Formal Languages and Grammars

Chapter 2: Sections 2.1 and 2.2

Formal Languages

- Basis for the design and implementation of programming languages
- Alphabet: finite set $\boldsymbol{\Sigma}$ of symbols
- String: finite sequence of symbols
- Empty string ε : sequence of length zero
$-\boldsymbol{\Sigma}^{*}$ - set of all strings over $\boldsymbol{\Sigma}$ (incl. ε)
$-\boldsymbol{\Sigma}^{+}$- set of all non-empty strings over $\boldsymbol{\Sigma}$
- Language: set of strings $\mathbf{L} \subseteq \boldsymbol{\Sigma}^{*}$
- E.g., for Java, $\boldsymbol{\Sigma}$ is Unicode, a string is a program, and \mathbf{L} is defined by a grammar in the language spec

Formal Grammars

- $\mathrm{G}=(\mathrm{N}, \mathrm{T}, \mathrm{S}, \mathrm{P})$
- Finite set of non-terminal symbols N
- Finite set of terminal symbols T
- Starting non-terminal symbol $S \in N$
- Finite set of productions P
- Describes a language $\mathbf{L} \subseteq \mathbf{T}^{*}$
- Production: $\mathbf{x} \rightarrow \mathbf{y}$
$-\mathbf{x}$ is a non-empty sequence of terminals and nonterminals; \mathbf{y} is a seq. of terminals and non-terminals
- Applying a production: uxv \Rightarrow uyw

Example: Non-negative Integers

$$
\begin{aligned}
& \text { - } N=\{I, D\} \\
& \text { - } T=\{0,1,2,3,4,5,6,7,8,9\} \\
& \text { - } \mathrm{S}=\mathrm{I} \\
& \text { - } P=\{\quad I \rightarrow D \text {, } \\
& \mathrm{I} \rightarrow \mathrm{DI} \text {, } \\
& \text { D } \rightarrow 0 \text {, } \\
& \text { D } \rightarrow \text { 1, } \\
& D \rightarrow 9\}
\end{aligned}
$$

More Common Notation

$\mathrm{I} \rightarrow \mathrm{D} \mid \mathrm{DI}$

- two production alternatives
D $\rightarrow 0|1| \ldots \mid 9$
- ten production alternatives
- Terminals: 0 ... 9
- Starting non-terminal: I
- Shown first in the list of productions
- Examples of production applications:
$\underline{\mathrm{I}} \Rightarrow \underline{\mathrm{D}}$
$\mathrm{D} 6 \mathrm{I} \Rightarrow \mathrm{D} 6 \underline{\mathrm{D}}$
$\mathrm{D} \mid \Rightarrow \mathrm{D} \underline{\mathrm{D}}$
$\mathrm{D} \underline{\mathrm{D}} \Rightarrow \mathrm{D} \underline{\mathrm{G}} \mid$

$$
\begin{aligned}
& \underline{\mathrm{D}} 6 \mathrm{D} \Rightarrow \underline{3} 6 \mathrm{D} \\
& 36 \underline{\mathrm{D}} \Rightarrow 361
\end{aligned}
$$

Languages and Grammars

- String derivation
$-\mathbf{w}_{1} \Rightarrow \mathbf{w}_{2} \Rightarrow \ldots \Rightarrow \mathbf{w}_{\mathrm{n}}$; denoted $\mathbf{w}_{1} \stackrel{*}{\Rightarrow} \mathbf{w}_{\mathrm{n}}$
- If $n>1$, non-empty derivation sequence: $\mathbf{w}_{1} \stackrel{+}{\Rightarrow} \mathbf{w}_{\mathrm{n}}$
- Language generated by a grammar $-L(G)=\left\{w \in T^{*} \mid S \stackrel{+}{\Rightarrow} w\right\}$
- Fundamental theoretical characterization: Chomsky hierarchy (Noam Chomsky, MIT)
- Regular languages \subset Context-free languages \subset Context-sensitive languages \subset Unrestricted languages
- Regular languages in PL: for lexical analysis
- Context-free languages in PL: for syntax analysis

Regular Languages (1/5)

- Operations on languages
- Union: $\mathrm{L} \cup \mathrm{M}=$ all strings in L or in M
- Concatenation: LM = all $a b$ where a in L and b in M
$-L^{0}=\{\varepsilon\}$ and $L^{i}=L^{i-1} L$
- Closure: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \ldots$
- Positive closure: $\mathrm{L}^{+}=\mathrm{L}^{1} \cup \mathrm{~L}^{2} \cup$...
- Regular expressions: notation to express languages constructed with the help of such operations
- Example: (0|1|2|3|4|5|6|7|8|9) ${ }^{+}$

Regular Languages (2/5)

- Given some alphabet, a regular expression is
- The empty string ε
- Any symbol from the alphabet
 r ?, and (\mathbf{r})
$-{ }^{*}{ }^{+} /$? have higher precedence than concatenation, which has higher precedence than |
- All are left-associative

Regular Languages (3/5)

- Each regular expression r defines a language $L(r)$

$$
\begin{aligned}
& -L(\varepsilon)=\{\varepsilon\} \\
& -L(a)=\{a\} \text { for alphabet symbol a } \\
& -L(r \mid s)=L(r) \cup L(s) \\
& -L(r s)=L(r) L(s) \\
& -L\left(r^{*}\right)=(L(r))^{*} \\
& -L\left(r^{+}\right)=(L(r))^{+} \\
& -L(r ?)=\{\varepsilon\} \cup L(r) \\
& -L((r))=L(r)
\end{aligned}
$$

- Example: what is the language defined by

$$
0(x \mid X)(0|1| \ldots|9| a|b| \ldots|f| A|B| \ldots \mid F)^{+}
$$

Regular Languages (4/5)

- Regular grammars
- All productions are $\mathbf{A} \rightarrow \mathbf{w B}$ and $\mathbf{A} \rightarrow \mathbf{w}$
- \mathbf{A} and \mathbf{B} are non-terminals; \mathbf{w} is a sequence of terminals
- This is a right-regular grammar
- Or all productions are $\mathbf{A} \rightarrow \mathbf{B w}$ and $\mathbf{A} \rightarrow \mathbf{w}$
- Left-regular grammar
- Example: $L=\left\{a^{n} b \mid n>0\right\}$ is a regular language $-S \rightarrow A b$ and $A \rightarrow a \mid A a$
- $I \rightarrow D \mid D I$ and $D \rightarrow 0|1| \ldots \mid 9:$ is this a regular grammar?

Regular Languages (5/5)

- Equivalent formalisms for regular languages
- Regular grammars
- Regular expressions
- Nondeterministic finite automata (NFA)
- Deterministic finite automata (DFA)
- Additional details: Sections 2.2 and 2.4
- What does this have to do with PLs?
- Foundation for lexical analysis done by a scanner
- You will have to implement a scanner for your interpreter project; Section 2.2 provides useful guidelines

Regular Languages in Compilers \& Interpreters

stream of characters
w,h,i,l,e,(, a, 1,5,>, b,b,),d,o,...

Scanner (uses a regular grammar to perform lexical analysis)
stream of tokens
keyword[while], leftparen, id[a15], op[>], id[bb], rightparen, keyword[do], ...

Parser (uses a context-free grammar to perform syntax analysis)
parse tree
each token is a leaf in the parse tree
... more compiler/interpreter components

Uses of Regular Languages

- Lexical analysis in compilers
- E.g., an identifier token is a string from the regular language letter (letter|digit)*
- Each token is a terminal symbol for the context-free grammar of the parser
- Pattern matching
- stdlinux> grep "a\+b" foo.txt
- Find every line from foo.txt that contains a string from the language $L=\left\{a^{n} b \mid n>0\right\}$
- i.e., the language for reg. expr. $a^{+} b$

Context-Free Languages

- They subsume regular languages
- Every regular language is a c.f. language $-L=\left\{a^{n} b^{n} \mid n>0\right\}$ is c.f. but not regular
- Generated by a context-free grammar
- Each production: A $\rightarrow \mathbf{w}$
- \mathbf{A} is a non-terminal, \mathbf{w} is a sequences of terminals and non-terminals
- BNF (Backus-Naur Form): traditional alternative notation for context-free grammars
- John Backus and Peter Naur, for Algol-58 and Algol-60
- Backus was also one of the creators of Fortran
- Both are recipients of the ACM Turing Award

Example: Non-negative Integers

- I $\rightarrow \mathrm{D} \mid \mathrm{DI}$ and $\mathrm{D} \rightarrow 0|1| \ldots \mid 9$
- BNF
- <integer> ::= <digit> | <digit><integer>
- <digit> ::=0|1|... | 9
- What if we wanted to disallow zeroes at the beginning?
- e.g. 509 is OK, but 059 is not
- Possible motivation: in C , leading 0 means an octal constant
- Propose a context-free grammar that achieves this
- Is this grammar regular? If not, can you change it to make it regular?

Derivation Tree for a String

- Also called parse tree or concrete syntax tree
- Leaf nodes: terminals
- Inner nodes: non-terminals
- Root: starting non-terminal of the grammar
- Describes a particular way to derive a string based on a context-free grammar
- Leaf nodes from left to right are the string
- To get this string: depth-first traversal of the tree, always visiting the leftmost unexplored branch

Example of a Derivation Tree

<expr> ::= <term> | <expr> + <term>
<term> ::= id | (<expr>)

Parse tree for ($x+y$) $+z$
<expr> + <term> <term> y

Equivalent Derivation Sequences

The set of string derivations that are represented by the same parse tree

One derivation:

<expr> \Rightarrow <expr> + <term> \Rightarrow <expr> + z \Rightarrow
<term> $+\mathrm{z} \Rightarrow$ (<expr>) $+\mathrm{z} \Rightarrow$
(<expr>+ <term>) $+\mathrm{z} \Rightarrow(<\operatorname{expr}>+\mathrm{y})+\mathrm{z} \Rightarrow$
(<term>+y) $+z \Rightarrow(x+y)+z$
Another derivation:
<expr> \Rightarrow <expr> + <term> \Rightarrow <term> + <term> \Rightarrow (<expr>) + <term> \Rightarrow (<expr> + <term>) + <term> \Rightarrow (<term>+<term>)+<term> $\Rightarrow(x+$ term $>)+$ <term $>\Rightarrow$
$(\mathrm{x}+\mathrm{y})+$ <term> $\Rightarrow(\mathrm{x}+\mathrm{y})+\mathrm{z}$
Many more ...

Ambiguous Grammars

- For some string, there are several different parse trees
- An ambiguous grammar gives more freedom to the compiler writer
- e.g. for code optimizations, to choose the shape of the parse tree that leads to better performance
- For real-world programming languages, we typically have non-ambiguous grammars
- We need a deterministic specification of the parser
- To remove the ambiguity: add non-terminals

Elimination of Ambiguity (1/2)

- <expr> ::= <expr> + <expr> | <expr> * <expr> | id | (<expr>)
- Two possible parse trees for $\mathbf{a}+\mathbf{b}$ * \mathbf{c} - Conceptually equivalent to (a+b) * \mathbf{c} and $\mathbf{a}+\left(\mathbf{b}^{*} \mathbf{c}\right)$
- Operator precedence: when several operators are without parentheses, what is an operand of what? - Is $\mathbf{a}+\mathbf{b}$ an operand of *, or is $\mathbf{b}^{*} \mathbf{c}$ an operand of $\boldsymbol{+}$?
- Operator associativity: for several operators with the same precedence, left-to-right or right-to-left? - Is $\mathbf{a}-\mathbf{b}-\mathbf{c}$ equivalent to $\mathbf{(a - b})-c$ or $\mathbf{a}-\mathbf{(b - c)}$?

Elimination of Ambiguity (2/2)

- In most languages, * has higher precedence than + , and both are left-associative
- Problem: change <expr> ::= <expr> + <expr> | <expr> * <expr> | id | (<expr>)
- Eliminate the ambiguity
- Get the correct precedence and associativity
- Solution: add new non-terminals
- <expr> ::= <expr> + <term> | <term>
- <term> ::= <term>* <factor> | <factor>
- <factor> ::=id | (<expr>)

The "dangling-else" Problem

- Ambiguity for "else"
<stmt> ::= if <expr> then <stmt>
| if <expr> then <stmt> else <stmt>
- if a then if b then $c:=1$ else $c:=2$
- Two possible parse trees
- Traditional solution: match the else with the last unmatched then

Non-Ambiguous Grammar

<stmt> ::= <matched> | <unmatched>
<matched> ::= <non-if-stmt> |
if <expr> then <matched> else <matched>
<unmatched> ::= if <expr> then <stmt> |
if <expr> then <matched> else <unmatched>

Extended BNF (EBNF)

- [...] optional element
- if <expr> then <stmt> [else <stmt>]
- $\{$... \} repetition (0 or more times)
- <ldList> ::= <id> \{, <id> \}
- Sometimes shown as $\{. . .\}^{*}$
- $\{. . .\}^{+}$repetition (1 or more times) - <block> ::= begin <stmt> \{ <stmt> \} end - <block> ::= begin \{<stmt> \} ${ }^{+}$end
- Does not change the expressive power of the notation (we can always rewrite in plain BNF)

Core: A Toy Imperative Language (1/2)

 <prog> ::= program <decl-seq> begin <stmt-seq> end <decl-seq> ::= <decl> | <decl><decl-seq> <stmt-seq> ::= <stmt> | <stmt><stmt-seq> <decl> ::= int <id-list> ; <id-list> ::= id | id, <id-list> <stmt> ::= <assign> | <if> | <loop> | <in> | <out> <assign> ::= id := <expr> ;<in> ::= input <id-list> ; <out> ::= output <id-list> ;
<if> ::= if <cond> then <stmt-seq> endif ;
| if <cond> then <stmt-seq> else <stmt-seq> endif ;

Core: A Toy Imperative Language (2/2)

<loop> ::= while <cond> begin <stmt-seq> endwhile ;
<cond> ::= <cmpr> | ! <cond> | (<cond> AND <cond>) | (<cond> OR <cond>)
<cmpr> ::= [<expr> <cmpr-op> <expr>]
<cmpr-op> ::=<|=|!=|>|>=|<=
<expr> ::= <term> | <term> + <expr> | <term> - <expr>
<term> ::= <factor> | <factor> * <term>
<factor> ::= const | id | - <factor> | (<expr>)

Parser vs. Scanner

- id and const are terminal symbols for the grammar of the language
- tokens that are provided from the scanner to the parser
- But they are non-terminals in the regular grammar for the lexical analysis
- The terminals here are ASCII characters
<id> ::= <letter> | <id><letter> | <id><digit>
<letter> ::=A|B|...|Z|a|b|...|z
<const> ::= <digit> | <const><digit>
<digit> ::=0|1|...|9
Note: as written, this grammar is not regular, but can be easily changed to an equivalent regular grammar

Notes for the Core Interpreter Project

- Consider 9-5 + 4
- What is the parse tree? What is the problem?
- For ease of implementation, we will not fix this
- But if we wanted to fix it, how can we?
- Manually writing a scanner for this language
- Ad hoc approach (next slide)
- Systematic approach: write regular expressions for all tokens, convert to an NFA, convert that to a DFA, minimize it, write code that mimics the transitions of the DFA (Section 2.2)
- There exist various tools to do this automatically, but you should not use them for the project (will use in CSE 5343)

Outline of a Scanner for Core (1/2)

- The parser asks the scanner for the next token
- Skip white spaces and read next character x
- If x is ; , () [] = +- * return the corresponding token
- If x is: , read the next character y
- If y is not $=$, report error, else return the token for :=
- If x is !, peek at the next character y
- If y is not $=$, return the token for!
- If y is $=$, read it and return the token for !=
- Peeking can be done easily in C, C++, and Java file I/O

Outline of a Scanner for Core (2/2)

- If x is $<$, peek at the next character y
- If y is not $=$, return the token for <
- If y is $=$, read it and return the token for <=
- Similarly when x is >
- If x is a letter, keep reading characters; stop before the first not-letter-or-digit character - If the string is a keyword, return the keyword token - Else return token id with the string name attached
- If x is a digit, keep reading characters; stop before the first not-digit character
- Return token const with the integer value attached

