
Functional Languages 

Chapter 10 



Functional Programming Paradigm 
• The program is a collection of functions 

– A function computes and returns a value 
– No side-effects (i.e., no changes to state) 
– No program variables whose values change 

• Basically, no assignments 
• Languages: LISP, Scheme (dialect of LISP from 

MIT, mid-70s), ML, Haskell, … 
• Functions as first-class entities 

– A function can be a parameter of another function 
– A function can be the return value of another 

function 
– A function could be an element of a data structure 
– A function can be created at run time 
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Data Objects in Scheme 
• Atoms 

– Numeric constants: 5, 20, -100, 2.788 
– Boolean constants: #t (true) and #f (false) 
– String constants: “hi there” 
– Character constants: #\a 
– Symbols: f, x, +, *, null?, set! 

• Roughly speaking, equivalent to identifiers in imperative 
languages 

– Empty list: ( ) 

• S-expressions 
– Lists are a special case of S-expressions 
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S-expressions 

• Every atom is an S-expression 
• If s1 and s2 are S-expressions, so is ( s1 . s2 ) 

– Essentially, a binary tree: left child is the tree for s1, 
and right child is the tree for s2 

– Atoms are leaves of the tree 
• (3 . 5) 
• ((3 . 4) . (5 . 6)) 
• (3 . (5 . ())) 
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Primitive Functions for S-expressions 
• car: unary; produces the S-expression 

corresponding to the left child of the argument 
– Not defined for atoms  

• cdr: unary; produces the S-expression 
corresponding to the right child of the argument 
– Not defined for atoms  

• cons: binary; produces a new S-expr with left 
child = 1st arg and right child = 2nd arg 
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Lists 
• Special category of S-expressions 
• Recursive definition 

– The empty list ( ) is a list ; length is 0 
– If the S-expression Y is a list, the S-expression ( X . Y ) 

is also a list; length is 1 + length of Y 
• ((3 . 4) . (5 . 6)) is not a list 
• (3 . (5 . ())) is a list, with length 2 

• Notation: ( e1 . ( e2 . ( … ( en . ( ) ) ) ) ) is written as 
( e1 e2 … en ) 
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Lists 
• Another view of lists: a binary tree in which 

– the rightmost leaf is ( ) 
– the S-expressions hanging from the rightmost “spine” 

of the tree are the list elements 
• List elements can be atoms, other lists, and 

general S-expressions 
– ( ( 3 4 ) 5 ( 6 ) ) is a list with 3 elements 
– Thus, lists are heterogeneous: the elements do not 

have to be of the same type 
• Empty list ( ) - has zero elements 

– Operations car and cdr are not defined for an empty 
list – run-time error 
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Lists 

• car for a list produces the first element of the list 
(the list head) 
– e.g. for ( ( A B ) ( C D ) E ) will produce ( A B ) 

• cdr produces the tail of the list: a list containing 
all elements except the first 
– e.g. for ( ( A B ) ( C D ) E ) will produce ( ( C D ) E )  

• cons adds to the beginning of the list 
– cons of A and ( B C ) is ( A B C ) 
– e.g., cons of car of x and cdr of x is x 
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Examples of Lists 
• ( (3 . 4) 5 ) is ( (3 . 4) . (5 . ( ) ) ) 
• ( (3) (4) 5 ) is ( (3 . ( )) . ( (4 . ( )) . (5 . ( )))) 
• (A B C) is (A . (B . (C . ()))) 
• ((A B) C) is ((A . (B . ())) . (C . ())) 
• (A B (C D)) is (A . (B . ((C . (D . ())) . ()))) 
• ((A)) is ((A . ()) . ()) 
• (A (B . C)) is (A . ((B . C) . ())) 
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Data vs. Code 
• Interpreter for an imperative language: the input 

is code+data, the output is data (values) 
• Everything in Scheme is an S-expression  

– The “program” we are executing is an S-expression 
– The intermediate values and the output values of the 

program are also S-expressions 
• Data and code are really the same thing 

• Example: an expression that represents function 
application (i.e., function call) is a list (f p1 p2 …) 
– f is an S-expression representing the function we are 

calling; p1 is an S-expression representing the first 
actual parameter, etc. 
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Using Scheme 
• Read: you enter an expression 
• Eval: the interpreter evaluates the expression 
• Print: the interpreter prints the resulting value 
• stdlinux: at the prompt, type scheme48 

> type your expression here 
the interpreter prints the value here 
> ,help 
> ,exit 
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Evaluation of Atoms 
• Numeric constants, string constants, and 

character constants evaluate to themselves 
> 4.5     > #t 
4.5      #t  
> “This is a string”   > #f 
“This is a string”    #f 

• Symbols do not have values to start with 
– They may get “bound” to values, as discussed later 
> x 
Error: undefined variable x 

• The empty list ( ) does not have a defined value 
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Function Application 

• (+ 5 6) 
– This S-expression is a “program”; here + is a symbol 

“bound” to the built-in function for addition 
– The evaluation by the interpreter produces the S-

expression 11 

• Function application: (f p1 p2 …) 
– The interpreter evaluates S-expressions f, p1, p2, etc. 
– The interpreter invokes the resulting  function on the 

resulting values   
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Examples 
> (+ 5 6) 
11 
> (+ (+ 3 5) (* 4 4)) 
24 
> (+ 5 #t) 
Error, because “add” is defined only for numeric atoms 
> (car 5) 
Error, car is not defined for atoms 
> (cdr 5) 
Same here 
> (cons 4 5) 
 '(4 . 5) 
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Quoting an Expression 
• When the interpreter sees a non-atom, it tries to 

evaluate it as if it were a function call 
– But for (5 6), what does it mean? 

• “Error: attempt to call a non-procedure” 

• We can tell the interpreter to evaluate an 
expression to itself 
– (quote (5 6)) or simply '(5 6) 
– Evaluates to the S-expression (5 6) 
– The resulting expression is printed by the Scheme 

interpreter as  '(5 6) 
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Examples 
> (+ (+ 3 5) (car (7 . 8))) 
Errors  
1> Ctrl-D 
> (+ (+ 3 5) (car '(7 . 8))) 
15 
> (car (7 10)) 
Errors 
1> (car '(7 10)) 
7 
1> (+ (car '(7 10)) (cdr '(7 10))) 
Errors 
2> (+ (car '(7 10)) (cdr '(7 . 10))) 
17 
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More Examples 
> (cons (car '(7 . 10)) (cdr '(7 . 10))) 
'(7 . 10) 
> (cons (car '(7 10)) (cdr '(7 . 10)))  
'(7 . 10) 
> (cons (car '(7 . 10)) (cdr '(7 10))) 
'(7 10) 
> (cons (car '(7 10)) (cdr '(7 10))) 
'(7 10) 
> a      > 'a   > (car '(A B))  
Error     'a        'a 
> (cdr '(A B)) > (cons 'a '(b))       > (cons 'a 'b) 
'(b)   '(a b)           '(a . b) 
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More Examples 
> (equal? #t #f) > (equal? '() #f) 
#f    #f 
> (equal? #t #t)  > (equal? (+ 7 5) (+ 5 7)) 
#t    #t 
> (equal? (cons 'a '(b)) '(a b))    
#t 
> (pair? '(7 . 10)) > (pair? 7)  > (pair? '()) 
#t    #f   #f 
> (null? '())  > (null? #f)  > (null? '(b)) 
#t    #f   #f 
 

18 



More Examples 
> (even? 7) > (even? 8) 
#f    #t 
> (even? (+ 7 7))  > (even 7) > (even? 'a) 
#t    Error  Error 
> (= 5 6)  > (< 5 6) > (> 5 6) 
#f    #t  #f 
> (= 4.5 4.5 4.5) > (= 4.5 4.5 4.7) 
#t    #f    
> (= 'a 'b) 
Error 
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Conditional Expressions 
• (if b e1 e2) 

– Evaluate b. If the value is not #f, evaluate e1 and this 
is the value to the expression 

– If b evaluates to #f, evaluate e2 and this is the value of 
the expression 

• (cond  (b1 e1)  (b2 e2)  …  (bn en)) 
– Evaluate b1. If not #f, evaluate e1 and use its value. If 

b1 evaluates to #f, evaluate b2, etc. 
– If all b evaluate to #f: unspecified value for the 

expression; so, we often have #t as the last b 
– Alternative form: (cond  (b1 e1)  (b2 e2)  …  (else en)) 
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Function Definition 
> (define (double x) (+ x x)) 
; no values returned 
 
> (double 7)  > (double 4.4)  > (double '(7)) 
14   8.8   Error 
 
> (define (mydiff x y) (cond ((= x y) #f) (#t #t))) 
; no values returned 
 
> (mydiff 4 5)    > (mydiff 4 4)  > (mydiff '(4) '(4)) 
#t       #f   ??? 
 

21 



Member of a List? 
In text file mbr.ss create the following: 
; this is a comment 
; (mbr x list): is x a member of the list? 
(define (mbr x list) 
  (cond 
   ( (null? list) #f ) 
   ( #t (cond  
    ( (equal? x (car list)) #t ) 
    ( #t (mbr x (cdr list)) ) ) ) 
 ) 
)       

Or we could use just one “cond” … 
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Member of a List? 
In the interpreter: 
> (load “mbr.ss”)  or ,load mbr.ss 
mbr.ss 
; no values returned 
> (mbr 4 '( 5 6 4 7)) 
#t 
> (mbr 8 '(5 6 4 7)) 
#f 
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Union of Two Lists 
(define (uni s1 s2) 
 (cond  
   ( (null? s1) s2) 
   ( (null? s2) s1) 
   ( #t (cond  
   ( (mbr (car s1) s2) (uni (cdr s1) s2)) 
  ( #t (cons (car s1) (uni (cdr s1) s2))))))) 
> (uni '(4) '(2 3)) 
'(4 2 3) 
> (uni '(3 10 12) '(20 10 12 45)) 
'(3 20 10 12 45) 

How about using ”if”  
in mbr and uni? 
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Removing Duplicates 
; x: a sorted list of numbers; remove duplicates ... 
(define (unique x) 
 (cond 
  ( (null? x) x ) 
  ( (null? (cdr x)) x ) 
  ( (equal? (car x) (cdr x)) (unique (cdr x)) ) 
  ( #t (cons (car x) (unique (cdr x))) ) 
 ) 
) 
> (unique '(2 2 3 4 4 5)) 

(2 2 3 4 4 5)  ;??? 
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Largest Number in a List 
; max number in a non-empty list of numbers 
(define (maxlist L) 
 (cond 
  ( (null? (cdr L)) (car L) ) 
  ( (> (car L) (maxlist (cdr L))) (car L) ) 
  ( #t (maxlist (cdr L)) ) 
 ) 
) 
What is the running time as a function of list size? How 
can we improve it? 
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A Different Approach 
; max number in a non-empty list of numbers 
(define (maxlist L) (mymax (car L) (cdr L))) 
(define (mymax x L) 
 (cond 
  ( (null? L) x ) 
  ( (> x (car L)) (mymax x (cdr L)) ) 
  ( #t (mymax (car L) (cdr L)) ) 
 ) 
) 
What is the running time as a function of list size?  
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Semantics of Function Calls 
• Consider (F p1 p2 …) 
• Evaluate p1, p2, … using the current bindings 
• “Bind” the resulting values v1, v2, … to the 

formal parameters f1, f2, … of F 
– add pairs (f1,v1), (f2,v2), … to the current set of 

bindings 

• Evaluate the body of F using the bindings 
– if we see p1 in the body, we evaluate it to value v1 

• After coming back from the call, the bindings for 
p1, p2, … are destroyed 
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Higher-Order Functions 
(define (double x) (+ x x)) 
(define (twice f x) (f (f x))) 
(twice double 2)     Returns 8 
 
(define (mymap f list) 
  (if (null? list) list 
       (cons (f (car list)) 
            (mymap f (cdr list))))) 

 (mymap double '(1 2 3 4 5))    Returns '(2 4 6 8 10) 
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Higher-Order Functions 
(define (double x) (+ x x)) 
(define (id x) x) 
((id double) 11)   Returns 22 
 
(define (makelist f n) 
  (if (= n 0) '() 
       (cons f (makelist f (- n 1)))))  
 
(makelist double 4) 
Returns '(procedure double, procedure double,  
                procedure double, procedure double) 
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Higher-Order Functions 
(define (newmap x list) 
  (if (null? list) list 
    (cons ((car list) x) (newmap x (cdr list))))) 
What does this function do? 
 
(newmap 11 (makelist double 7)) 
What is the result of this function application? 
 
(define (f n) (newmap n (makelist double 5))) 
(twice f 9) 
How about here? 
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Recursion for Iterating 
; Factorial function 
(define (fact n) 
  (if (= n 0) 1 
  (* n (fact (- n 1))))) 
 
Equivalent computation in imperative languages 
f := 1; 
for (i = 1; i <= n; i++)  f := f * i; 
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Quicksort 
Sort list of numbers (for simplicity, no duplicates) 
Algorithm: 

– If list is empty, we are done 
– Choose pivot n (e.g., first element) 
– Partition list into lists A and B with elements < n in A 

and elements > n in B 
– Recursively sort A and B 
– Append sorted lists and n 
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Constructing the Two Sublists 
(define (ltlist n list)  
  (if (null? list) list 
     (if (< (car list) n) 
      (cons (car list) (ltlist n (cdr list))) 
       (ltlist n (cdr list))))) 
 
Similarly we can define function gtlist 
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Sorting 
(define (qsort list) 
  (if (null? list) list 
    (append  
   (qsort (ltlist (car list) (cdr list))) 
           (cons (car list) '()) 
           (qsort (gtlist (car list) (cdr list)))))) 
 
(qsort '(4 3 5 1 6 2 8 7)) 
Returns '(1 2 3 4 5 6 7 8) 
   

Scheme function: 
merges the lists 
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A Few Other Language Features 
• (lambda (x y …) body) : evaluates to a function 

– ((lambda (x) (+ x x)) 4) evaluates to 8 
– (define (f x y …) body) is equivalent to       

(define f (lambda (x y …) body)) 
– Comes from the λ-calculus, the theoretical 

foundation for functional languages (Alonzo Church) 

• let bindings – give names to values 
– (let ((x 2) (y 3)) (* x y)) produces 6 
– (let ((x 2) (y 3)) (let ((x 7) (z (+ x y))) (* z x))) is 35 

• (define x expr) and (define (f x y …) body) create 
global bindings for these names 
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