
Formal Languages and Grammars 

Chapter 2: Sections 2.1 and 2.2 



Formal Languages 
• Basis for the design and implementation of 

programming languages 
• Alphabet: finite set Σ of symbols 
• String: finite sequence of symbols 

– Empty string ε: sequence of length zero 
– Σ* - set of all strings over Σ (incl. ε) 
– Σ+ - set of all non-empty strings over Σ 

• Language: set of strings L ⊆ Σ* 
– E.g., for Java, Σ is Unicode, a string is a program, and L 

is defined by a grammar in the language spec  
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Formal Grammars 
• G = (N, T, S, P) 

– Finite set of non-terminal symbols N 
– Finite set of terminal symbols T 
– Starting non-terminal symbol S ∈ N 
– Finite set of productions P 
– Describes a language L ⊆ T* 

• Production: x → y 
– x is a non-empty sequence of terminals and non-

terminals; y is a seq. of terminals and non-terminals 

• Applying a production: uxv ⇒ uyw 
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Example: Non-negative Integers 
• N = { I, D } 
• T = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } 
• S = I 
• P = { I  D,  
   I  DI,  
   D  0, 
   D  1,  
   …, 
   D  9     } 
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More Common Notation 
I  D | DI                 - two production alternatives 

D  0 | 1 | … | 9        - ten production alternatives 
 
• Terminals: 0 … 9 
• Starting non-terminal: I 

– Shown first in the list of productions 
• Examples of production applications: 

I ⇒ DI   D6I ⇒ D6D 
DI ⇒ DDI   D6D ⇒ 36D 
DDI ⇒ D6I  36D ⇒ 361 
 5 



Languages and Grammars 
• String derivation 

– w1 ⇒ w2 ⇒ … ⇒ wn; denoted w1 ⇒ wn 
– If n>1, non-empty derivation sequence: w1 ⇒ wn 

• Language generated by a grammar 
– L(G) = { w ∈ T* | S ⇒ w } 

• Fundamental theoretical characterization: 
Chomsky hierarchy (Noam Chomsky, MIT) 
– Regular languages ⊂ Context-free languages ⊂ 

Context-sensitive languages ⊂ Unrestricted languages 
– Regular languages in PL: for lexical analysis 
– Context-free languages in PL: for syntax analysis 
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Regular Languages (1/5) 
• Operations on languages 

– Union: L ∪ M = all strings in L or in M 
– Concatenation: LM = all ab where a in L and b in M 
– L0 = { ε } and Li = Li-1L 
– Closure: L* = L0 ∪ L1 ∪ L2 ∪ … 
– Positive closure: L+ = L1 ∪ L2 ∪ … 

• Regular expressions: notation to express 
languages constructed with the help of such 
operations  
– Example: (0|1|2|3|4|5|6|7|8|9)+ 
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Regular Languages (2/5) 
• Given some alphabet, a regular expression is 

– The empty string ε 
– Any symbol from the alphabet 
– If r and s are regular expressions, so are r|s, rs, r*, r+, 

r?, and (r) 
– */+/? have higher precedence than concatenation, 

which has higher precedence than | 
– All are left-associative 
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Regular Languages (3/5) 
• Each regular expression r defines a language L(r) 

– L(ε) = { ε } 
– L(a) = { a } for alphabet symbol a 
– L(r|s) = L(r) ∪ L(s) 
– L(rs) = L(r)L(s)  
– L(r*) = (L(r))* 

– L(r+) = (L(r))+ 

– L(r?) = { ε } ∪ L(r) 
– L((r)) = L(r) 

• Example: what is the language defined by   
  0(x|X)(0|1|…|9|a|b|…|f|A|B|…|F)+ 
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Regular Languages (4/5) 
• Regular grammars 

– All productions are A → wB  and A → w 
• A and B are non-terminals; w is a sequence of terminals 
• This is a right-regular grammar 

– Or all productions are A → Bw and A → w 
• Left-regular grammar 

• Example: L = { anb | n > 0 } is a regular language 
– S → Ab and A → a | Aa 

• I  D | DI  and D  0 | 1 | … | 9 : is this a 
regular grammar? 
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Regular Languages (5/5) 
• Equivalent formalisms for regular languages 

– Regular grammars 
– Regular expressions  
– Nondeterministic finite automata (NFA) 
– Deterministic finite automata (DFA) 
– Additional details: Sections 2.2 and 2.4 

• What does this have to do with PLs? 
– Foundation for lexical analysis done by a scanner 
– You will have to implement a scanner for your 

interpreter project; Section 2.2 provides useful 
guidelines 
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Regular Languages in Compilers & Interpreters 
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Scanner (uses a regular grammar to perform lexical analysis) 

Parser (uses a context-free grammar to perform syntax analysis) 

stream of  
characters 

stream of  
tokens 

parse 
tree 

… more compiler/interpreter components 

w,h,i,l,e,(,a,1,5,>,b,b,),d,o,… 

keyword[while], leftparen, id[a15], op[>], 
id[bb], rightparen, keyword[do], … 

each token is a leaf in the parse tree 



Uses of Regular Languages 
• Lexical analysis in compilers 

– E.g., an identifier token is a string from the regular 
language letter (letter|digit)* 

– Each token is a terminal symbol for the context-free 
grammar of the parser 

• Pattern matching 
– stdlinux> grep “a\+b” foo.txt 
– Find every line from foo.txt that contains a string 

from the language L = { anb | n > 0 } 
• i.e., the language for reg. expr. a+b  
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Context-Free Languages 
• They subsume regular languages 

– Every regular language is a c.f. language 
– L = { anbn | n > 0 } is c.f. but not regular 

• Generated by a context-free grammar 
– Each production: A → w 
– A is a non-terminal, w is a sequences of terminals 

and non-terminals 
• BNF (Backus-Naur Form): traditional alternative 

notation for context-free grammars 
– John Backus and Peter Naur, for Algol-58 and Algol-60 

• Backus was also one of the creators of Fortran 
– Both are recipients of the ACM Turing Award 
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Example: Non-negative Integers 
• I  D | DI and D  0 | 1 | … | 9   
• BNF 

– <integer> ::= <digit> | <digit><integer> 
– <digit> ::= 0 | 1 | … | 9 

• What if we wanted to disallow zeroes at the 
beginning? 
– e.g. 509 is OK, but 059 is not 

• Possible motivation: in C, leading 0 means an octal constant 

– Propose a context-free grammar that achieves this 
• Is this grammar regular? If not, can you change it to make it 

regular? 
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Derivation Tree for a String 
• Also called parse tree or concrete syntax tree 

– Leaf nodes: terminals 
– Inner nodes: non-terminals 
– Root: starting non-terminal of the grammar 

• Describes a particular way to derive a string 
based on a context-free grammar 
– Leaf nodes from left to right are the string 
– To get this string: depth-first traversal of the tree,  

always visiting the leftmost unexplored branch 
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Example of a Derivation Tree 
<expr> ::= <term> | <expr> + <term> 
<term> ::= id | (<expr>) 

 
       <expr>  
 
       <expr>             +  <term> 
 
       <term>        z 
 
 (   <expr>  ) 
 
<expr> + <term> 
 
<term>       y 
 
     x 
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Parse tree for 
(x+y)+z 



Equivalent Derivation Sequences 
The set of string derivations that are represented by the 
same parse tree 
 

One derivation: 
<expr> ⇒ <expr> + <term> ⇒ <expr> + z ⇒                   
<term> + z ⇒ (<expr>) + z ⇒  
(<expr> + <term>) + z ⇒ (<expr> + y) + z ⇒                  
(<term> + y) + z ⇒ (x + y) + z 

Another derivation: 
<expr> ⇒ <expr> + <term> ⇒ <term> + <term> ⇒        
(<expr>) + <term> ⇒ (<expr> + <term>) + <term>  ⇒  
(<term> + <term>) + <term> ⇒ (x + <term>) + <term> ⇒      
(x + y) + <term> ⇒ (x + y) + z 
 

Many more … 
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Ambiguous Grammars 
• For some string, there are several different parse 

trees 
• An ambiguous grammar gives more freedom to 

the compiler writer  
– e.g. for code optimizations, to choose the shape of 

the parse tree that leads to better performance 

• For real-world programming languages, we 
typically have non-ambiguous grammars 
– We need a deterministic specification of the parser 
– To remove the ambiguity: add non-terminals 
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Elimination of Ambiguity (1/2) 
• <expr> ::= <expr> + <expr> | <expr> * <expr>                

           | id | ( <expr> )  
• Two possible parse trees for a + b * c 

– Conceptually equivalent to (a + b) * c and a + (b * c) 

• Operator precedence: when several operators are 
without parentheses, what is an operand of what? 
– Is a+b an operand of *, or is b*c an operand of +? 

• Operator associativity: for several operators with 
the same precedence, left-to-right or right-to-left? 
– Is a – b – c equivalent to (a – b) – c or a – (b – c)?  
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Elimination of Ambiguity (2/2) 
• In most languages, * has higher precedence than 

+, and both are left-associative 
• Problem: change <expr> ::= <expr> + <expr> | 

<expr> * <expr> | id | ( <expr> )  
– Eliminate the ambiguity  
– Get the correct precedence and associativity 

• Solution: add new non-terminals 
– <expr> ::= <expr> + <term> | <term> 
– <term> ::= <term> * <factor> | <factor> 
– <factor> ::= id | ( <expr> ) 

21 



The “dangling-else” Problem 
• Ambiguity for “else” 

 
 
 

• if a then if b then c:=1 else c:=2 
– Two possible parse trees 

• Traditional solution: match the else with the last 
unmatched then 
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<stmt> ::= if <expr> then <stmt> 

                | if <expr> then <stmt> else <stmt> 



Non-Ambiguous Grammar 
<stmt> ::= <matched> | <unmatched> 
 

<matched> ::= <non-if-stmt> | 

   if <expr> then <matched> else <matched> 
 

<unmatched> ::= if <expr> then <stmt> | 

  if <expr> then <matched> else <unmatched> 
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Extended BNF (EBNF) 
• [ … ]  optional element 

– if  <expr> then <stmt> [ else <stmt> ] 
• { … } repetition (0 or more times) 

– <IdList> ::= <id> { , <id> }  
– Sometimes shown as { … }* 

• { … }+ repetition (1 or more times) 
– <block> ::= begin <stmt> { <stmt> } end 
– <block> ::= begin { <stmt> }+ end 

• Does not change the expressive power of the 
notation (we can always rewrite in plain BNF) 
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Core: A Toy Imperative Language (1/2) 
<prog> ::= program <decl-seq> begin <stmt-seq> end 

<decl-seq> ::= <decl> | <decl><decl-seq> 

<stmt-seq> ::= <stmt> | <stmt><stmt-seq> 

<decl> ::= int <id-list> ;     <id-list> ::= id | id , <id-list> 

<stmt> ::= <assign> | <if> | <loop> | <in> | <out> 

<assign> ::= id := <expr> ; 

<in> ::= input <id-list> ;      <out> ::= output <id-list> ; 

<if> ::= if <cond> then <stmt-seq> endif ; 

 | if <cond> then <stmt-seq> else <stmt-seq> endif ; 
 

25 



Core: A Toy Imperative Language (2/2) 
<loop> ::= while <cond> begin <stmt-seq> endwhile ; 

<cond> ::= <cmpr> | ! <cond> | ( <cond> AND <cond> ) 

                 | ( <cond> OR <cond> ) 

<cmpr> ::= [ <expr> <cmpr-op> <expr> ] 

<cmpr-op> ::= < | = | != | > | >= | <= 

<expr> ::= <term> | <term> + <expr> | <term> – <expr> 

<term> ::= <factor> | <factor> * <term> 

<factor> ::= const | id | – <factor> | ( <expr> ) 
 26 



Parser vs. Scanner 
• id and const are terminal symbols for the 

grammar of the language 
– tokens that are provided from the scanner to the 

parser 
• But they are non-terminals in the regular 

grammar for the lexical analysis 
– The terminals here are ASCII characters 
<id> ::= <letter> | <id><letter> | <id><digit> 
<letter> ::= A | B | … | Z | a | b | … | z  
<const> ::= <digit> | <const><digit> 
<digit> ::= 0 | 1 | … | 9 
Note: as written, this grammar is not regular, but can be easily changed to an 
equivalent regular grammar  
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Notes for the Core Interpreter Project 
• Consider 9 – 5 + 4 

– What is the parse tree? What is the problem? 
– For ease of implementation, we will not fix this 

• But if we wanted to fix it, how can we? 

• Manually writing a scanner for this language 
– Ad hoc approach (next slide) 
– Systematic approach: write regular expressions for all 

tokens, convert to an NFA, convert that to a DFA, 
minimize it, write code that mimics the transitions of 
the DFA (Section 2.2) 

• There exist various tools to do this automatically, but you 
should not use them for the project (will use in CSE 5343) 
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Outline of a Scanner for Core (1/2) 
• The parser asks the scanner for the next token 
• Skip white spaces and read next character x 
• If x is ;  ,  (  )  [  ]  =  + –   * return the 

corresponding token 
• If x is : , read the next character y 

– If y is not = , report error, else return the token for := 

• If x is ! , peek at the next character y 
– If y is not = , return the token for ! 
– If y is = , read it and return the token for != 
– Peeking can be done easily in C, C++, and Java file I/O 
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Outline of a Scanner for Core (2/2) 
• If x is < , peek at the next character y 

– If y is not = , return the token for < 
– If y is = , read it and return the token for <= 

• Similarly when x is >  
• If x is a letter, keep reading characters; stop 

before the first not-letter-or-digit character 
– If the string is a keyword, return the keyword token 
– Else return token id with the string name attached 

• If x is a digit, keep reading characters; stop before 
the first not-digit character 
– Return token const with the integer value attached 
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