
Functional Languages

Chapter 10

Functional Programming Paradigm
• The program is a collection of functions

– A function computes and returns a value
– No side-effects (i.e., no changes to state)
– No program variables whose values change

• Basically, no assignments
• Languages: LISP, Scheme (dialect of LISP from

MIT, mid-70s), ML, Haskell, …
• Functions as first-class entities

– A function can be a parameter of another function
– A function can be the return value of another

function
– A function could be an element of a data structure
– A function can be created at run time

2

Data Objects in Scheme
• Atoms

– Numeric constants: 5, 20, -100, 2.788
– Boolean constants: #t (true) and #f (false)
– String constants: “hi there”
– Character constants: #\a
– Symbols: f, x, +, *, null?, set!

• Roughly speaking, equivalent to identifiers in imperative
languages

– Empty list: ()

• S-expressions
– Lists are a special case of S-expressions

3

S-expressions

• Every atom is an S-expression
• If s1 and s2 are S-expressions, so is (s1 . s2)

– Essentially, a binary tree: left child is the tree for s1,
and right child is the tree for s2

– Atoms are leaves of the tree
• (3 . 5)
• ((3 . 4) . (5 . 6))
• (3 . (5 . ()))

4

Primitive Functions for S-expressions
• car: unary; produces the S-expression

corresponding to the left child of the argument
– Not defined for atoms

• cdr: unary; produces the S-expression
corresponding to the right child of the argument
– Not defined for atoms

• cons: binary; produces a new S-expr with left
child = 1st arg and right child = 2nd arg

5

Lists
• Special category of S-expressions
• Recursive definition

– The empty list () is a list ; length is 0
– If the S-expression Y is a list, the S-expression (X . Y)

is also a list; length is 1 + length of Y
• ((3 . 4) . (5 . 6)) is not a list
• (3 . (5 . ())) is a list, with length 2

• Notation: (e1 . (e2 . (… (en . ())))) is written as
(e1 e2 … en)

6

Lists
• Another view of lists: a binary tree in which

– the rightmost leaf is ()
– the S-expressions hanging from the rightmost “spine”

of the tree are the list elements
• List elements can be atoms, other lists, and

general S-expressions
– ((3 4) 5 (6)) is a list with 3 elements
– Thus, lists are heterogeneous: the elements do not

have to be of the same type
• Empty list () - has zero elements

– Operations car and cdr are not defined for an empty
list – run-time error

7

Lists

• car for a list produces the first element of the list
(the list head)
– e.g. for ((A B) (C D) E) will produce (A B)

• cdr produces the tail of the list: a list containing
all elements except the first
– e.g. for ((A B) (C D) E) will produce ((C D) E)

• cons adds to the beginning of the list
– cons of A and (B C) is (A B C)
– e.g., cons of car of x and cdr of x is x

8

Examples of Lists
• ((3 . 4) 5) is ((3 . 4) . (5 . ()))
• ((3) (4) 5) is ((3 . ()) . ((4 . ()) . (5 . ())))
• (A B C) is (A . (B . (C . ())))
• ((A B) C) is ((A . (B . ())) . (C . ()))
• (A B (C D)) is (A . (B . ((C . (D . ())) . ())))
• ((A)) is ((A . ()) . ())
• (A (B . C)) is (A . ((B . C) . ()))

9

Data vs. Code
• Interpreter for an imperative language: the input

is code+data, the output is data (values)
• Everything in Scheme is an S-expression

– The “program” we are executing is an S-expression
– The intermediate values and the output values of the

program are also S-expressions
• Data and code are really the same thing

• Example: an expression that represents function
application (i.e., function call) is a list (f p1 p2 …)
– f is an S-expression representing the function we are

calling; p1 is an S-expression representing the first
actual parameter, etc.

10

Using Scheme
• Read: you enter an expression
• Eval: the interpreter evaluates the expression
• Print: the interpreter prints the resulting value
• stdlinux: at the prompt, type scheme48

> type your expression here
the interpreter prints the value here
> ,help
> ,exit

11

Evaluation of Atoms
• Numeric constants, string constants, and

character constants evaluate to themselves
> 4.5 > #t
4.5 #t
> “This is a string” > #f
“This is a string” #f

• Symbols do not have values to start with
– They may get “bound” to values, as discussed later
> x
Error: undefined variable x

• The empty list () does not have a defined value

12

Function Application

• (+ 5 6)
– This S-expression is a “program”; here + is a symbol

“bound” to the built-in function for addition
– The evaluation by the interpreter produces the S-

expression 11

• Function application: (f p1 p2 …)
– The interpreter evaluates S-expressions f, p1, p2, etc.
– The interpreter invokes the resulting function on the

resulting values

13

Examples
> (+ 5 6)
11
> (+ (+ 3 5) (* 4 4))
24
> (+ 5 #t)
Error, because “add” is defined only for numeric atoms
> (car 5)
Error, car is not defined for atoms
> (cdr 5)
Same here
> (cons 4 5)
 '(4 . 5)

14

Quoting an Expression
• When the interpreter sees a non-atom, it tries to

evaluate it as if it were a function call
– But for (5 6), what does it mean?

• “Error: attempt to call a non-procedure”

• We can tell the interpreter to evaluate an
expression to itself
– (quote (5 6)) or simply '(5 6)
– Evaluates to the S-expression (5 6)
– The resulting expression is printed by the Scheme

interpreter as '(5 6)

15

Examples
> (+ (+ 3 5) (car (7 . 8)))
Errors
1> Ctrl-D
> (+ (+ 3 5) (car '(7 . 8)))
15
> (car (7 10))
Errors
1> (car '(7 10))
7
1> (+ (car '(7 10)) (cdr '(7 10)))
Errors
2> (+ (car '(7 10)) (cdr '(7 . 10)))
17

16

More Examples
> (cons (car '(7 . 10)) (cdr '(7 . 10)))
'(7 . 10)
> (cons (car '(7 10)) (cdr '(7 . 10)))
'(7 . 10)
> (cons (car '(7 . 10)) (cdr '(7 10)))
'(7 10)
> (cons (car '(7 10)) (cdr '(7 10)))
'(7 10)
> a > 'a > (car '(A B))
Error 'a 'a
> (cdr '(A B)) > (cons 'a '(b)) > (cons 'a 'b)
'(b) '(a b) '(a . b)

17

More Examples
> (equal? #t #f) > (equal? '() #f)
#f #f
> (equal? #t #t) > (equal? (+ 7 5) (+ 5 7))
#t #t
> (equal? (cons 'a '(b)) '(a b))
#t
> (pair? '(7 . 10)) > (pair? 7) > (pair? '())
#t #f #f
> (null? '()) > (null? #f) > (null? '(b))
#t #f #f

18

More Examples
> (even? 7) > (even? 8)
#f #t
> (even? (+ 7 7)) > (even 7) > (even? 'a)
#t Error Error
> (= 5 6) > (< 5 6) > (> 5 6)
#f #t #f
> (= 4.5 4.5 4.5) > (= 4.5 4.5 4.7)
#t #f
> (= 'a 'b)
Error

19

Conditional Expressions
• (if b e1 e2)

– Evaluate b. If the value is not #f, evaluate e1 and this
is the value to the expression

– If b evaluates to #f, evaluate e2 and this is the value of
the expression

• (cond (b1 e1) (b2 e2) … (bn en))
– Evaluate b1. If not #f, evaluate e1 and use its value. If

b1 evaluates to #f, evaluate b2, etc.
– If all b evaluate to #f: unspecified value for the

expression; so, we often have #t as the last b
– Alternative form: (cond (b1 e1) (b2 e2) … (else en))

20

Function Definition
> (define (double x) (+ x x))
; no values returned

> (double 7) > (double 4.4) > (double '(7))
14 8.8 Error

> (define (mydiff x y) (cond ((= x y) #f) (#t #t)))
; no values returned

> (mydiff 4 5) > (mydiff 4 4) > (mydiff '(4) '(4))
#t #f ???

21

Member of a List?
In text file mbr.ss create the following:
; this is a comment
; (mbr x list): is x a member of the list?
(define (mbr x list)
 (cond
 ((null? list) #f)
 (#t (cond
 ((equal? x (car list)) #t)
 (#t (mbr x (cdr list)))))
)
)

Or we could use just one “cond” …
22

Member of a List?
In the interpreter:
> (load “mbr.ss”) or ,load mbr.ss
mbr.ss
; no values returned
> (mbr 4 '(5 6 4 7))
#t
> (mbr 8 '(5 6 4 7))
#f

23

Union of Two Lists
(define (uni s1 s2)
 (cond
 ((null? s1) s2)
 ((null? s2) s1)
 (#t (cond
 ((mbr (car s1) s2) (uni (cdr s1) s2))
 (#t (cons (car s1) (uni (cdr s1) s2)))))))
> (uni '(4) '(2 3))
'(4 2 3)
> (uni '(3 10 12) '(20 10 12 45))
'(3 20 10 12 45)

How about using ”if”
in mbr and uni?

24

Removing Duplicates
; x: a sorted list of numbers; remove duplicates ...
(define (unique x)
 (cond
 ((null? x) x)
 ((null? (cdr x)) x)
 ((equal? (car x) (cdr x)) (unique (cdr x)))
 (#t (cons (car x) (unique (cdr x))))
)
)
> (unique '(2 2 3 4 4 5))

(2 2 3 4 4 5) ;???
25

Largest Number in a List
; max number in a non-empty list of numbers
(define (maxlist L)
 (cond
 ((null? (cdr L)) (car L))
 ((> (car L) (maxlist (cdr L))) (car L))
 (#t (maxlist (cdr L)))
)
)
What is the running time as a function of list size? How
can we improve it?

26

A Different Approach
; max number in a non-empty list of numbers
(define (maxlist L) (mymax (car L) (cdr L)))
(define (mymax x L)
 (cond
 ((null? L) x)
 ((> x (car L)) (mymax x (cdr L)))
 (#t (mymax (car L) (cdr L)))
)
)
What is the running time as a function of list size?

27

Semantics of Function Calls
• Consider (F p1 p2 …)
• Evaluate p1, p2, … using the current bindings
• “Bind” the resulting values v1, v2, … to the

formal parameters f1, f2, … of F
– add pairs (f1,v1), (f2,v2), … to the current set of

bindings

• Evaluate the body of F using the bindings
– if we see p1 in the body, we evaluate it to value v1

• After coming back from the call, the bindings for
p1, p2, … are destroyed

28

Higher-Order Functions
(define (double x) (+ x x))
(define (twice f x) (f (f x)))
(twice double 2) Returns 8

(define (mymap f list)
 (if (null? list) list
 (cons (f (car list))
 (mymap f (cdr list)))))

 (mymap double '(1 2 3 4 5)) Returns '(2 4 6 8 10)

29

Higher-Order Functions
(define (double x) (+ x x))
(define (id x) x)
((id double) 11) Returns 22

(define (makelist f n)
 (if (= n 0) '()
 (cons f (makelist f (- n 1)))))

(makelist double 4)
Returns '(procedure double, procedure double,
 procedure double, procedure double)

30

Higher-Order Functions
(define (newmap x list)
 (if (null? list) list
 (cons ((car list) x) (newmap x (cdr list)))))
What does this function do?

(newmap 11 (makelist double 7))
What is the result of this function application?

(define (f n) (newmap n (makelist double 5)))
(twice f 9)
How about here?

31

Recursion for Iterating
; Factorial function
(define (fact n)
 (if (= n 0) 1
 (* n (fact (- n 1)))))

Equivalent computation in imperative languages
f := 1;
for (i = 1; i <= n; i++) f := f * i;

32

Quicksort
Sort list of numbers (for simplicity, no duplicates)
Algorithm:

– If list is empty, we are done
– Choose pivot n (e.g., first element)
– Partition list into lists A and B with elements < n in A

and elements > n in B
– Recursively sort A and B
– Append sorted lists and n

33

Constructing the Two Sublists
(define (ltlist n list)
 (if (null? list) list
 (if (< (car list) n)
 (cons (car list) (ltlist n (cdr list)))
 (ltlist n (cdr list)))))

Similarly we can define function gtlist

34

Sorting
(define (qsort list)
 (if (null? list) list
 (append
 (qsort (ltlist (car list) (cdr list)))
 (cons (car list) '())
 (qsort (gtlist (car list) (cdr list))))))

(qsort '(4 3 5 1 6 2 8 7))
Returns '(1 2 3 4 5 6 7 8)

Scheme function:
merges the lists

35

A Few Other Language Features
• (lambda (x y …) body) : evaluates to a function

– ((lambda (x) (+ x x)) 4) evaluates to 8
– (define (f x y …) body) is equivalent to

(define f (lambda (x y …) body))
– Comes from the λ-calculus, the theoretical

foundation for functional languages (Alonzo Church)

• let bindings – give names to values
– (let ((x 2) (y 3)) (* x y)) produces 6
– (let ((x 2) (y 3)) (let ((x 7) (z (+ x y))) (* z x))) is 35

• (define x expr) and (define (f x y …) body) create
global bindings for these names

36

	Functional Languages
	Functional Programming Paradigm
	Data Objects in Scheme
	S-expressions
	Primitive Functions for S-expressions
	Lists
	Lists
	Lists
	Examples of Lists
	Data vs. Code
	Using Scheme
	Evaluation of Atoms
	Function Application
	Examples
	Quoting an Expression
	Examples
	More Examples
	More Examples
	More Examples
	Conditional Expressions
	Function Definition
	Member of a List?
	Member of a List?
	Union of Two Lists
	Removing Duplicates
	Largest Number in a List
	A Different Approach
	Semantics of Function Calls
	Higher-Order Functions
	Higher-Order Functions
	Higher-Order Functions
	Recursion for Iterating
	Quicksort
	Constructing the Two Sublists
	Sorting
	A Few Other Language Features

