Demand-Driven Context-Sensitive Alias Analysis for Java

Dacong Yan Guoqing Xu Atanas Rountev
Ohio State University
{yan,xug,rountev}@cse ohio-state.edu

ABSTRACT
Software tools for program understanding, transformation, verification, and testing often require an efficient yet highly-precise alias analysis. Typically this is done by computing points-to information, from which alias queries can be answered. This paper presents a novel context-sensitive, demand-driven alias analysis for Java that achieves efficiency by answering alias queries directly, instead of relying on an underlying points-to analysis. The analysis is formulated as a context-free-language (CFL) reachability problem over a language that models calling context sensitivity, and over another language that models field sensitivity (i.e., flow of reference values through fields of heap objects).

To improve analysis scalability, we propose to compute procedural reachability summaries online, during the CFL-reachability computation. This cannot be done indiscriminately, as the benefits of using the summary information do not necessarily outweigh the cost of computing it. Our approach selects for summarization only a subset of heavily-used methods (i.e., methods having a large number of incoming edges in the static call graph). We have performed a variety of studies on the proposed analysis. The experimental results show that, within the same time budget, the precision of the analysis is higher than that of a state-of-the-art highly-precise points-to analysis. In addition, the use of method summaries can lead to significant improvements in analysis performance.

Categories and Subject Descriptors
F.3.2 [Logics and Meaning of Programs]: Semantics of Programming Languages—Program analysis

General Terms
Algorithms, measurement, experimentation

Keywords
Alias analysis, context sensitivity, demand-driven

1. INTRODUCTION
Alias analysis is an essential component of virtually any tool for static analysis and transformation. It is especially important for analyzing modern object-oriented software systems, where pointers are used extensively to access heap objects. A may-alias analysis conservatively approximates, for two variables, whether they could point to the same object at run time. It is well-known that both the quality of such information and the cost of computing it can have significant influence on the effectiveness of software tools that make use of it. Demand-driven alias analyses have recently been the subject of several studies [3, 2, 27, 26, 33]. They are based on the observation that for most software tools, instead of requiring a whole-program points-to/alias solution, the tools are interested only in a small portion of variables and objects that are critical to the tasks being performed. A demand-driven analysis allows a client to perform queries, which can be answered efficiently, on demand, rather than computing a whole-program solution.

A typical way to answer queries regarding whether two variables are aliases is to query an underlying (demand-driven) points-to analysis, and then check whether their points-to sets have a non-empty intersection. Among the many points-to analyses for Java proposed in the literature, the analysis via context-free-language (CFL) reachability by Sridharan and Bodik [26] (SB analysis in the rest of the paper) is the most precise demand-driven one. However, it does not scale well when highly-precise results for a large number of queries are needed. Recently, a CFL-reachability-based demand-driven alias analysis [33] was proposed for the C language. This analysis is based on the insight that querying the aliasing relationship between two variables does not have to be performed by first computing points-to sets for them. Such a query can be answered much more efficiently by finding CFL-reachability paths on a graph based on a new context-free language.

While this formulation sheds new lights on the alias analysis implementation, it is not easy to adapt to Java. First, their context-free language considers only C-style pointers, where pointer dereferences can occur only through the dereference (*) operator. However, in Java, pointer dereferences can involve different fields, and a Java field-sensitive analysis has to match explicitly the fields associated with different pointer dereferences (i.e., at loads and stores of fields of heap objects). Second, this analysis is context-insensitive and does not distinguish calling contexts when determining aliasing relationships. This limits significantly its usefulness if it is ported directly to Java, as a Java program can make
use of a large number of object-oriented data structures, and failing to distinguish calling contexts can lead to unusable solutions due to imprecision. As pointed out by numerous researchers (e.g., [4, 24, 13, 10]), context-sensitivity is one of the most important factors to be considered when designing a points-to/alias analysis for object-oriented programs. It remains a challenge to design a highly-precise demand-driven yet efficient alias analysis for Java, despite the high demand for such an analysis from modern software tools dealing with increasingly large and complex applications.

We propose a context-sensitive, demand-driven may alias analysis for Java, which does not require a points-to analysis to answer alias queries. The precision of the analysis is comparable to the state-of-the-art SB analysis [26] (a highly-precise demand-driven points-to-analysis), as it context-sensitively models both pointer variables and pointer targets (i.e., heap objects). Yet, it can answer alias queries much faster than the traditional approach that uses points-to analysis. In fact, if they are run within the same time budget, our analysis often produces higher-quality solutions. We formulate the analysis as a single-source, single-target CFL-reachability problem. Similarly to the SB analysis, our analysis considers two dimensions: field accesses are checked to achieve field sensitivity, and method entries and exits are checked to achieve context sensitivity. Field sensitivity checks are based on a new context-free language memAlias, which is designed specifically for Java. This language has a much simpler structure than the language used in the CFL-reachability formulation from the SB analysis; as a result, we obtain a more efficient algorithm.

While our field-sensitivity check is more efficient than the one from the SB analysis, our analysis could still experience “context blowup”. One typical approach for solving this problem is to introduce approximations, trading off precision for analysis running time (e.g., with approximation graph edges, as done in the SB analysis). Instead, our analysis attempts to solve the problem by computing procedural reachability summaries for methods that are invoked from many call sites. Summaries are computed online, during the analysis, and applied when CFL-reachability paths are about to enter these methods. This leads to significant reduction on the effort to re-traverse their bodies many times (potentially under different calling contexts). While trade-offs may still be employed later (e.g., when the client-defined budget for a query runs out), using such summaries can effectively avoid wasting the time budget on repeated work and thus postpone the out-of-budget timeout, leading to significant precision improvements.

The ability to compute and use reachability summaries is due to the special structure of the proposed memAlias language; it would be much more difficult to compute similar summaries for the SB analysis. Even though the memAlias (field-sensitivity) formulation is not as precise, it enables summary generation and yields an efficient algorithm. As a result, our analysis is able to traverse more contexts within the same budget. This results in a certain level of precision recovery, leading to even more precise solutions in many cases. The key novel observation is that certain loss of precision along the axis of field sensitivity can be successfully compensated by the increased precision along the axis of context sensitivity.

We have implemented the analysis on the Soot analysis framework [28] and performed a variety of studies on it. The results show that, given the same time budget for an alias query, the precision of our alias analysis in general is higher than that of the SB analysis, and in some cases significantly more precise aliasing relationships are reported. We have also investigated empirically the trade-offs for different choices of criteria for computing reachability summaries for methods, and observed the significant analysis improvements they could yield.

2. BACKGROUND

This section outlines the CFL-reachability formulation for a context-sensitive points-to analysis proposed in [26] by Sridharan and Bodik. A running example is also provided to illustrate the key ideas of our alias analysis.

CFL-reachability formulation of points-to analysis. In a directed graph G with labeled edges, a relation R over graph nodes can be formulated as a CFL-reachability problem by defining a context-free grammar and considering the corresponding language L. A pair (n, n′) ∈ R if and only if there exists a path from n to n′ such that the sequence of edge labels belongs to L; such a path is an L-path. Node n′ is L-reachable from n (denoted by n L n′), if there exists an L-path from n to n′. For any non-terminal S in the grammar, S-paths can be defined similarly.

This formulation has been used by existing points-to analyses for Java [26, 27] to model field sensitivity via object field reads/writes, and context sensitivity via method entries/exits. In this approach, a demand-driven points-to analysis determines all nodes n′ such that n L n′ for a given node n, where language L is defined as Le ∩ Lc. Language Le, where F stands for “flows-to”, encodes the flow of reference values through object fields. Language Lc, where C stands for “calling-context”, ensures a degree of calling context sensitivity.

Flow graph. To perform an analysis using the above formulation, a Java program is represented as a flow graph. In this graph G, if a run-time heap object represented by the abstract location o can flow to a variable v, there exists an Lf-path from o to v. There are four types of edges in the graph, created by considering the following categories of statements: an edge o → f x for an allocation x = new O; an edge y → assign x for an assignment x = y; edges y → load(t) x and y → store(t) x for a field write x.f = y and a field read x = y.f, respectively. Parameter passing is treated as assignments from actuals to formals; return values are handled similarly.

Language Le. If the flow graph G contains only new and assign edges, language Le is regular and its grammar is simply flowsTo → new(assign)*, showing the transitive flow due to assign edges. Clearly, o flowsTo v in G means that o belongs to the points-to set of v.

In the presence of field accesses, inverse edges are introduced to allow a CFL-reachability formulation. For each edge x → y, an edge y → x is introduced. For any path p, the inverse path p is defined by reversing the order of edges in p and replacing each edge with its inverse. Thus, if there exists a flowsTo-path from abstract object o to variable v, there also exists a flowsTo-path from v to o.

By definition, two variables a and b may alias if there exists an object o such that o can flow to both a and b. With inverse edges and inverse paths, the may-alias relation can be
modeled by defining a non-terminal alias such that alias → flowsTo flowsTo. The field-sensitive points-to relation can be defined by:

\[\text{flowsTo} \rightarrow \text{new} \ (\text{assign} \ f) \ \text{alias} \ (\text{load} \ f) \]

This definition checks for balanced pairs of store(f) and load(f) operations, while also considering the potential aliasing between the base variables through which the field dereferences occur.

Language Lc. Context sensitivity ensures that method entries and exits are properly matched. The standard balanced-parentheses formulation is

\[C \rightarrow \text{entry}(i) \ C \ \text{exit}(i) | C C | \epsilon \]

Here entry(i) and exit(i) correspond to the i-th static call site in the program. This production describes only paths that start and end in the same method, so it covers only a subset of the language. The full definition of Lc also allows a prefix with unbalanced closed parentheses and a suffix with unbalanced open parentheses [26]. Context sensitivity is achieved by considering entries and exits along an Lc-path and ensuring this sequence is in Lc. For the purposes of this context-sensitivity check, an entry edge is treated as an exit edge and vice versa.

Running example. The code snippets in Figure 1 illustrate a simplified implementation of a Vector data structure and its client code. The corresponding graph representation for the Sridharan-Bodik CFL-reachability formulation is shown in Figure 2a.

Each object is represented as o_i, where i is the line number of the code where the object is created. For example, o_19 represents the string literal “hello” at line 19. Similarly, each variable v is represented as v_i, where i denotes the line number of the code where v is declared. A special field arr.elm is used to represent any array element of an array. There is a flowsTo-path from o_{18} to d_{25}, because (1) there exist two field load/store edge sequences: o_{18} new a_{18} store(arr.elm) t_7, and t_{11} load(arr.elm) p_{12} d_{25}; (2) t_7 alias t_{111} as o_{18} can flow to both variables; this part of the graph is omitted for simplicity); and (3) the load and store edges in this path are properly balanced. In addition, this flowsTo-path is context-sensitive, as the sequence of method entry and exit edges is also balanced (i.e., entry_{19} entry_{20} exit_{25}).

Note that for part (2) of the path, in order to verify that t_7 and t_{111} are aliases, the analysis needs to find two separate flowsTo-paths from the same object o_{18} to them. In fact, this relationship can be seen much more easily without understanding which specific objects they point to: both are retrieved from the data field of object this in class Vector. Since there exists a Vector object on which both add and get are invoked, this_{17} and this_{18} can alias, and thus, t_{17} and t_{111} are also aliases. Intuitively, we can design a new grammar that takes advantage of this (partial) knowledge to answer alias queries, leading to improved quality and efficiency. This may be especially useful in answering alias queries regarding variables that are close to each other (e.g., declared in the same method) while the objects that they point to are far away from them (e.g., across many method invocations).

As another example, a data dependence analysis needs to query whether or not variable pairs (a, d) and (c, d) are aliases, in order to construct define-use relationships (involving both stack and heap locations) for method main. For example, a dependence edge should be added between statements m = d.f and c.f = t, if c and d can alias. Using this points-to analysis, answering this query requires the analysis to traverse the graph twice to find two long flowsTo-paths (i.e., from o_{21} to c_{22} and from o_{18} to d_{25}) and then decide that c and d cannot alias because their points-to sets do not contain a common object. Using our formulation for alias analysis, only one graph traversal is needed, based on the graph shown in Figure 2b.

3. DEMAND-DRIVEN ALIAS ANALYSIS

This section presents our context-sensitive demand-driven alias analysis. The section starts by discussing a program representation, symbolic points-to graph, which is used as the basis for the analysis. A may alias query performed on-demand is formulated as a single-source single-target CFL-reachability problem on this graph [18]. A context-insensitive version of the analysis is then described over a simplified language, and is later extended to a fully context-sensitive one by simultaneously performing CFL-reachability for a language that models matched method entries and exits.

3.1 Symbolic Points-to Graph (SPG)

The symbolic points-to graph was first proposed in our previous work [32] for an exhaustive whole-program alias analysis. It is adapted here for a different purpose. An SPG for a method is a locally-resolved points-to graph: it contains real points-to relations that can be resolved within the method while using placeholder symbolic nodes to represent objects that are created outside the method.

The SPG construction is done in two steps: in the first step, an intraprocedural SPG is built for each method; and in the second step, method-level SPGs are connected to form the interprocedural SPG (ISPGB). Eventually, may alias
queries are answered on-demand by performing graph traversals on the ISPG.

Each intraprocedural symbolic points-to graph has the following types of nodes and edges: (1) local variables \(v \in \mathcal{V} \); (2) allocation nodes \(a \in \mathcal{O} \); (3) symbolic nodes \(s \in \mathcal{S} \) representing outside objects; (4) edges \(v \rightarrow o \in \mathcal{V} \times \mathcal{O} \) representing that variable \(v \) may point to allocation \(o \); (5) edges \(v \rightarrow s \in \mathcal{V} \times \mathcal{S} \) representing that variable \(v \) may point to an object defined outside of the current method, with the symbolic node \(s \) used as a placeholder for that object; (6) edges \(o_1 \xrightarrow{\text{flowTo}} o_2 \in (\mathcal{O} \cup \mathcal{S}) \times \mathcal{F} \times (\mathcal{O} \cup \mathcal{S}) \) representing that the field \(f \) of \(o_1 \) may point to \(o_2 \).

There are multiple possible ways to construct an SPG. For ease of understanding, we present an SPG construction approach based on the Sridharan-Bodik (SB) CFL-reachability formulation discussed in Section 2. First, symbolic nodes are introduced, by modifying the flow graph described in Section 2 as follows. (1) For each formal parameter \(f \) of a method: edge \(s \xrightarrow{\text{new}} f \), where symbolic node \(s \) represents the object passed from outside; (2) For each call site \(v = m() \): edge \(s \xrightarrow{\text{return}} v \), where symbolic node \(s \) is used to represent the return object of the call; (3) For each field access \(v.f \) that has been read at least once in the method: edges \(s \xrightarrow{\text{t}} t \) and \(t \xrightarrow{\text{store}(f)} v \), where symbolic node \(s \) is used to represent the heap location that \(v.f \) points to, and temporary variable \(t \) connects \(s \) and \(v.f \).

The construction of the SPG is done by computing intraprocedural \(\text{flowsTo} \)-paths on this augmented flow graph. Given these paths, a points-to edge \(v \rightarrow o \) is added to the SPG if \(o \text{ flowsTo } v \). A points-to edge \(o_1 \xrightarrow{\text{flowTo}} o_2 \) is added to the SPG whenever there exists a flow graph edge \(y \xrightarrow{\text{store}(f)} x \) such that \(o_1 \text{ flowsTo } x \) and \(o_2 \text{ flowsTo } y \).

To perform an interprocedural analysis, method-level SPGs are connected to build an interprocedural symbolic points-to graph (ISPG). The ISPG, simply a set of SPGs connected by edges representing calls, is still not a fully resolved points-to graph. For each call site of the form \(r = a_0.m(a_1, \ldots, a_n) \) and each formal-actual pair \((f_i, a_i)\) of this call site, an entry \(\text{ISPG edge} \) is added from any allocation or symbolic node that \(a_i \) points to (in the SPG of the caller), to the symbolic node \(s \) created in the callee as a placeholder for \(f_i \). For the return value, an artificial return variable \(\text{ret} \) is introduced in the callee, and an exit \(\text{ISPG edge} \) is added from any allocation or symbolic node that \(\text{ret} \) points to (in the SPG of the callee), to the symbolic node \(s \) which was introduced as a placeholder of the return value at the call site. These entry and exit edges are labeled with the call site’s unique identifier, which will be used later to achieve context-sensitivity in the alias analysis.

The ISPG for the running example is shown in Figure 2b. Circles, white boxes, and shaded boxes represent variables, allocation sites, and symbolic nodes, respectively. The ISPG is a partially-resolved heap graph and relationships among symbolic nodes are unclear at this time—for example, it is possible for different symbolic nodes to represent the same object. The goal of the alias analysis is to make these relationships clear by computing CFL-reachability on this graph.

In this analysis, the aliasing relation between two variables is defined in terms of the memory aliasing between the allocation or symbolic nodes they point to. In other words, for two variables \(v_1 \) and \(v_2 \) in \(\mathcal{V} \), if there exist pointed-to nodes \(o_1 \) and \(o_2 \) in \(\mathcal{O} \cup \mathcal{S} \) such that there is a \text{memAlias}\-path between \(o_1 \) and \(o_2 \) in the ISPG, then \(v_1 \) and \(v_2 \) are aliases. (The \text{memAlias} context-free language will be defined shortly.) Since \text{memAlias} is computed only along paths containing allocation and symbolic nodes, the discussion below will use “nodes” to refer to such nodes only, unless noted otherwise.

3.2 Context-Insensitive Alias Analysis

Two nodes \(o_1 \) and \(o_2 \) are memory aliases if they can represent the same run-time object. The memory alias relation \(\subseteq (\mathcal{O} \cup \mathcal{S}) \times (\mathcal{O} \cup \mathcal{S}) \) can be described using a context-free language \text{memAlias} defined as follows:

\[
\text{memAlias} \rightarrow \text{entry} \mid \text{entry} \xrightarrow{\text{entry}} \mid \text{exit} \mid \text{exit} \xrightarrow{\epsilon}
\]

Informally, two nodes \(o_1 \) and \(o_2 \) are considered to be memory aliases if (1) they are reachable from nodes \(o_3 \) and \(o_4 \), (2) the field label strings on the two paths are the same, and (3) \(o_3 \text{ memAlias } o_4 \). For now, context sensitivity is not considered and thus ISPG entry and exit edges are not matched; the context sensitivity checks will be discussed shortly. As an example, using this formulation, we can quickly determine that \(t_7 \) and \(t_{11} \) represent pairs in the ISPG. (In Figure 2b), because symbolic nodes \(s_3 \) and \(s_5 \) (that \(t_7 \) and \(t_{11} \) point to, respectively) are reachable from node \(o_{10} \) and the two edge field label sequences are both “data”. Note that the identification of this relationship does not require any knowledge of what are the actual objects that \(s_3 \) and \(s_5 \) can represent.

\text{memAlias vs. alias in [26]}. It is important to note that our \text{memAlias} formulation simplifies the alias analysis by using heap reachability (i.e., sequences of points-to edges).
Algorithm 1: Context-sensitive alias analysis.

Input: symbolic/alloc node \(n_1 \), symbolic/alloc node \(n_2 \)
Output: true/false indicating whether \(n_1 \) and \(n_2 \) can be memory aliases

1. if \(n_1 = n_2 \) then
2. return true
3. worklist ← \(\{(n_1, 0, 0)\} \) // worklist of (node, stack, stack)
4. while worklist ≠ ∅ do
5. remove a triple \((n, \text{fldStk}_n, \text{cxtStk}_n) \) from worklist
6. foreach edge \(e \in \text{incomingEdges}(n) \) do
7. \((\text{fldStk}, \text{cxtStk}) \leftarrow \text{clone}(\text{fldStk}_n, \text{cxtStk}_n) \)
8. if \(e \in \text{FieldPointsToEdge} \) then
9. \(\text{fldStk}.\text{push}(f) \)
10. else if \(e \) is an EntryEdge entry, then
11. if \(\text{cxtStk} = \emptyset \) then
12. if \(\text{cxtStk}.\text{top}() = i \) then
13. \(\text{cxtStk}.\text{pop}() \)
14. else
15. continue
16. else if \(e \) is an ExitEdge exit, then
17. \(\text{cxtStk}.\text{push}(i) \)
18. if \(\text{source}(e) = n_2 \) then // check for termination
19. if \(\text{fldStk} = \emptyset \) then
20. return true
21. else
22. continue
23. foreach edge \(e \in \text{outgoingEdges}(n) \) do
24. \((\text{fldStk}, \text{cxtStk}) \leftarrow \text{clone}(\text{fldStk}_n, \text{cxtStk}_n) \)
25. if \(e \in \text{FieldPointsToEdge} \) then
26. if \(\text{fldStk}.\text{top}() = f \) then
27. \(\text{fldStk}.\text{pop}() \)
28. else
29. continue
30. else // entry and exit edges handled in a similar way
31. …
32. if \(\text{target}(e) = n_2 \) then // check for termination
33. if \(\text{fldStk} = \emptyset \) then
34. return true
35. else
36. continue
37. worklist ← worklist \(\cup \{(\text{source}(e), \text{fldStk}, \text{cxtStk})\} \)
38. worklist ← worklist \(\cup \{(\text{target}(e), \text{fldStk}, \text{cxtStk})\} \)
39. return false

C \rightarrow (i, C), | C | C | f | \bar{f} | \epsilon
(\rightarrow \text{entry}(i) | \text{exit}(i)) \rightarrow \text{exit}(i) | \text{entry}(i)

In the absence of recursive calls, the total number of open parentheses in the graph is finite, and thus \(L_C \) is a finite regular language. The handling of recursion will be discussed shortly. In the analysis implementation, \(L_C \) is augmented to model partially matched parentheses, so that a valid \(L_C \)-path could contain unbalanced closing parentheses as a prefix and unbalanced opening parentheses as a suffix. Similarly to the handling of context-sensitivity in existing analyses, we design a trade-off framework that allows a programmer to specify a budget (i.e., either running time, or number of graph nodes processed) to answer each query. The analysis gives up a context-sensitive graph traversal and uses a context-insensitive solution if the user-defined budget runs out. An interesting observation from our experiments is that once the budget exceeds a certain value, the precision of the analysis remains almost constant. This is because variables that are true (context-sensitive) aliases are usually close to each other and a \text{memAlias}-path between nodes that they point to can be easily found within the budget.

A brief description of the analysis algorithm is given in Algorithm 1. A worklist is maintained to process graph edges that need to be traversed. Each worklist element is a triple that contains a node \(n \), a stack \(\text{fldStk} \) that is used to solve \text{memAlias} reachability, and a stack \(\text{cxtStk} \) that models calling contexts. Node \(n \) is reachable from the starting node \(n_1 \) along a path that is a valid prefix of a context-sensitive \text{memAlias}-path. Inverse edges are not explicitly represented in the graph; traversing backward an incoming edge with label \(t \) (lines 6–23) is the equivalent of traversing the inverse edge with label \(\bar{t} \). Stack \(\text{fldStk} \) describes a sequence of unmatched \(f \) labels for the fields \(f \) encountered along the path from \(n_1 \) to the current node \(n \). Following an outgoing edge with a field label (line 26) requires matching this label with the last unmatched \(f \) which currently resides at the top of \(\text{fldStk} \). If the target node \(n_2 \) is reached and \(\text{fldStk} \) is empty (at lines 19 and 34), the field edge labels along the path from \(n_1 \) to \(n_2 \) are properly matched.

Stack \(\text{cxtStk} \) describes a sequence of unmatched \text{entry} and \text{exit} labels seen on the path from \(n_1 \) to \(n \). For example, at line 17, the call site \(i \) is remembered because an incoming exit edge was traversed backward, which corresponds to observing a label \(\text{exit}(i) \). The labels on the stack represent unmatched open parentheses \((\). When a closing parenthesis \() \) is observed (e.g., at line 10, where an entry edge is traversed backwards), a context-sensitivity check against the top of the stack is performed if the stack is not empty. If it is empty, the unchanged stack is added to the worklist because the grammar allows unbalanced \() \) parentheses as a prefix of the \(L_C \)-path. The termination checks (lines 18–22 and 33–37) do not consider \(\text{cxtStk} \) since the grammar allows unbalanced \((\), parentheses as a suffix.

3.4 Handling of Recursive Data Structures

One important technical challenge is the handling of recursion, as a typical context-sensitive analysis does not terminate in the presence of recursion without appropriate approximations. One such approximation, as used in [29], is to treat methods in a strongly connected component (SCC) of the call graph in a context-insensitive manner. However, significant precision loss could result from this handling [10], since an SCC in a (precomputed) context-insensitive call
Figure 3: Handling of recursive data structures.

de-identify cycles. The SB analysis improves this approach by looking for CFL paths on context-sensitive call chains: the points-to set of a call site receiver variable is determined under the calling context for which this call site is encountered in the analysis. While this handling can improve precision to a certain degree (e.g., by reducing the size of an SCC), its effectiveness is still limited by the collapsing of SCCs. Intuitively, methods in an SCC should be modeled as a symbolic points-to graph. Recursive calls do not have any influence on the termination of the analysis algorithm, unless recursive data structures are encountered during the traversal of such calls. In Algorithm 1, we maintain knowledge of each entry and exit edge that was already visited, and such a visited edge cannot be used to extend the current path. This handling is sound because (1) re-traversing a method can be safely avoided if it does not involve any data flow (e.g., always takes entry and exit edges); and (2) if data flow (i.e., through field edges) is involved in the traversal, a recursive data structure must have already been detected before following an entry or exit edge the second time. Hence, it is sufficient to focus only on the handling of recursive data structures, without consideration for recursive calls.

To approximate aliasing relationships in the presence of recursive data structures, cycles on a memAlias-path are detected on-the-fly along with the CFL-reachability computation. Field edge labels in each cycle detected are represented by a wildcard symbol (i.e., *), which can match an arbitrary sequence of (normal and inverse) field edge labels. Figure 3 illustrates our handling of recursive data structures. Note that each of the two cycles \(f_2f_1f_3f_5g\) and \(f_1f_2\) is represented by a * symbol. As a wildcard can represent arbitrary fields, there exists a memAlias-path from \(g\) to \(j\). In the actual implementation of the analysis, labels that a specific wildcard * can represent are remembered, so that when this * is on the top of the stack, the analysis can quickly decide whether to match an edge with this * or to pop the * and then use the next edge on the stack for matching.

For the context-insensitive memAlias-reachability computation, a cycle can be easily detected by checking whether an edge (to be processed) is already in stack \(fldStk\). It is more difficult to detect a cycle when the checks of context-sensitivity and field-sensitivity are performed simultaneously (i.e., both languages memAlias and \(L_E\) are considered). For example, an ArrayList can have another ArrayList as its element. In this case, a field edge from a symbolic node representing an ArrayList object in one of its methods (such as add) to a symbolic node representing its internal array may be visited multiple times during a single traversal. However, this does not indicate a recursive data structure, but instead, it is due to the nesting of different objects in the data structure. We solve this problem by augmenting each edge in \(fldStk\) with a context stack that represents the call chain under which this edge is processed. To detect a cycle, we check (1) whether a field edge to be processed is in \(fldStk\) and if it is (2) whether the current calling context (represented by stack \(cxtStk\)) matches the calling context associated with the existing field edge in \(fldStk\) (the latter should be a prefix of the former).

The detailed algorithm for handling of cycles is shown in Algorithm 2. Once a cycle is detected (i.e., an edge \(e\) appears twice and the contexts match each other, shown at line 9), edges in stack \(fldStk\) between the two occurrences of \(e\) are replaced with a *; this new element of \(fldStk\) is associated with the current calling context \(cxtStk\) (lines 10–13). Set nodesInCycle contains all nodes in this cycle. Eventually, nodes that are adjacent to the cycle but are not in the cycle are added to the worklist (lines 14–21). These nodes will be processed regardless of whether or not they have been visited before, because a new cycle is identified and this could potentially lead to the identification of new aliasing relationships.

Algorithm 2: Context-sensitive handling of recursive data structures

Input: symbolic/alloc node \(n_1\), symbolic/alloc node \(n_2\)

Output: true/false indicating whether \(n_1\) and \(n_2\) can be memory aliases

\[
\begin{align*}
1 & \text{ if } n_1 = n_2 \text{ then return true} \\
3 & \text{ worklist } \leftarrow \{(n_1, \emptyset, \emptyset)\} \quad // \text{ worklist of (node, stack, stack)} \\
4 & \text{ while worklist } \neq \emptyset \text{ do } \\
5 & \quad \text{ remove a triple } (n, fldStk_n, cxtStk_n) \text{ from worklist} \\
6 & \quad \text{ foreach edge } e \in \text{ incomingEdges}(n) \text{ do}\ \\
7 & \quad \quad \text{ if } (i \leftarrow \text{index}(e, fldStk)) \geq 0 \text{ and match} (fldStk, \text{callingContextAt}(i, cxtStk)) \text{ then} \\
8 & \quad \quad \quad \text{ for } j \leftarrow 0; j < i; j \leftarrow j + 1 \text{ do} \\
9 & \quad \quad \quad \quad \text{ edge } d = \text{fldStk}.\text{pop}() \text{ do} \\
10 & \quad \quad \quad \quad \quad \text{ nodesInCycle } \leftarrow \emptyset \\
11 & \quad \quad \quad \quad \quad \quad \text{ nodesInCycle } \cup \{\text{source}(d)\} \cup \{\text{target}(d)\} \\
12 & \quad \quad \quad \quad \quad \text{ fldStk}.\text{push}(\ast, cxtStk) \\
13 & \quad \quad \quad \text{ foreach node } n' \in \text{ nodesInCycle} \text{ do} \\
14 & \quad \quad \quad \quad \text{ foreach edge } e' \in \text{ incomingEdges}(n') \text{ do} \\
15 & \quad \quad \quad \quad \quad \text{ if } e' \text{ is a FieldPointsToEdge then} \\
16 & \quad \quad \quad \quad \quad \quad \text{ fldStk' } \leftarrow \text{clone}(fldStk) \\
17 & \quad \quad \quad \quad \quad \quad \text{ fldStk'.push}(e', cxtStk) \\
18 & \quad \quad \quad \quad \quad \quad \text{ worklist } \leftarrow \\
19 & \quad \quad \quad \quad \quad \quad \quad \text{ worklist } \cup \{(\text{source}(e'), \text{fldStk'}, cxtStk)\} \\
20 & \quad \quad \quad \text{ else // 'e' is an entry, or exit, edge} \\
21 & \quad \quad \quad \quad \quad \quad \text{ worklist } \cup \{\ast\} \\
22 & \quad \quad \quad \text{ foreach edge } e \in \text{ outgoingEdges}(n) \text{ do} \\
23 & \text{ return false}
\end{align*}
\]
4. COMPUTING PROCEDURAL REACHABILITY SUMMARY

A method can be analyzed multiple times (under different calling contexts) during the CFL-reachability computation. This is usually the case even for answering one single alias query. To see this, consider the example from the last section, where an ArrayList object \(o_1 \) is added into another ArrayList object \(o_2 \). If the aliasing relationship to be queried involves an object retrieved from \(o_1 \), the graph traversal would go through methods \(\text{add} \) and \(\text{get} \) at least twice in order to understand the data structure. While analyzing a method multiple times can degrade significantly the analysis performance, it is not straightforward to decide how to speed up this process, as the method can be reached from different calling contexts, under which its behaviors can be completely different.

Existing work such as the SB analysis attempts to cache the (intermediate) analysis result for a method under a certain context, so that this result can be reused when the method is re-analyzed under this particular context. However, the effectiveness of this approach is limited in the following two important aspects. First, results can be cached only for specific contexts, while a method can be analyzed under a great number of different contexts. Second, the analysis can enter and exit a method through different parameters (including the return value), and it is unclear how caching should be performed for these different entries and exits. Hence, caching is often done in an ad-hoc manner (i.e., there does not exist a systematic way to perform it). Caching of analysis results is usually performed within a single query and cannot work across queries.

It is well-known that the effort of reanalyzing methods can be effectively reduced by using procedural summaries (e.g., \([31, 1, 30, 22, 21, 23]\)). However, it is unclear how to compute summaries for a demand-driven analysis based on a CFL-reachability formulation. In this section, we propose to compute a procedural reachability summary (PRS) for a method, which summarizes a set of partial memAlias paths that go through this method—that is, each path enters the method through an \(\text{entry} \) or \(\text{exit} \) edge and leaves the method through an \(\text{entry} \) or \(\text{exit} \) edge. This summary is computed online during the CFL-reachability computation and is applied every time this method is reached in the analysis.

More formally, for a method \(m \), consider the set \(E \) of symbolic or allocation nodes, where each node has either an incoming \(\text{entry} \) or an outgoing \(\text{exit} \) edge (where \(i \) represents a call site that invokes \(m \)). A PRS for \(m \) is a set of paths, each of the form \(n_1 \rightarrow n_2 \), where \(n_1, n_2 \in E \) and \(n_1 \neq n_2 \). Here \(p \) is either a sequence of field points-to edges \((f_1 f_2 f_3 \ldots f_n) \) or a sequence of inverse field points-to edges \((f_1 f_2 f_3 \ldots f_n) \), summarizing the reachability information between \(n_1 \) and \(n_2 \). Note that the PRS also contains \(n_2 \rightarrow n_1 \). For example, the PRS for method \(\text{add} \) in Figure 1 contains the sequence \(p = (\text{data}, \text{arr-clm}) \) from node \(S_1 \) to node \(S_3 \), as well as the corresponding sequence \(\bar{p} \) in the opposite direction.

The summary computation is formulated as an all-pairs CFL-reachability problem over the node set \(E \). Because the goal is to find field edge strings between any two nodes \(n_1 \) and \(n_2 \) in \(E \), the CFL-reachability computation is still performed as described earlier, but this time we allow unbalanced field edges. The actual graph paths traversed during the summary computation start at \(n_1 \) and end at \(n_2 \). Each such path can (1) cross \(m \) and all methods (directly or transitively) invoked by \(m \), (2) have matched entry/exit edges, and (3) have both matched and unmatched field edges. The entry/exit edges along the path correspond to balanced parentheses for language \(L_c \). To construct the summary string \(p \) for \(n_1 \rightarrow n_2 \), all matched (entry/exit or field) labels are excluded from the path, leaving only the unmatched field edges.

When a call site that invokes \(m \) needs to be analyzed later in a graph traversal—that is, when a node \(n_1 \) in the set \(E \) of \(m \) is reached through an entry or inverse exit edge—the summary paths \(n_1 \rightarrow n_2 \) are retrieved. To apply the summary, all field labels in sequence \(p \) are pushed onto (or popped from) \(\text{fldStk} \); whether to perform pushes or pops is determined by the edge direction in \(p \). Next, any node outside \(m \) and connected with \(n_2 \) by an exit or inverse entry edge (properly matching the entry/exit edge reaching \(n_1 \)) is added into the worklist for further processing. At a very high level, this process is similar to the use of summary edges in a system dependence graph for interprocedural program slicing \([19]\).

Note that a method’s PRS encodes only its partial reachability information, that is, paths that cannot reach a node in \(E \) are omitted from the summary. It would be extremely expensive for a method summary to contain the complete reachability information (not only in the method but also in methods reachable from it). Thus, applying \(m \)’s summary at a call site that invokes \(m \) can cause unsoundness if any node involved in an alias query is either in \(m \) itself or a method reachable from \(m \) in the call graph. To solve this problem, for each query regarding the (memory) aliasing relationship between nodes \(n_1 \) and \(n_2 \), we first check whether the methods that contain \(n_1 \) and \(n_2 \) are reachable from \(m \), upon reaching a call site that invokes \(m \). If they are, we perform regular CFL-reachability computation instead of applying summaries. If these methods are not reachable from \(m \), \(m \)’s PRS can be safely applied.

As PRSs are computed online, interleaved with the regular CFL-reachability analysis, a key factor for analysis performance is the selection of an appropriate set of methods for which summaries are computed. This is because the computation of a method’s PRS (i.e., all-pairs CFL-reachability) is more expensive than a regular traversal of the method (i.e., single-source CFL-reachability). Hence, it would be useless, or even harmful, to compute summaries for methods that are invoked from a small number of call sites. Furthermore, methods whose nodes are likely to be frequently queried should not be considered for summary computation as their summaries are not used anyway when nodes in them are in a query. From our experience, library methods (e.g., methods in data structure classes \(\text{HashMap}, \text{ArrayList}, \text{etc.} \)) are good candidates for summary generation, as these methods can be called a very large number of times in real-world programs. In addition, a client analysis (that makes use of this alias analysis) usually focuses on the application code and is thus unlikely to make queries regarding aliasing relationships among nodes in these library methods.

We use a simple metric to choose such library methods. For each method \(m \), we consider the ratio between the number of incoming call graph edges for \(m \), and the average number of incoming call graph edges for all methods. When this value exceeds a certain threshold, \(m \)’s summary is com-
5. Evaluation

The proposed alias analysis was implemented using the Soot 2.3.0 program analysis framework for Java [28]. In order to compare our analysis with previous work (such as [26]), the Sun JDK 1.3.1.01 library was used in all studies. Experiments are performed on a machine with an Intel Xeon 2.83GHz processor and a maximum JVM heap space of 2GB. A total of 19 Java programs were studied in our experiments, and their characteristics are shown in Table 1 (this information also appears in [32]). The first two columns “#Methods” and “#Statements” show the total numbers of methods in context-insensitive call graphs constructed by the Spark framework in Soot [9] and the numbers of statements in these methods. Shown in columns “#SB/ISPG Nodes” and “#SB/ISPG Edges” are the total numbers of nodes (edges) in the program representation used in the SB analysis [26] (i.e., the flow graph) and our representation (i.e., the ISPG restricted to allocation/symbolic nodes, since only they can occur on memAlias-paths). The numbers of nodes and edges in our representation are much smaller than those in the flow graph. The last column shows the total number of queries performed in each benchmark, and will be discussed shortly.

5.1 Methodology

The precision and performance of the proposed analysis are compared against those of a traditional alias analysis that uses points-to analyses to determine aliasing relationships. Here we consider two state-of-the-art points-to analyses, namely the SB points-to analysis in [26] and the 1-object-sensitive points-to analysis implemented in the Paddle context-sensitive analysis framework [14]. To simulate how a client analysis would use the alias analysis, we implemented a data dependence client that performs alias queries regarding variables \(x\) and \(y\) for all pairs of heap dereference statements that access the same field \(f\) (i.e., \(x.f\) and \(y.f\)) where at least one statement writes to \(f\). If \(x\) and \(y\) may alias, the two statements may access the same heap location and thus may have a data dependence. All possible pairs of heap dereference statements are considered so that the alias queries used for evaluation are not biased. Dependence analysis is an important component of many real-world software tools, such as program slicers and data race detectors.

An inexpensive context-insensitive points-to-analysis (in Spark) is performed as a first step to prune pairs of statements that can be determined to access different heap locations in a context-insensitive setting. Next, a context-sensitive analysis (i.e., our analysis or the SB analysis) is performed to further prune the alias pairs. We found that the 1-object-sensitive analysis from [14] (which is a whole-program analysis) runs an order of magnitude slower than our alias analysis and the SB analysis (both of which are on-demand analyses), and yet its precision is lower. Hence, we choose not to include comparison details; instead, we focus on the comparison between the SB analysis and our analysis.

5.2 Comparison with the SB Analysis

In this set of experiments, a fixed amount of time is considered as the per-query budget. By default, the SB analysis uses the number of nodes traversed as the metric for the budget. We modify the analysis to use the absolute time, in order to enable a fair comparison. This is because the two program representations are not the same and thus the numbers of nodes in the two graphs are not compatible metrics.

If the alias analysis cannot answer a query within this time limit, a context-insensitive solution is used instead. The total number of queries performed for each benchmark is shown in the last column of Table 1. We have compared the precision of the two analyses under different time budgets: 1ms, 2ms, 5ms, and 10ms. The results are shown in Table 2. Column SDA reports the precision of our analysis when summary generation is enabled. The reader can ignore this column for now; details about this comparison can be found later in Section 5.3.

Our analysis reports smaller numbers of alias pairs for 12, 13, 14, and 14 programs, under time budgets 1ms, 2ms, 5ms, and 10ms, respectively. For some of these programs, such as javac, our analysis reports a significantly smaller number of alias pairs than the SB analysis. Note that for this comparison, we do not compute and use procedural reachability summaries. The analysis would produce even more precise alias information when summaries are used (details will be discussed shortly).

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>#Methods</th>
<th>#Statements</th>
<th>#SB/ISPG Nodes</th>
<th>#SB/ISPG Edges</th>
<th>#Queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>compress</td>
<td>2544</td>
<td>43938</td>
<td>187/89/10977</td>
<td>18374/3214</td>
<td>83421</td>
</tr>
<tr>
<td>db</td>
<td>2352</td>
<td>44187</td>
<td>19062/11138</td>
<td>18621/3219</td>
<td>62478</td>
</tr>
<tr>
<td>jack</td>
<td>2606</td>
<td>53375</td>
<td>22165/12605</td>
<td>21523/15560</td>
<td>160170</td>
</tr>
<tr>
<td>javac</td>
<td>3520</td>
<td>66971</td>
<td>23858/14119</td>
<td>23258/3093</td>
<td>386724</td>
</tr>
<tr>
<td>jess</td>
<td>2772</td>
<td>51021</td>
<td>22773/13421</td>
<td>21769/4754</td>
<td>257032</td>
</tr>
<tr>
<td>mpegaudio</td>
<td>2528</td>
<td>55166</td>
<td>22446/12774</td>
<td>21749/4538</td>
<td>222432</td>
</tr>
<tr>
<td>mtrt</td>
<td>2485</td>
<td>46969</td>
<td>20344/11878</td>
<td>19674/3453</td>
<td>120042</td>
</tr>
<tr>
<td>soot-c</td>
<td>4583</td>
<td>71406</td>
<td>31054/18863</td>
<td>29971/5010</td>
<td>712816</td>
</tr>
<tr>
<td>sablecc-j</td>
<td>8789</td>
<td>125538</td>
<td>44134/26512</td>
<td>42114/9365</td>
<td>357012</td>
</tr>
<tr>
<td>jflex</td>
<td>4058</td>
<td>25150</td>
<td>31331/18248</td>
<td>30301/4971</td>
<td>159046</td>
</tr>
<tr>
<td>mulfifi</td>
<td>4326</td>
<td>80370</td>
<td>3321/19659</td>
<td>32497/5282</td>
<td>1234035</td>
</tr>
<tr>
<td>jb</td>
<td>2393</td>
<td>43722</td>
<td>19179/11275</td>
<td>18881/3146</td>
<td>9045</td>
</tr>
<tr>
<td>jflex</td>
<td>2423</td>
<td>49100</td>
<td>21482/11787</td>
<td>20643/3846</td>
<td>51480</td>
</tr>
<tr>
<td>javac-up</td>
<td>2605</td>
<td>50315</td>
<td>22636/13214</td>
<td>21933/3438</td>
<td>14534</td>
</tr>
<tr>
<td>polyglot</td>
<td>2322</td>
<td>42620</td>
<td>18739/10950</td>
<td>18337/3128</td>
<td>1600116</td>
</tr>
<tr>
<td>antlr</td>
<td>2998</td>
<td>57917</td>
<td>25505/15068</td>
<td>24462/4116</td>
<td>528891</td>
</tr>
<tr>
<td>bloat</td>
<td>4994</td>
<td>79784</td>
<td>38002/23192</td>
<td>35861/5428</td>
<td>1326732</td>
</tr>
<tr>
<td>jython</td>
<td>4136</td>
<td>80067</td>
<td>3414/19969</td>
<td>33070/5179</td>
<td>971376</td>
</tr>
<tr>
<td>ps</td>
<td>5278</td>
<td>84540</td>
<td>39627/23601</td>
<td>3874/5646</td>
<td>5000</td>
</tr>
</tbody>
</table>

Table 1: Benchmark characteristics.
Table 2: Comparison between our analysis and the SB points-to analysis. Columns SB and DA show the numbers of alias pairs reported by the SB analysis and by our demand-driven alias analysis (DA). Column SDA shows the numbers of alias pairs reported by the summary-based analysis under configuration $T = 2$. The numbers in parentheses are the time budgets used to answer each alias query. OM* means the analysis runs out of memory.

For the programs where the SB analysis is more precise, the results of the two analyses are actually very close. To understand why our analysis performs surprisingly better in some cases, we carefully inspected the analysis solutions for these cases. Below we report a concrete case study for `javac` that shows a typical situation that prevents the SB analysis from generating highly-precise solutions, and how our analysis ameliorates the problem.

Case study for `javac`. The SB analysis reports that statements $r0.left =$r12 in `ConditionalExpression.inline` and $r0.left =$r7 in `BinaryShiftExpression.selectType` can access the same heap location, while ours does not. By inspecting the program, we found that the points-to sets of the two $r0$ variables computed by the SB analysis contain a common spurious object that obviously could not flow to either of these variables. The analysis starts with a context-insensitive points-to set and keeps refining it (i.e., following more and more precise `flowsTo`-paths until the budget runs out). This common spurious object is actually in the initial context-insensitive points-to sets of both $r0$. The SB analysis cannot filter it out within the budget primarily because there are very large SCCs in `javac`'s call graph (i.e., almost all methods are in SCCs). It is impossible to verify whether or not there exists a `flowsTo`-path by handling SCCs context-insensitively. In addition, the method that contains this spurious object is far away from methods `inline` and `selectType`, making it difficult to prove or disprove the existence of a CFL path. In fact, `inline` and `selectType` are very close to each other, and it is much easier for our analysis to check `memAlias`-paths between them. This is a common case that appeared often during our code inspection. We found similar frequently-occurring cases that could not be described due to space limitations. All of them may contribute to the precision difference between the two analyses.

5.3 Evaluation of Summary-Based Analyses

To demonstrate the effectiveness of procedural reachability summary, we compare the total running times of the two versions of our analysis, one with the summary generation and the other without. For this set of experiments, the total number of nodes traversed in each query is used as the per-query budget (1000 nodes was used in this experiment). As the total number of nodes traversed can be considered as an indication of precision, the goal of using a fixed number of nodes as budget is thus to compare the running times of our analysis under different configurations to achieve roughly the same precision (an actual precision comparison is presented shortly).

Running time. For the summary-based analysis, different threshold values T are used (i.e., 1, 2, 5, 10, 15, and 20) to determine whether or not a method should be subjected to summarization. As discussed in Section 4, for a method m we consider the ratio between the number of incoming call graph edges of m, and the average number of incoming call graph edges for all methods. When this ratio is greater than T, the analysis computes and uses a reachability summary for m. To understand the performance of the analysis under these different configurations, for each such configuration, we compute the geometric mean (GM) of the analysis running times over the 19 programs. In general, the summary-based analyses were faster than the non-summary one ($GM_{\text{summ}} = 10970$ ms). For the six summary-based configurations studied, $T = 2$ ($GM_{\text{summ}(2)} = 8127$ ms) and $T = 20$ ($GM_{\text{summ}(20)} = 9205$ ms) are the ones with the best and the worst performance. Running times for the other configurations are between $GM_{\text{summ}(2)}$ and $GM_{\text{summ}(20)}$. In our experiments, $T = 2$ seems to be an appropriate threshold value that achieves a balance: computing summary for either too many methods ($T = 1$) or too few methods ($T > 2$) is less beneficial. Compared with the non-summmary version, the analysis with $T = 2$ achieves an average running time reduction of 23.8%. A detailed comparison of the performance improvements under several configurations is shown in Figure 4.

Precision. We have also compared the precision of a summary-based version of our analysis against that of a non-summary-based version and of the SB analysis under the same time budget. We run our summary-based analysis under the best configuration that we have observed ($T = 2$), and specify 10ms as per-query budget. We chose this longest
time (10ms) as the budget because the SB analysis achieves its highest precision under this time. The numbers of alias pairs reported by this summary-based analysis are shown in Column SDA of Table 2. For most programs in our benchmark set, SDA is more precise than both the non-summary-based analysis (column DA) and the SB analysis.

6. RELATED WORK

There exists a very large body of work on points-to/alias analysis. We refer the reader to [4, 24, 8, 25] for a broader discussion of these analyses. The description in this section is limited to the CFL-reachability-based analysis algorithms that are most closely related to our technique.

Work by Reps et al. [18, 19, 5, 16, 20] proposes to model realizable paths using a context-free language that treats method calls and returns as pairs of balanced parentheses. Sridharan et al. define a CFL-reachability formulation to precisely model heap accesses, which results in demand-driven points-to analyses for Java [27, 26]. Combining the CFL-reachability formulations of both heap accesses and interprocedural realizable paths, [26] proposes a context-sensitive analysis that achieves high precision by refining points-to relationships.

CFL-reachability can be used to implement a variety of static analyses, such as polymorphic flow analysis [15], shape analysis [17], and information flow analysis [11]. The work in [6, 12] studies the connection between CFL-reachability and set constraints, shows the similarity between the two problems, and provides new implementation strategies for problems that can be formulated in this manner. Work from [7] extends set constraints to express program analyses involving one context-free and any number of regular reachability properties.

Our previous work [32] proposes a whole-program alias analysis based on a CFL-reachability formulation that can be used to quickly terminate the traversal of a false $fl~owsTo$ path in order to speed up the Sridharan-Bodik points-to analysis. This analysis does not provide on-demand capabilities, and achieves context-sensitivity by cloning SPG subgraphs. Zheng and Rugina [33] present a CFL-reachability formulation of alias analysis and implement a context-insensitive demand-driven analysis for C programs. The key insight is that aliasing information can be directly computed without having to compute points-to information first. While our analysis is based on this same insight, it is tailored for Java and is fully context-sensitive. This is accomplished by designing completely different context-free languages, formulations, and algorithms.

7. CONCLUSIONS

This paper presents a demand-driven alias analysis for the Java language. Unlike existing analyses for Java, it answers alias queries by computing CFL-reachability alias information directly, instead of relying on an underlying points-to analysis. The analysis performs field-sensitivity and context-sensitivity checks simultaneously over an interprocedural symbolic points-to graph—a heap structure approximation that contains locally-resolved points-to relationships and uses placeholder symbolic nodes to represent unidentified objects. This structure of the ISPG allows us to develop a simple context-free language memAlias and an efficient algorithm for context-sensitive CFL-reachability based on this language. To further improve analysis performance, we propose to compute and use online summaries for methods whose processing could have substantial effects on analysis running time. We have empirically compared the proposed approach with a state-of-the-art demand-driven points-to analysis [26]. We found that our analysis can produce more precise solutions than this existing analysis when they are run with the same time budget. The experimental results also show that when the set of methods for which summaries are computed is selected appropriately, the use of summaries can reduce significantly the analysis running time. These findings suggest that our analysis is a good candidate for use in software tools.

Acknowledgments

We thank the anonymous reviewers for their valuable and thorough comments. This material is based upon work supported by the National Science Foundation under CAREER grant CCF-0546040, grant CCF-1017204, and by an IBM Software Quality Innovation Faculty Award. Guoqing Xu was supported in part by an IBM Ph.D. Fellowship Award.

8. REFERENCES
