Functional Languages

Chapter 10

Functional Programming Paradigm

- The program is a collection of functions
- A function computes and returns a value
- No side-effects (i.e., no changes to state)
- No program variables whose values change
- Basically, no assignments
- Languages: LISP, Scheme (dialect of LISP from MIT, mid-70s), ML, Haskell, ...
- Functions as first-class entities
- A function can be a parameter of another function
- A function can be the return value of another function
- A function could be an element of a data structure
- A function can be created at run time

Data Objects in Scheme

- Atoms
- Numeric constants: 5, 20, -100, 2.788
- Boolean constants: \#t (true) and \#f (false)
- String constants: "hi there"
- Character constants: \#\a
- Symbols: f, x, +, *, null?, set!
- Roughly speaking, equivalent to identifiers in imperative languages
- Empty list: ()
- S-expressions
- Lists are a special case of S-expressions

S-expressions

- Every atom is an S-expression
- If s1 and s2 are S-expressions, so is (s1 . s2)
- Essentially, a binary tree: left child is the tree for s1, and right child is the tree for s2
- Atoms are leaves of the tree
- (3.5)
- ((3.4).(5.6))
-(3.(5.()))

Primitive Functions for S-expressions

- car: unary; produces the S-expression corresponding to the left child of the argument
- Not defined for atoms
- cdr: unary; produces the S-expression corresponding to the right child of the argument
- Not defined for atoms
- cons: binary; produces a new S-expr with left child $=1^{\text {st }}$ arg and right child $=2^{\text {nd }} \arg$

Lists

- Special category of S-expressions
- Recursive definition
- The empty list () is a list ; length is 0
- If the S-expression \mathbf{Y} is a list, the S -expression (\mathbf{X}. \mathbf{Y}) is also a list; length is $1+$ length of Y
- ((3 4) . (5 . 6)) is not a list
- (3. (5 . ())) is a list, with length 2
- Notation: ($\left.e_{1} \cdot\left(e_{2} \cdot\left(\ldots\left(e_{n} \cdot()\right)\right)\right)\right)$ is written as ($e_{1} e_{2} \ldots e_{n}$)

Lists

- Another view of lists: a binary tree in which
- the rightmost leaf is ()
- the S -expressions hanging from the rightmost "spine" of the tree are the list elements
- List elements can be atoms, other lists, and general S -expressions
- ($(34) 5(6))$ is a list with 3 elements
- Thus, lists are heterogeneous: the elements do not have to be of the same type
- Empty list () - has zero elements
- Operations car and cdr are not defined for an empty list - run-time error

Lists

- car for a list produces the first element of the list (the list head)
- e.g. for ((AB) (CD)E) will produce (AB)
- cdr produces the tail of the list: a list containing all elements except the first
- e.g. for ((AB) (CD)E) will produce ((CD)E)
- cons adds to the beginning of the list
- cons of A and (BC) is (A BC)
- e.g., cons of car of x and $c d r$ of x is x

Examples of Lists

- ((3.4) 5) is ((3.4). (5.()))
- ((3) (4) 5) is (($3 \cdot())$. ((4.()) . (5.())))
- (A B C) is (A . (B . (C . ())))
- ((A B) C) is ((A . (B. ())) . (C . ()))
- (A B (C D)) is (A . (B . ((C . (D . ())) . ())))
- ((A)) is ((A . ()) . ())
- (A (B.C)) is (A . ((B.C) . ()))

Data vs. Code

- Interpreter for an imperative language: the input is code+data, the output is data (values)
- Everything in Scheme is an S-expression
- The "program" we are executing is an S-expression
- The intermediate values and the output values of the program are also S-expressions
- Data and code are really the same thing
- Example: an expression that represents function application (i.e., function call) is a list (f p1 p2 ...)
$-\mathbf{f}$ is an S -expression representing the function we are calling; p1 is an S-expression representing the first actual parameter, etc.

Using Scheme

- Read: you enter an expression
- Eval: the interpreter evaluates the expression
- Print: the interpreter prints the resulting value
- stdlinux: at the prompt, type scheme48
> type your expression here
the interpreter prints the value here
$>$,help
$>$,exit

Evaluation of Atoms

- Numeric constants, string constants, and character constants evaluate to themselves
> 4.5
$>$ \#t
4.5
\#t
> "This is a string"
> \#f
"This is a string"
\#f
- Symbols do not have values to start with
- They may get "bound" to values, as discussed later
> X
Error: undefined variable x
- The empty list () does not have a defined value

Function Application

- (+ 5 6)
- This S-expression is a "program"; here + is a symbol "bound" to the built-in function for addition
- The evaluation by the interpreter produces the Sexpression 11
- Function application: (f p1 p2 ...)
- The interpreter evaluates S-expressions f, p1, p2, etc.
- The interpreter invokes the resulting function on the resulting values

Examples

$>$ (+ 5 6)
11
$>(+(+35)(* 44))$
24
$>$ (+ 5 \#t)
Error, because "add" is defined only for numeric atoms
$>$ (car 5)
Error, car is not defined for atoms
> (cdr 5)
Same here
$>$ (cons 4 5)
'(4.5)

Quoting an Expression

- When the interpreter sees a non-atom, it tries to evaluate it as if it were a function call
- But for (5 6), what does it mean?
- "Error: attempt to call a non-procedure"
- We can tell the interpreter to evaluate an expression to itself
- (quote (5 6)) or simply '(5 6)
- Evaluates to the S-expression (5 6)
- The resulting expression is printed by the Scheme interpreter as '(5 6)

Examples

```
> (+ (+ 3 5) (car (7 . 8)))
Errors
1> Ctrl-D
> (+ (+ 3 5) (car '(7 . 8)))
15
> (car (7 10))
Errors
1> (car '(7 10))
7
1> (+ (car '(7 10)) (cdr '(7 10)))
Errors
2> (+ (car '(7 10)) (cdr '(7 . 10)))
17
```


More Examples

```
\(>\) (cons (car '(7.10)) (cdr '(7 . 10)))
    '(7.10)
    \(>\) (cons (car '(7 10)) (cdr '(7 . 10)))
    '(7.10)
    \(>\) (cons (car '(7.10)) (cdr '(7 10)))
    '(7 10)
    > (cons (car '(7 10)) (cdr '(7 10)))
    '(7 10)
```

$>a$
Error
$>(c d r '(A B))$
'(b)
$>$ 'a
'a
$>$ (cons 'a '(b))
'(a b)
$>\left(\operatorname{car}{ }^{\prime}(A B)\right)$
'a
$>$ (cons 'a 'b)
'(a.b)

More Examples

> (equal? \#t \#f) > (equal? '() \#f)
\#f \#f
> (equal? \#t \#t) > (equal? (+ 7 5) (+ 5 7))
\#t
\#t
$>$ (equal? (cons 'a '(b)) '(a b))
\#t
> (pair? '(7.10)) > (pair? 7)
$>$ (pair? '())
\#t
\#f
$>$ (null? ' ()) (null? \#f)
$>$ (null? '(b))
\#t
\#f
\#f

More Examples

Error

Conditional Expressions

- (if b $\mathrm{e}_{1} \mathrm{e}_{2}$)
- Evaluate b. If the value is not \#f, evaluate e_{1} and this is the value to the expression
- If b evaluates to \#f, evaluate e_{2} and this is the value of the expression
- (cond ($\left.\left.b_{1} e_{1}\right)\left(b_{2} e_{2}\right) \ldots\left(b_{n} e_{n}\right)\right)$
- Evaluate b_{1}. If not \#f, evaluate e_{1} and use its value. If b_{1} evaluates to \#f, evaluate b_{2}, etc.
- If all b evaluate to \#f: unspecified value for the expression; so, we often have \#t as the last b
- Alternative form: (cond $\left(b_{1} e_{1}\right)\left(b_{2} e_{2}\right) \ldots\left(\right.$ else $\left.\left.e_{n}\right)\right)$

Function Definition

$>$ (define (double x) (+ x x))
; no values returned
> (double 7)
14
$>$ (double 4.4)
> (double '(7))
8.8
Error
> (define (mydiff x y) (cond ((= x y) \#f) (\#t \#t)))
; no values returned
$>$ (mydiff 45$) \quad>($ mydiff 44$) \quad>\left(\right.$ mydiff ${ }^{\prime}(4)$ '(4))
\#t
\#f
???

Member of a List?

In text file mbr.ss create the following:
; this is a comment
; (mbr x list): is x a member of the list?
(define (mbr x list)
(cond
((null? list) \#f)
(\#t (cond
((equal? x (car list)) \#t)
(\#t (mbr x (cdr list)))))

Or we could use just one "cond" ...

Member of a List?

In the interpreter:
> (load "mbr.ss") or ,load mbr.ss mbr.ss
; no values returned
$>$ (mbr 4 '(564 7))
\#t
$>(m b r 8$ '(5 647))
\#f

Union of Two Lists

(define (uni s1 s2)
(cond
((null? s1) s2)
((null? s2) s1)
How about using "if" in mbr and uni?
(\#t (cond
((mbr (car s1) s2) (uni (cdr s1) s2))
(\#t (cons (car s1) (uni (cdr s1) s2)))))))
$>$ (uni '(4) '(2 3))
'(4 2 3)
$>$ (uni '(3 10 12) '(20 1012 45))
'(3 201012 45)

Removing Duplicates

; x : a sorted list of numbers; remove duplicates ...
(define (unique x)
(cond
((null? x) x)
((null? (cdr x)) x)
((equal? ($\operatorname{car} \mathbf{x}$) (cdr $\mathbf{x})$) (unique (cdr $\mathbf{x})$))
(\#t (cons (car x) (unique (cdr x))))
)
)
> (unique '(2 2344 5))
(2 23445) ;???

Largest Number in a List

; max number in a non-empty list of numbers
(define (maxlist L)
(cond
((null? (cdr L)) (car L))
((> (car L) (maxlist (cdr L))) (car L))
(\#t (maxlist (cdr L)))
)
What is the running time as a function of list size? How
can we improve it?

A Different Approach

; max number in a non-empty list of numbers
(define (maxlist L) (mymax (car L) (cdr L)))
(define (mymax x L)
(cond
((null? L) x)
((>x (car L)) (mymax $x(\operatorname{cdr} \mathrm{~L})))$
(\#t (mymax (car L) (cdr L)))
)
)
What is the running time as a function of list size?

Semantics of Function Calls

- Consider (F p1 p2 ...)
- Evaluate p1, p2, ... using the current bindings
- "Bind" the resulting values v1, v2, ... to the formal parameters f1, f2, ... of F
- add pairs (f1,v1), (f2,v2), ... to the current set of bindings
- Evaluate the body of F using the bindings - if we see p 1 in the body, we evaluate it to value v1
- After coming back from the call, the bindings for p1, p2, ... are destroyed
(define (double x) (+ \mathbf{x} x))
(define (twice f x) ($\mathrm{f}(\mathrm{f} \mathrm{x})$))
(twice double 2) Returns 8
(define (mymap flist)
(if (null? list) list
(cons (f (car list))
(mymap f(cdr list)))))
(mymap double '(1 234 5)) Returns '(2 468 10)

Higher-Order Functions

(define (double x) (+xx))
(define (id x) x)
((id double) 11) Returns 22
(define (makelist fn)
(if (= n 0) ' ()
(cons f(makelist f(-n 1)))))
(makelist double 4)
Returns '(procedure double, procedure double, procedure double, procedure double)

Higher-Order Functions

(define (newmap x list)
(if (null? list) list
(cons ((car list) x) (newmap $x(c d r l i s t)))))$
What does this function do?
(newmap 11 (makelist double 7))
What is the result of this function application?
(define (f n) (newmap n (makelist double 5)))
(twice f 9)
How about here?

Recursion for Iterating

; Factorial function
(define (fact n)

```
(if (= n 0) 1
    (* n (fact (- n 1)))))
```

Equivalent computation in imperative languages
$\mathrm{f}:=1$;
for ($i=1 ; i<=n ; i++$) $f:=f$ *;

Quicksort

Sort list of numbers (for simplicity, no duplicates)

Algorithm:

- If list is empty, we are done
- Choose pivot \mathbf{n} (e.g., first element)
- Partition list into lists A and B with elements $<\mathbf{n}$ in A and elements $>\boldsymbol{n}$ in B
- Recursively sort A and B
- Append sorted lists and \mathbf{n}

Constructing the Two Sublists

(define (Itlist n list)
(if (null? list) list
(if (< (car list) n)
(cons (car list) (Itlist \mathbf{n} (cdr list)))
(Itlist $\mathrm{n}(\mathrm{cdr}$ list)))))

Similarly we can define function gtlist

Sorting

(define (qsort list)
Scheme function: merges the lists
(append

(qsort (Itlist (car list) (cdr list)))

(cons (car list) '())
(qsort (gtlist (car list) (cdr list))))))
(qsort '(43516287))
Returns '(12345678)

A Few Other Language Features

- (lambda (x y ...) body) : evaluates to a function
- ((lambda (x) (+x x)) 4) evaluates to 8
- (define (f xy ...) body) is equivalent to (define f (lambda (x y ...) body))
- Comes from the λ-calculus, the theoretical foundation for functional languages (Alonzo Church)
- let bindings - give names to values
- (let ((x 2) (y 3)) (* x y)) produces 6
- (let ((x 2) (y 3)) (let ((x 7) (z (+x y))) (* z x))) is 35
- (define \mathbf{x} expr) and (define ($\mathrm{f} \mathbf{x} \mathbf{y}$...) body) create global bindings for these names

