
Formal Languages and Grammars

Chapter 2: Sections 2.1 and 2.2

Formal Languages
• Basis for the design and implementation of

programming languages
• Alphabet: finite set Σ of symbols
• String: finite sequence of symbols

– Empty string ε: sequence of length zero
– Σ* - set of all strings over Σ (incl. ε)
– Σ+ - set of all non-empty strings over Σ

• Language: set of strings L ⊆ Σ*
– E.g., for Java, Σ is Unicode, a string is a program, and L

is defined by a grammar in the language spec

2

Formal Grammars
• G = (N, T, S, P)

– Finite set of non-terminal symbols N
– Finite set of terminal symbols T
– Starting non-terminal symbol S ∈ N
– Finite set of productions P
– Describes a language L ⊆ T*

• Production: x → y
– x is a non-empty sequence of terminals and non-

terminals; y is a seq. of terminals and non-terminals

• Applying a production: uxv ⇒ uyw

3

Example: Non-negative Integers
• N = { I, D }
• T = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
• S = I
• P = { I D,
 I DI,
 D 0,
 D 1,
 …,
 D 9 }

4

More Common Notation
I D | DI - two production alternatives

D 0 | 1 | … | 9 - ten production alternatives

• Terminals: 0 … 9
• Starting non-terminal: I

– Shown first in the list of productions
• Examples of production applications:

I ⇒ DI D6I ⇒ D6D
DI ⇒ DDI D6D ⇒ 36D
DDI ⇒ D6I 36D ⇒ 361
 5

Languages and Grammars
• String derivation

– w1 ⇒ w2 ⇒ … ⇒ wn; denoted w1 ⇒ wn
– If n>1, non-empty derivation sequence: w1 ⇒ wn

• Language generated by a grammar
– L(G) = { w ∈ T* | S ⇒ w }

• Fundamental theoretical characterization:
Chomsky hierarchy (Noam Chomsky, MIT)
– Regular languages ⊂ Context-free languages ⊂

Context-sensitive languages ⊂ Unrestricted languages
– Regular languages in PL: for lexical analysis
– Context-free languages in PL: for syntax analysis

6

*
+

+

Regular Languages (1/5)
• Operations on languages

– Union: L ∪ M = all strings in L or in M
– Concatenation: LM = all ab where a in L and b in M
– L0 = { ε } and Li = Li-1L
– Closure: L* = L0 ∪ L1 ∪ L2 ∪ …
– Positive closure: L+ = L1 ∪ L2 ∪ …

• Regular expressions: notation to express
languages constructed with the help of such
operations
– Example: (0|1|2|3|4|5|6|7|8|9)+

7

Regular Languages (2/5)
• Given some alphabet, a regular expression is

– The empty string ε
– Any symbol from the alphabet
– If r and s are regular expressions, so are r|s, rs, r*, r+,

r?, and (r)
– */+/? have higher precedence than concatenation,

which has higher precedence than |
– All are left-associative

8

Regular Languages (3/5)
• Each regular expression r defines a language L(r)

– L(ε) = { ε }
– L(a) = { a } for alphabet symbol a
– L(r|s) = L(r) ∪ L(s)
– L(rs) = L(r)L(s)
– L(r*) = (L(r))*

– L(r+) = (L(r))+

– L(r?) = { ε } ∪ L(r)
– L((r)) = L(r)

• Example: what is the language defined by
 0(x|X)(0|1|…|9|a|b|…|f|A|B|…|F)+

9

Regular Languages (4/5)
• Regular grammars

– All productions are A → wB and A → w
• A and B are non-terminals; w is a sequence of terminals
• This is a right-regular grammar

– Or all productions are A → Bw and A → w
• Left-regular grammar

• Example: L = { anb | n > 0 } is a regular language
– S → Ab and A → a | Aa

• I D | DI and D 0 | 1 | … | 9 : is this a
regular grammar?

10

Regular Languages (5/5)
• Equivalent formalisms for regular languages

– Regular grammars
– Regular expressions
– Nondeterministic finite automata (NFA)
– Deterministic finite automata (DFA)
– Additional details: Sections 2.2 and 2.4

• What does this have to do with PLs?
– Foundation for lexical analysis done by a scanner
– You will have to implement a scanner for your

interpreter project; Section 2.2 provides useful
guidelines

11

Regular Languages in Compilers & Interpreters

12

Scanner (uses a regular grammar to perform lexical analysis)

Parser (uses a context-free grammar to perform syntax analysis)

stream of
characters

stream of
tokens

parse
tree

… more compiler/interpreter components

w,h,i,l,e,(,a,1,5,>,b,b,),d,o,…

keyword[while], leftparen, id[a15], op[>],
id[bb], rightparen, keyword[do], …

each token is a leaf in the parse tree

Uses of Regular Languages
• Lexical analysis in compilers

– E.g., an identifier token is a string from the regular
language letter (letter|digit)*

– Each token is a terminal symbol for the context-free
grammar of the parser

• Pattern matching
– stdlinux> grep “a\+b” foo.txt
– Find every line from foo.txt that contains a string

from the language L = { anb | n > 0 }
• i.e., the language for reg. expr. a+b

13

Context-Free Languages
• They subsume regular languages

– Every regular language is a c.f. language
– L = { anbn | n > 0 } is c.f. but not regular

• Generated by a context-free grammar
– Each production: A → w
– A is a non-terminal, w is a sequences of terminals

and non-terminals
• BNF (Backus-Naur Form): traditional alternative

notation for context-free grammars
– John Backus and Peter Naur, for Algol-58 and Algol-60

• Backus was also one of the creators of Fortran
– Both are recipients of the ACM Turing Award

14

Example: Non-negative Integers
• I D | DI and D 0 | 1 | … | 9
• BNF

– <integer> ::= <digit> | <digit><integer>
– <digit> ::= 0 | 1 | … | 9

• What if we wanted to disallow zeroes at the
beginning?
– e.g. 509 is OK, but 059 is not

• Possible motivation: in C, leading 0 means an octal constant

– Propose a context-free grammar that achieves this
• Is this grammar regular? If not, can you change it to make it

regular?
15

Derivation Tree for a String
• Also called parse tree or concrete syntax tree

– Leaf nodes: terminals
– Inner nodes: non-terminals
– Root: starting non-terminal of the grammar

• Describes a particular way to derive a string
based on a context-free grammar
– Leaf nodes from left to right are the string
– To get this string: depth-first traversal of the tree,

always visiting the leftmost unexplored branch

16

Example of a Derivation Tree
<expr> ::= <term> | <expr> + <term>
<term> ::= id | (<expr>)

 <expr>

 <expr> + <term>

 <term> z

 (<expr>)

<expr> + <term>

<term> y

 x

17

Parse tree for
(x+y)+z

Equivalent Derivation Sequences
The set of string derivations that are represented by the
same parse tree

One derivation:
<expr> ⇒ <expr> + <term> ⇒ <expr> + z ⇒
<term> + z ⇒ (<expr>) + z ⇒
(<expr> + <term>) + z ⇒ (<expr> + y) + z ⇒
(<term> + y) + z ⇒ (x + y) + z

Another derivation:
<expr> ⇒ <expr> + <term> ⇒ <term> + <term> ⇒
(<expr>) + <term> ⇒ (<expr> + <term>) + <term> ⇒
(<term> + <term>) + <term> ⇒ (x + <term>) + <term> ⇒
(x + y) + <term> ⇒ (x + y) + z

Many more …
18

Ambiguous Grammars
• For some string, there are several different parse

trees
• An ambiguous grammar gives more freedom to

the compiler writer
– e.g. for code optimizations, to choose the shape of

the parse tree that leads to better performance

• For real-world programming languages, we
typically have non-ambiguous grammars
– We need a deterministic specification of the parser
– To remove the ambiguity: add non-terminals

 19

Elimination of Ambiguity (1/2)
• <expr> ::= <expr> + <expr> | <expr> * <expr>

 | id | (<expr>)
• Two possible parse trees for a + b * c

– Conceptually equivalent to (a + b) * c and a + (b * c)

• Operator precedence: when several operators are
without parentheses, what is an operand of what?
– Is a+b an operand of *, or is b*c an operand of +?

• Operator associativity: for several operators with
the same precedence, left-to-right or right-to-left?
– Is a – b – c equivalent to (a – b) – c or a – (b – c)?

20

Elimination of Ambiguity (2/2)
• In most languages, * has higher precedence than

+, and both are left-associative
• Problem: change <expr> ::= <expr> + <expr> |

<expr> * <expr> | id | (<expr>)
– Eliminate the ambiguity
– Get the correct precedence and associativity

• Solution: add new non-terminals
– <expr> ::= <expr> + <term> | <term>
– <term> ::= <term> * <factor> | <factor>
– <factor> ::= id | (<expr>)

21

The “dangling-else” Problem
• Ambiguity for “else”

• if a then if b then c:=1 else c:=2
– Two possible parse trees

• Traditional solution: match the else with the last
unmatched then

22

<stmt> ::= if <expr> then <stmt>

 | if <expr> then <stmt> else <stmt>

Non-Ambiguous Grammar
<stmt> ::= <matched> | <unmatched>

<matched> ::= <non-if-stmt> |

 if <expr> then <matched> else <matched>

<unmatched> ::= if <expr> then <stmt> |

 if <expr> then <matched> else <unmatched>

23

Extended BNF (EBNF)
• […] optional element

– if <expr> then <stmt> [else <stmt>]
• { … } repetition (0 or more times)

– <IdList> ::= <id> { , <id> }
– Sometimes shown as { … }*

• { … }+ repetition (1 or more times)
– <block> ::= begin <stmt> { <stmt> } end
– <block> ::= begin { <stmt> }+ end

• Does not change the expressive power of the
notation (we can always rewrite in plain BNF)

24

Core: A Toy Imperative Language (1/2)
<prog> ::= program <decl-seq> begin <stmt-seq> end

<decl-seq> ::= <decl> | <decl><decl-seq>

<stmt-seq> ::= <stmt> | <stmt><stmt-seq>

<decl> ::= int <id-list> ; <id-list> ::= id | id , <id-list>

<stmt> ::= <assign> | <if> | <loop> | <in> | <out>

<assign> ::= id := <expr> ;

<in> ::= input <id-list> ; <out> ::= output <id-list> ;

<if> ::= if <cond> then <stmt-seq> endif ;

 | if <cond> then <stmt-seq> else <stmt-seq> endif ;

25

Core: A Toy Imperative Language (2/2)
<loop> ::= while <cond> begin <stmt-seq> endwhile ;

<cond> ::= <cmpr> | ! <cond> | (<cond> AND <cond>)

 | (<cond> OR <cond>)

<cmpr> ::= [<expr> <cmpr-op> <expr>]

<cmpr-op> ::= < | = | != | > | >= | <=

<expr> ::= <term> | <term> + <expr> | <term> – <expr>

<term> ::= <factor> | <factor> * <term>

<factor> ::= const | id | – <factor> | (<expr>)
 26

Parser vs. Scanner
• id and const are terminal symbols for the

grammar of the language
– tokens that are provided from the scanner to the

parser
• But they are non-terminals in the regular

grammar for the lexical analysis
– The terminals here are ASCII characters
<id> ::= <letter> | <id><letter> | <id><digit>
<letter> ::= A | B | … | Z | a | b | … | z
<const> ::= <digit> | <const><digit>
<digit> ::= 0 | 1 | … | 9
Note: as written, this grammar is not regular, but can be easily changed to an
equivalent regular grammar

27

Notes for the Core Interpreter Project
• Consider 9 – 5 + 4

– What is the parse tree? What is the problem?
– For ease of implementation, we will not fix this

• But if we wanted to fix it, how can we?

• Manually writing a scanner for this language
– Ad hoc approach (next slide)
– Systematic approach: write regular expressions for all

tokens, convert to an NFA, convert that to a DFA,
minimize it, write code that mimics the transitions of
the DFA (Section 2.2)

• There exist various tools to do this automatically, but you
should not use them for the project (will use in CSE 5343)

28

Outline of a Scanner for Core (1/2)
• The parser asks the scanner for the next token
• Skip white spaces and read next character x
• If x is ; , () [] = + – * return the

corresponding token
• If x is : , read the next character y

– If y is not = , report error, else return the token for :=

• If x is ! , peek at the next character y
– If y is not = , return the token for !
– If y is = , read it and return the token for !=
– Peeking can be done easily in C, C++, and Java file I/O

29

Outline of a Scanner for Core (2/2)
• If x is < , peek at the next character y

– If y is not = , return the token for <
– If y is = , read it and return the token for <=

• Similarly when x is >
• If x is a letter, keep reading characters; stop

before the first not-letter-or-digit character
– If the string is a keyword, return the keyword token
– Else return token id with the string name attached

• If x is a digit, keep reading characters; stop before
the first not-digit character
– Return token const with the integer value attached

30

	Formal Languages and Grammars
	Formal Languages
	Formal Grammars
	Example: Non-negative Integers
	More Common Notation
	Languages and Grammars
	Regular Languages (1/5)
	Regular Languages (2/5)
	Regular Languages (3/5)
	Regular Languages (4/5)
	Regular Languages (5/5)
	Regular Languages in Compilers & Interpreters
	Uses of Regular Languages
	Context-Free Languages
	Example: Non-negative Integers
	Derivation Tree for a String
	Example of a Derivation Tree
	Equivalent Derivation Sequences
	Ambiguous Grammars
	Elimination of Ambiguity (1/2)
	Elimination of Ambiguity (2/2)
	The “dangling-else” Problem
	Non-Ambiguous Grammar
	Extended BNF (EBNF)
	Core: A Toy Imperative Language (1/2)
	Core: A Toy Imperative Language (2/2)
	Parser vs. Scanner
	Notes for the Core Interpreter Project
	Outline of a Scanner for Core (1/2)
	Outline of a Scanner for Core (2/2)

