;}
in reality, this is syntactic sugar for

• There is an implicit formal parameter this: a reference to
the object on which the method was invoked
– Calls x.area() and x->area() are, in essence, calls area(x)

9

double area(Rectangle this) { // Java
 return this.height * this.width; }
double area(Rectangle* this) { // C++
 return this->height * this->width; }

Methods Calls
• Calling an instance method: there is an object on

which we are calling it
– x.m() in Java, x->m() in C++

10

Rectangle *a, *b, *c;
a = new Rectangle();
a->height = 1.0;
a->width = 3.6;
c = a;
double result = c->area();

a

object1
height:1.0
width:3.6

c

this
for

method
area

Method Overloading (Java)
• A class may have more than one method with

the same name
– the name is “overloaded”

• All overloaded methods must have different
signatures
– Signature: method name + types of formal

parameters
• double area() { … }  signature area()
• double area(int precision) { … }  signature

area(int)

11

Constructors
• Constructors are used to set up the initial state of

new objects

• x = new Rectangle(1.1, 2.3);
– A new object is created: with default values 0.0 in

Java, and undefined values in C++
• The constructor is invoked on this object; the fields are

initialized with 1.1 and 2.3
– A reference to the object is assigned to x

12

public Rectangle(double height, double width) {
 this.height = height; this.width=width; }

Inheritance
• class B extends A { … }

– Single inheritance: only one superclass (Java)
• class B : public A1, A2, A3 { … }

– Multiple inheritance: several superclasses (C++)
• Every member of A is inherited by B

– If a field f is defined in A, every object of class B has
an f field

– If a method m is defined in A, this method can be
invoked on an object of class B

• B may declare new members

13

Example

14

class Rectangle {
 private double height, width;
 public Rectangle(double h, double w) { … }
 public double getHeight() { return height; }
 public double getWidth() { return width; }
 public double area() { … } }

class SwissRectangle extends Rectangle {
 private int hole_size;
 public SwissRectangle(double h, double w, int hs) { … }
 public void shrinkHole() { hole_size--; }
 public double area() { … } // overridden }

Constructors and Inheritance
• Constructors are not inherited
• A constructor in a subclass B must invoke a

constructor in the superclass A
– (this is a bit of an oversimplification)

• The constructor of superclass A initializes the
part of the “object state” that is declared in A
– Sets up values for fields declared in A and inherited

by the subclasses
class SwissRectangle extends Rectangle {
 private int hole_size;
 public SwissRectangle(double h, double w, int hs)
 { super(h,w); hole_size = hs; }

15

Inheritance of Methods
• If a subclass declares a method with the same

name but a different signature, we have
overloading
– Either method can be invoked on an instance of the

subclass

• If a subclass declares a method with the same
signature, we have overriding
– Only the new method applies to instances of the

subclass

16

Polymorphism of References
• Reference variables for A objects also may points

to B objects
– A x = new B() in Java; A* x = new B() in C++

• Simplistic view: the type of x is pointer
(reference) to instances of A

• Correct view: pointer to instances of A or
instances of any subclass of A
– If C is a subclass of B, variable x can also point to

instances of C
– Poly (many) morph (form) ism

17

Method Invocation – Compile Time
• What happens when we have a method

invocation of the form x.m(a,b)?
• Two very different things are done

– At compile time, by the Java compiler (javac)
– At run time, by the Java Virtual Machine

• At compile time, a target method is associated
with the invocation expression
– Terms: compile-time target, static target
– The static target is based on the declared type of x

18

Method Invocation – Compile Time

• Since x has declared type A, the compile-time target is
method m in class A

• javac encodes this in the bytecode (classname.class)
• virtualinvoke x,<A: void m(int,int)>

19

class A { void m(int p, int q) {…} … }
class B extends A { void m(int r, int s) {…} … }
A x;
x = new B();
x.m(1,2);

Method Invocation – Run Time
• The Java virtual machine loads the bytecode and

starts executing it
• When it tries to execute instruction virtualinvoke

x,<A: void m(int,int)>
– Looks at the class Z of the object referenced by x
– Searches Z for a method with signature m(int,int) and

return type void
– If Z does not have it, goes to Z’s superclass, and so on

upwards, until a match is found

20

Method Invocation – Run Time
• The run-time (dynamic) target: “lowest” method

that matches the signature and the return type
of the static target method
– “Lowest” with respect to the inheritance chain from Z

to java.lang.Object

• Once the JVM determines the run-time target
method, it invokes it on the object that is
referenced by x

• Terms: virtual dispatch, method lookup

21

Virtual Methods in C++

• Since x has declared type A*, the compile-time target is
method m in class A

• The run-time target is m in B
• Without the keyword virtual, the run-time target will be the

same as the compile-time target

22

class A { virtual void m(int p, int q) {…} … }
class B : public A
 { virtual void m(int r, int s) {…} … }
A* x;
x = new B();
x->m(1,2);

Terminology
• Invocation x.m(a,b) “sends a message m” to the

object referenced by x
– This object is the receiver object
– The method that contains call x.m(a,b) belongs to the

sender object

• Dynamic binding of the message/call (virtual
dispatch): mapping the message (i.e., the call) to
a method

• Polymorphic call: more than one possible run-
time target
 23

Abstract Classes and Methods
• Abstract class: instances of it cannot be created

– Only instances of its subclasses

• Abstract methods
– No code: just name, parameter types, and return

type
– Abstract methods must be overridden in subclasses,

by concrete methods
• “concrete” = “non-abstract”

24

Abstract Classes
• Abstract class: class that contains abstract methods

– abstract void m(int x); // Java
– virtual void m(int x) = 0; // C++

• We cannot say new X() if X is abstract. Why?
• An abstract method can be the compile-time target of a

method call
– But not the run-time target, obviously

• Sometimes non-abstract classes are referred to as
“concrete classes”

25

Interfaces in Java
• Very similar to abstract classes in which all

methods are abstract
• A Java class has only one superclass, but can

implement many interfaces
– class Y extends X implements A, B { … }

• A reference variable can be of interface type, and
can refer to any instance of a class that
implements the interface

• An interface method can be the compile-time
target of a method call

26

Example

27

interface X { void m(); }
interface Y { void n(); }
abstract class A implements X {
 void m() { … }
 abstract void m2();
}
class B extends A implements Y {
 void m2() { … }
 void n() {…}
}
X x = new B(); x.m();
Y y = new B(); y.n();
A a = new B(); a.m2();

compile-time
targets

Static Methods and Fields
• Static field: a single copy for the entire class
• Static method: not invoked on an object

– Just like a regular procedure (function) in a
procedural language (e.g.. C, Pascal, etc.)

• Terminology
– static method/field = class method/field
– instance method/field = non-static method/field

28

Classic Example (Java)

29

class X { …
 private static int num = 0;
 // constructor
 public X() { num++; }
 public static int numInstances()
 { return num; }
}
in main:
X x1 = new X(); X x2 = new X();
int n = X.numInstances(); returns 2

Classic Example (C++)

30

class X { …
 private: static int num;
 public: X();
 public: static int numInstances();
}
int X::num = 0;
X::X() { num++; }
int X::numInstances() { return num; }
in main:
X* x1 = new X; X* x2 = new X;
int num = X::numInstances(); returns 2

Example: Singleton Pattern (Java)

31

class Logger {
 private Logger() { }
 private static Logger instance = null;
 public static Logger getInstance() {
 if (instance == null)
 instance = new Logger();
 return instance;
 }
}
client code: Logger.getInstance().writeLog(…)

Objects in C++: Pointers vs. Values
main() { …

Rectangle* x; // Pointer variable on the call stack
x = new Rectangle(2.3,7.8); // New object on the heap
Rectangle y(4.5,0.1); // Object variable on the call stack
// y’s constructor called when execution reaches the declaration
double z = f(x,y);
// y’s destructor called at the end of the method

}
double f(Rectangle* a, Rectangle b) {

// a: Pointer variable on the call stack
// b: Object variable on the call stack
// Parameter passing: the copy constructor of b is called
// Equivalent to a call b.Rectangle(y)
return a->width + b.height;

}

• A default copy constructor provided by the compiler: copies field-by-field
• The programmer may choose to implement her own copy constructor

– Rectangle(Rectangle& other) { … }

32

Implementation Techniques for Java
• The compiler takes as input source code

– Oracle/Sun provides a standard compiler; others can
build their own compilers if they want

– Typically, class A is stored in file A.java
• Exception: nested classes

• Compiler output: Java bytecode
– A.java -> A.class
– A standardized platform-independent representation

of Java code
– Essentially, a programming language that is

understood by the Java Virtual Machine

33

Rectangle.class

34

class Rectangle extends java.lang.Object {
 public double height; public double width;
 Rectangle();
 public double area();
}
Rectangle()
 0 aload_0
 1 invokespecial #3 <Method java.lang.Object()>
 4 return
double area()
 0 aload_0
 1 getfield #4 <Field double height>
 4 aload_0
 5 getfield #5 <Field double width>
 8 dmul
 9 dreturn

Execution Model
• Java bytecode is executed by a Java Virtual

Machine (JVM)
– Oracle/Sun provides several kinds of JVMs for various

platforms (e.g., Solaris, Wintel, etc.)
– Several other vendors for JVMs

• E.g., IBM sells a JVM that is performance-tuned for
enterprise server applications

• Platform independence: as long as there are
JVMs available, the exact same Java bytecode
can be executed anywhere

35

JVM
• There are two ways to execute the bytecode
• Interpretation: the VM just executes each

bytecode instruction itself
– Initial JVMs used this model

• Compilation: the VM uses its own internal
compiler to translate bytecode to native code for
the platform
– The native code is executed by the platform
– Faster than interpretation

36

Compilation Inside a VM
• Just-in-time: the first time some bytecode needs

to be executed, it is compiled to native code on
the fly
– Typically done at method level: the first time a

method is invoked, the compiler kicks in
– Problems: compilation has overhead, and the overall

running time may actually increase
• Profile-driven compilation

– Start executing through interpretation, but track “hot
spots” (e.g., frequently executed methods), and after
a certain threshold is reached, point compile them

37

Lifetimes and Memory Management
• Static allocation: address determined once and

retained throughout the execution of the program
– E.g., static fields in C++, Java

• Stack-based allocation: local variables of
methods, plus the formal parameters (incl. this)

• Heap-based allocation: space allocated and
deallocated manually by the programmer
– C: A* a = (A*)malloc(sizeof(A)); … free (a);
– C++: A* a = new A(); … delete a;
– Java: A a = new A(); but deallocation is done

automatically, through garbage collection

38

Garbage Collection
• Slides based on course materials by Prof. Kathryn

McKinley, UT Austin and Microsoft Research
• Explicit (manual) memory management

– More code to maintain
– Correctness

• Free an object too soon - crash
• Free an object too late - waste space
• Never free - at best waste, at worst fail

– Efficiency can be very high
– Gives programmers more control over the run-time

behavior of the program
39

Garbage Collection
• Automatic management through garbage collection

– Reduces programmer burden: less user code compared to
manual memory management

– Eliminates sources of errors
• Less user code to get correct
• Protects against some classes of memory errors: no free(), thus

no premature free(), no double free(), or forgetting to free()
– Not perfect, memory can still leak

• Programmers still need to eliminate all pointers to objects the
program no longer needs

– Integral to modern object-oriented languages
• Java, C#, PHP, JavaScript

– Mainstream
– Challenge: performance

 40

Key Issues
• For both mechanisms

– Fast allocation
– Fast reclamation
– Low fragmentation (wasted space)
– How to organize the memory space

• Garbage collection
– Discriminating live objects and garbage

• Live object will be used in the future
• Prove that object is not live (i.e., dead), and deallocate it
• Deallocate as soon as possible after last use

41

What is Garbage?
• In theory, any object the program will never

reference again
– But compiler & runtime system cannot figure that out

• In practice, any object the program cannot reach
is garbage
– Approximate liveness with reachability

• Managed languages couple GC with “safe”
pointers
– Programs may not access arbitrary addresses in

memory (e.g., Java/C# vs. C/C++)
– The compiler can identify and provide to the garbage

collector all the pointers, thus enforcing “Once
garbage, always garbage”

– Runtime system can move objects by updating
pointers

 42

Reachability

stack globals registers
heap

A
B
C

 r0

• The runtime memory management system
examines all global variables, stack variables, and
live registers that could refer to objects on the heap
(i.e., the roots of reachability)

• We can trace these pointers through the heap
(following object fields that themselves point to
heap objects) to find all reachable objects

43

Reachability

• Tracing collector
– Marks the objects reachable from the roots as

live objects, and then performs a reachability
computation from them

stack globals registers
heap

A
B
C

mark

 r0

44

Reachability

stack globals registers
heap

A
B
C

mark

 r0

• Tracing collector
– Marks the objects reachable from the roots as

live objects, and then performs a reachability
computation from them

45

Reachability

stack globals registers
heap

A
B
C

mark

 r0

• Tracing collector
– Marks the objects reachable from the roots as

live objects, and then performs a reachability
computation from them

46

Reachability

stack globals registers
heap

A
B
C

mark

• Tracing collector
– Marks the objects reachable from the roots as

live objects, and then performs a reachability
computation from them

• All unmarked objects are dead

 r0

47

Reachability

stack globals registers
heap

A
B
C

sweep

• Tracing collector
– Marks the objects reachable from the roots as

live objects, and then performs a reachability
computation from them

• All unmarked objects are dead

 r0

48

Mark-and-Sweep Implementation
• Free-lists organized by size

– blocks of same size, or
– individual objects of same size

• Most objects are small < 128 bytes

4
8
12
16
...
128

free lists

...

... heap
49

Mark-and-Sweep Implementation
• Allocation

– Grab a free object off the free list

4
8
12
16
...
128

free lists

...

... heap
50

Mark-and-Sweep Implementation
• Allocation

– Grab a free object off the free list

4
8
12
16
...
128

free lists

...

... heap
51

Mark-and-Sweep Implementation
• Allocation

– Grab a free object off the free list

4
8
12
16
...
128

free lists

...

... heap
52

Mark-and-Sweep Implementation
• Allocation

– Grab a free object off the free list
– If there is no more memory of the right size, a garbage

collection is triggered
– Mark phase - find the live objects
– Sweep phase - put free ones on the free list

4
8
12
16
...
128

free lists

...

... heap
53

Mark-and-Sweep Implementation
• Mark phase

– Reachability computation on the heap, marking all live
objects

• Sweep phase
– Sweep the memory for free objects, and populate the

free lists

4
8
12
16
...
128

free lists

...

... heap
54

Mark-and-Sweep Implementation

4
8
12
16
...
128

free lists

...

... heap

• Mark phase
– Reachability computation on the heap, marking all live

objects
• Sweep phase

– Sweep the memory for free objects, and populate the
free lists

55

Mark-and-Sweep Implementation

4
8
12
16
...
128

free lists

...

... heap

• Mark phase
– Reachability computation on the heap, marking all live

objects
• Sweep phase

– Sweep the memory for free objects, and populate the
free lists

56

Mark-and-Sweep Implementation

4
8
12
16
...
128

free lists

...

... heap

• Mark phase
– Reachability computation on the heap, marking all live

objects
• Sweep phase

– Sweep the memory for free objects, and populate the
free lists

57

The Big Picture
• Heap organization; basic algorithmic components

58

Allocation

Bump Allocation

Free List Tracing
(implicit)

Reference Counting
(explicit)

Sweep-to-Free

Compact

Evacuate

3 1

Identification Reclamation

	Object-Oriented Languages
	Classes
	Objects
	References in Java/Pointers in C++
	Creation of Objects
	Destruction of Objects
	Members: Fields and Methods
	Members: Fields and Methods (C++)
	Instance Methods
	Methods Calls
	Method Overloading (Java)
	Constructors
	Inheritance
	Example
	Constructors and Inheritance
	Inheritance of Methods
	Polymorphism of References
	Method Invocation – Compile Time
	Method Invocation – Compile Time
	Method Invocation – Run Time
	Method Invocation – Run Time
	Virtual Methods in C++
	Terminology
	Abstract Classes and Methods
	Abstract Classes
	Interfaces in Java
	Example
	Static Methods and Fields
	Classic Example (Java)
	Classic Example (C++)
	Example: Singleton Pattern (Java)
	Objects in C++: Pointers vs. Values
	Implementation Techniques for Java
	Rectangle.class
	Execution Model
	JVM
	Compilation Inside a VM
	Lifetimes and Memory Management
	Garbage Collection
	Garbage Collection
	Key Issues
	What is Garbage?
	Reachability
	Reachability
	Reachability
	Reachability
	Reachability
	Reachability
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	Mark-and-Sweep Implementation
	The Big Picture

